
3 MODULE DESCRIPTIONS

Enrico Biermann (enrico@cs.tu-berlin.de) WS 2002/03
Timo Glaser (timog@cs.tu-berlin.de) 18. 2. 2003
Marco Kunze (makunze@cs.tu-berlin.de)
Sebastian Nowozin (nowozin@cs.tu-berlin.de)

YAVA - Programmers Overview

1 Introduction

This is a short primer on how the YAVA program is structured from the developers point of view.
You should read this document to understand the overall design of the YAVA program and when
you are about to hack the source. For an detailed in-depth view to the source and its individual
classes and methods, please consult the source-generated “Programmers Reference Manual” [1]
instead.

2 Overview

The program is split into four modules, where two parts - the GUI and vowel modules - are limited
to the application domain, and the remaining parts - the audio file processing module and the
neural network module are independant and reuseable. Within the program, the modules are
dependant on each other as shown in figure 1.

audio

vowel

neuralnet

gui

Figure 1: Module dependency overview

3 Module Descriptions

The modules are organized by directories within the main src/ source directory. The tree is as
follows:

src/
audio/ libaudio.a, classes AUFile and AudioPreprocessing
gui/ main program, GUI interface and custom GUI widgets
neuralnet/ libperceptronnetwork.a, main class PerceptronNetwork
vowel/ libvowel.a, abstraction classes, main class VowelManager

1 / 2



3.1 Audio REFERENCES

3.1 Audio

The audio module abstracts away file format dependant details and audio processing algorithms.
The AUFile class keeps all the fancy details of the Sun AU sound file format under a simple to use
interface. While loading and saving are the core functionalities, it provides a handful of additional
utility methods to conveniently deal with raw sample data, such as finding a limited maximized
sample range within the overall sample or storing arbitrary non-sample payload data within an
AU output file.

The AudioPreprocessing class builds on top of the foundation provided by the AUFile class.
Taking a raw audio sample and processing parameters as input, it applies a number of simple au-
dio processing algorithms, such as FFT fast fourier transformation and normalization to provide
a discrete low-dimension output vector representation of the sample. Also, serialization of the pa-
rameters is provided by both a load and save method. During runtime, one AudioPreprocessing
object is kept as a quasi-template, which is copied whenever a sample is processed. The settings
of this template are modified by the GUI’s audio tab.

The individual modules are described below.

3.2 Neural Network

The neural network module implements a multilayer perceptron neural network system. The
module is build around a main class called PerceptronNetwork, which is probably the only part
one would use from outside the class. Internally the PerceptronNetwork class builds a hierar-
chy down to a PerceptronLayer and PerceptronNeuron class, naturally modelling the systems
layout by means of object orientied programming. The helper classes RandomFunctions and
ActivationFunctions are provided to allow a more convenient initialization of the network pa-
rameters.

3.3 Vowel

The vowel module is the glue between the GUI and all underlying classes. It provides the real
vowel sample recognition capabilities, the abstract classification system and its training and testing
functionality. There are only few parts the GUI interacts with that are not kept here, so if you are
about to really modify the application domain specific behaviour, this is the place to look. The
main class is the VowelManager which makes use of the VowelSample and VowelSet to manage
the training and testing set of vowels. The VowelClassifier class represents the expert system
based on three neural networks. It is trained by the manager, using its training set, and its quality
is verified with the test set of samples. One global VowelManager object is kept for the program,
which is kept in Yava.cpp. All parts of the VowelManager object are accessible through the GUI.

3.4 GUI

The GUI is made up be the main program Yava.cpp, an automatically generated class GUIMain,
a GUI interface glue class GUIMainImpl, which inherits from GUIMain and finally the custom
widgets Graph and WeightMatrix. The GUI itself is created using the QT Designer, which in
turn generates .ui files. During the build process, the files are converted by the uic utility to
auto-implemented classes, from which the manually written implementation class GUIMainImpl
inherits. The events and signal-slot relationships are already defined within the designer, so all
whats left to the real programmer is implementing the actual code behind the widget action. The
GUI is organized in five tabs, each reflecting a functionally related part of the program. The tab
categories are seperated within the source file for easier modification.

References

[1] pedantic project team, “YAVA Programmers Reference Manual”

2 / 2


