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Chapter 1

Introduction

In this chapter I introduce the scope and context of the thesis to you. Motivated by a real
world clinical challenge I give a list of objectives in order to solve the challenge. To provide
you, the reader, an orientation for the thesis, every chapter is summarized in an outline.

1.1 Motivation and clinical challenge

The problem to be solved with my thesis occurs regularly at the Shanghai First People
Hospital. Dr. Zhang Hao, Mr. Xie Xueqian, Ms. Guai Hua and Mr. Zhang Tiannin
introduced the problem to Prof. Gu Lixu and me. For certain illnesses related to the liver
the blood flow to the liver has to be studied. By injecting a contrast agent into the patients
arm while continuously taking MRI images, the concentration of the contrast agent can be
studied while it flows through the patients body. A short time after the injection it reaches
the liver and the MRI images at that time give important information about the blood supply
of the liver.

To study the concentration of the agent in the liver for the entire series, the doctor
currently has to manually analyze the images. Because the liver moves vertically as the
patient breathes throughout the series, the perfusion-relevant position in the image moves
as well1. The doctor has two choices, a) to ignore the change in position and b) the mark
the positions manually in all the images. After all positions are marked using one of the two
methods, the intensities of the MRI images at these positions are plotted over time and the
concentration curve of the contrast agent is deduced. The curve is used for further diagnosis.

Ignoring the change in position of the perfusion area introduces a measurement error.
However, while the process of manually marking all the images leads to good results, it is
very time consuming. The goal of this thesis is to automate the process so that only minimal
manual work is required from the doctor.

1.1.1 Liver perfusion series MRI data

Thirteen MRI perfusion series were given to us for experiments. They show the patients
abdomen in regular time intervals during the perfusion studies. An example set of four
images taken from the series is displayed in figure 1.1.

1For our series, the portal vein is used as perfusion area.
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1.2. Main contribution

Figure 1.1: Representative example images from one of the provided MRI image series.

1.2 Main contribution

The contribution of this thesis is a solution to the clinical challenge of liver perfusion mea-
surements. Specifically, the following has been achieved.

1. Robust, automatic and performant segmentation of the provided liver perfusion data
sets.

Robust means the resulting procedure shall work on all the provided image series and
will most definitely also work on new series. Automatic means the procedure shall not
require manual steps with the exception of an initialization step. Performant means the
procedure must work within acceptable time constraints on common Personal Comput-
ers.

2. Provide automatic intensity curve of a given subarea of the liver across the entire image
series.

The valuable result in a clinical environment is the concentration time curve of a certain
area within the liver. This concentration curve can directly be deduced from the image
intensity. The procedure developed provides this intensity curve for a given area of the
liver. As the patient breathes the liver moves, and the procedure provides means of
image registration and transformation between the images in the series.

3. Evaluate the results of different parameters to the level set method.

1.3 Previous work

In the literature I have not found any attempt to solve the problem of liver perfusion mea-
surement using level set methods.

Because my proposed approach is closely related to medical image segmentation and
registration, for which there is a large body of literature available, I give detailed accounts
of previous work in their respective chapters, 2, 3, 4 and 5. I find it important to provide
references in context, instead of just providing them in listed form.
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1.4. Outline

1.4 Outline

In the following chapters I describe all the employed methods in our approach, the approach
itself and an evaluation of the experimental results.

In chapter 2 we give an introduction to segmentation of digital images. The problems
of segmentation in general are detailed and explained using an example image. Afterwards
we list desirable properties of medical image segmentation algorithms and point to possible
applications. The remaining part of the chapter concentrates on specific medical image seg-
mentation algorithms, which we first introduce by giving a hierarchical overview and later by
explaining the most important algorithms in detail.

Chapter 3 explains the level set method and its implementation. The chapter is self-
contained and can be read separately. The level set method is introduced as an interface
evolution algorithm and contrasted with two other common evolution methods, the marker
method and the volume-of-fluid method. The representation the level set method uses is
examined in detail and its importance as the fundamental part of the method is highlighted.
The remaining chapter deals with the concrete problems that have to be solved when im-
plementing the method, namely reinitialization, evolution and higher order approximations.
Finally, details to the narrow-band level set method and implementation advice are given.

Chapter 4 explains the “cousin of the level set method”, the Fast Marching Method.
Like the previous chapter, it is also self-contained. The method is first contrasted with the
Level Set Method and in the following details and pseudo code are given.

Throughout chapter 5 we describe our solution to the liver perfusion problem based on
the theoretical base of chapters 2 to 4. The solution consists of three basic steps: segmentation,
registration and measurement. The segmentation is the most complex part and described in
detail. To solve the registration problem a simple novel scheme is devised and explained.
Finally the measurement part and the relationship of the measurement results to the clinical
application are described.

Chapter 6 details the prototype implementation and the results of applying the approach
on real perfusion series. First the features of the prototype are described and the available op-
tions in graphical user interface (GUI) are explained. Afterwards, the segmentation accuracy
and runtime performance of the prototype are examined and its clinical value established.

Concluding, in chapter 7 I give an overview of what has been achieved throughout the
thesis, what practical implications it has for possible clinical use and how the work might be
continued in the future to improve upon the results.

1.5 Acknowledgments

I would like to thank Professor Gu Lixu for supervising this thesis and the insightful comments
he provided throughout the whole process. For their continuous efforts in the exchange
student program this thesis is part of I would like to thank Professor Li Fang and Professor
Sheng Huanye from the Shanghai Jiaotong University and Professor Günter Hommel from
the Technical University of Berlin. Dr. Zhang Hao, Mr. Xueqian Xie, Ms. Guai Hua and
Mr. Zhang explained the clinical problem to me in detail and I am grateful to them.

11



1.5. Acknowledgments

12



Chapter 2

Segmentation

2.1 Introduction

We now introduce the problem of segmentation for digital images. First, we give a definition
and derive criteria a good segmentation algorithm should possess. Then, we give an overview
of segmentation in the field of medical imaging and later explain the most common techniques
in detail. This provides the background necessary to introduce the main topic of the thesis,
namely segmentation of medical images using the level set method.

2.1.1 Definition

A general definition of image segmentation is

“Segmentation in the image processing sense is the process of dividing or par-
titioning a digital image into a set of regions, where the regions correspond to
objects of interest.”

Let us examine this definition in detail. “Segmentation” is a general word in the English
language meaning to divide some whole into smaller parts, but in this definition segmentation
it is limited as describing a process of converting a digital representation of an image into
a mathematical set. The set produced is defined as a set of regions, where each region is
said to correspond with one object, which is described as object of interest. Let us further
examine the three key elements, the digital representation of an image, the set of regions and
the objects of interest.

To give more vivid examples of the concepts, we will refer to the example image shown in
figure 2.1, which shows a busy street scene in rural Shanghai.

Digital representation of an image. Everybody intuitively understands what an image
is. However, to be able to discuss images and operations on them in a more exact way, it
is necessary to have a formal specification. We follow [51] and see images as mathematical
functions. In general, the domain of the function is n-dimensional, and the domain and range
of function values can be continuous or discrete. In case both the domain of the function
and the range is discrete, the function is called digital. In this thesis, we only deal with such
digital functions of images.
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2.1. Introduction

The most common input domain of a function I representing a digital image are two
dimensional (2D) Cartesian coordinates (x, y). The function value I(x, y) represents a physical
quantity measured. In the simplest case the quantity is an one dimensional one, such as
brightness, temperature, distance or pressure. In some cases, the output range of the function
I is multidimensional, for example with color images. The image function I for a color image
maps to a coordinate in a color space. For the 2D case, one element of the picture is called
pixel, short for picture element .

Higher dimension input domains than 2D also exist. For example, images with three
dimensions (3D) can commonly be found in MR imaging, where a single element of the image
is called voxel, for volume element . Time series of 3D images in turn could be represented as
4D images.

Summarizing, we define a digital image I formally as

I : Nn → Nk,

where n is the dimensionality of the bounded domain, and k is the output dimensionality,
where each dimension is made up by discrete levels.

For our example image in figure 2.1, the image is a 2D gray scale image of the brightness
at a discrete resolution of 1024x768, with 256 discrete levels in the intensity range.

Set of regions. As result of the segmentation a set of regions is produced. Each region in
turn is a set of image elements belonging to that set. The grouping of these elements into
regions states a relationship between them: they are believed to belong to the same object.
That is, the image elements in one region share a set of properties, they are said to be similar.

Between different adjacent regions there is discontinuity. Most often, all elements in each
regions have to be connected with each other. This is one constraint which can be applied
on each region, the connectivity constraint. Often, each region also has to fulfill a certain
regularity, such as being smooth to some degree or have a fixed topology.

In our example figure 2.1 the set of regions depend on the objects we are interested in,
which we discuss now.

Objects of interest. The object of interest is the entity present in the image that we are
interested in for further analyzing. For example in a medical x-ray image we are interested in
the shape of the bones, hence a segmentation algorithm might attempt to recover the shapes
of bones from the image.

But the notion of an entity as a well defined element distinct from others is not always
so clear. Consider a scanned image of a text document, with English characters organized in
words and sentences. Instead of objects in the image, we have a whole hierarchy of objects.
At a low level we have single elements, points, strokes and curves. Together these build single
characters, which are in turn organized in words. Words are structured in sentences and
paragraphs. The interest defines where in this hierarchy we draw the boundaries between
objects and prescribes the level of detail at which the segmentation happens.

Regarding our example image in figure 2.1, we have no information about what a segmen-
tation step should produce. But lets consider two plausible goals, (a) the segmentation of
cars in the image and (b) the segmentation of the Chinese characters contained in the image.

For the first case, the segmentation of cars, the problem is tricky, as some cars are occluded
by cars closer to the viewer. Also, the cars are of different shape, color and texture. Together,

14



2.1. Introduction

it would quite difficult to build a segmentation algorithm targeting car shapes for static
images. However, in case we have a sequence of images, we can use motion as powerful
segmentation cue [18]. More generally, it is often easier to modify the input data modality to
improve segmentation results rather than tuning the algorithm itself is.

The second case, segmenting the Chinese character also exposes interesting problems. As
an abstract symbolic object, a character has a shape associated with it. But unlike cars, it
is unclear how this shape is expressed in the image. Edges, changes in brightness, texture or
other properties are enough for a human to properly recognize a character. For an automated
segmentation we need a more strict definition of what constitutes a character. Unlike cars,
one character may consist out of many non-connected shapes. Then, the symbolic high level
object “character” relates to more than one connected region in the image. Again unlike cars,
characters can appear at almost any scale in the image, up to the point that they are not
identifiable anymore. A segmentation approach incorporating knowledge about characters
hence must be able to apply this knowledge in a scale invariant way. More generally, the
segmentation results capture shape information at a limited level of detail. Thus, even if a
shape resulting from an object of interest is present in the image, if its level of detail inside the
image is outside of the range captured by the segmentation algorithm it will not be properly
segmented.

2.1.2 Properties of segmentation algorithms.

Following Suri et al. [53], we now give a list of desirable properties a medical image segmen-
tation algorithm should possess. A good medical image segmentation algorithm has:

• Accurate segmentation results.

An accurate segmentation represents the original structure of interest well and reliable.
There are two fundamental limitations to the accuracy of the segmentation, that is

– the quality of the input data limits the quality of the resulting segmentation, and

– the structure of interest must be well defined.

• Flexible topology.

The segmentation algorithm must be able to handle simple structures as well as complex
structures with high curvature, such as the brain, or structures with holes.

• Minimal use of initial parameters.

For practical applications, the initial parameters to be determined manually should be
minimal.

• Converging and stable.

The algorithm should converge to the final segmentation result. Convergence has two
advantages, namely (a) a stopping criterion can be build easily for the segmentation
process, and (b) the segmentation can be performed automatically because it is robust
to different initialization parameters.

• Robust against local noise.

The quality of the segmentation should not be affected by local noise.
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2.1. Introduction

Figure 2.1: 2D gray scale intensity image of a busy street scene.
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2.2. Medical Image Segmentation algorithms overview

• Broadly applicable.

The algorithm should be applicable to a large number of image modalities, such as CT,
MRI and ultrasound systems, as well as to 2D and 3D uni- and multimodal images.

• Reasonable performance.

The segmentation algorithm must be reasonably fast and run within acceptable space
constraints.

• Flexibility.

The algorithm must be flexible for extension for two reasons. First, the technical imag-
ing systems will change in the future, and by being flexible it might be possible to use
extensively tested segmentation algorithms on new systems with minimal changes. Sec-
ond, the algorithm may have to be adapted to incorporate extra information into the
segmentation, such as model-driven knowledge about the structures to be segmented.

2.1.3 Applications of Medical Image Segmentation

The currently most dominant applications of reliable segmentation algorithms are 2D and
3D visualizations of the internal structures of the patients body, enhanced diagnostics and
detailed planning of surgeries.

• Volume Visualization.

Through accurate segmentation and surface extraction algorithms, the two-dimensional
image slice data created by MRI, MRA, CT and ultrasound imaging can be converted
to surfaces embedded in a three dimensional volume. These surfaces and volumes can
be displayed using rendering techniques. The clinical value of this visualizations is
extensively studied by Sakas et al. in [44].

• Enhanced diagnostics.

Knowledge about the exact geometric shape of interna of the patients body allows
enhanced diagnostics, such as detailed volume measurements. Malladi et al. use level
set techniques in [30] to take exact measurements of the volume of bones and muscles
from MRI images. Later, Sethian and Malladi extend this work in [47] to segmentation
of the liver, the heart chambers, skull and the complex structure of the brain.

The use of three-dimensional ultrasound in prenatal diagnostics and fascinating visual-
ization of the unborn baby’s face is detailed in [44].

• Planning of surgeries and treatments.

Accurate segmentation of medical image data provides the basis for detailed three-
dimensional planning of surgeries, virtual endoscopy and computer assisted radiation
therapy planning. Actual examples and proposed virtualizations of important medical
procedures are given in [44]. An introductory overview can be found in [2].
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Figure 2.2: Medical image segmentation algorithm taxonomy tree following Suri et al. [53].

2.2 Medical Image Segmentation algorithms overview

An overview of segmentation algorithms used in medical image processing is shown in fig-
ure 2.2.

The main trees shown in figure 2.2 are region-based segmentation algorithms and segmen-
tation algorithms based on deformable models.

Region based segmentation

Region based segmentation methods group pixels together based on some notion of similarity
but do not have a knowledge of the resulting regions’ shape. Below, we discuss in detail thresh-
old methods, the watershed segmentation method based on mathematical morphology and
region linking methods. Introductions to most of the region-based segmentation algorithms
can be found in popular image processing textbooks, such as [18, 7, 15, 51].

Deformable model segmentation

The other large branch of segmentation algorithms deals with deformable models. Deformable
models, of which level sets are an important subset, describe a shape in an image by its contour
instead of the region it occupies. The contour is evolved to match the shape of the object to
be segmented. One famous branch of deformable models used for segmentation are Snakes,
described in section 2.6. The other major subbranch is based on level sets, which we describe
in a dedicated chapter. The fundamental difference between the parametric and geometric
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2.2. Medical Image Segmentation algorithms overview

models is the kind of representation used for the curve or surface. Parametric models are
explicit, while geometric models are defined implicitly as a property of a higher level function.
The branch of level set methods is further subdivided into three classes, geometric deformable
models without regularizers, with regularizers and bubbles. We now discuss them briefly and
point out important recent trends in the field.

Geometric deformable models without regularizers. The models without regularizers
are evolved based solely on the information of the underlying image. A special case is an
evolution happening at a constant speed normal to the curve or surface1. No information
about the shape, such as curvature, is used to make the curve more regular.

Almost all the algorithms without regularization can most efficiently be implemented using
the Fast Marching Method (FMM), which we explain in chapter 4.

Deformable models without regularizers are very popular; Droske et al. [12] for example
use an adaptive sized grid to embed the level set function. As an example application they
evaluate the performance by semi-automatically segmenting glioma in MRI images of the
brain.

Baillard et al. [4] use level set methods to segment complex 3D structures from MRI and
ultrasound images, with experimental data given for segmentation of the brain.

While the segmentation problem I deal with within this thesis is limited to two region
segmentation, there have been efforts to extend Level Set Methods to more than two regions
to be segmented. In [8], Chan and Vese did so and extended the two-phase segmentation
using Level Set Methods to multiphase segmentation.

Geometric deformable models with regularizers. Deformable models with regularizers
include all of the above models but allow for the definition of a regularization term. This term
adds a shape dependent force to make the results of a segmentation “regular” by some criteria.
A common criteria is smoothness, such as continuity in the first derivative and curvature. We
discuss the regularization terms in more detail in section 5.3.3.

Models with regularizers are very popular; we give some examples here. Vemuri and Guo
developed a hybrid model of parametrized “snake pedals” in [55] and later detailed it in [56].
Their model can be used in the level set framework to fit a level set function to a prior
model curve or surface. A similar approach is taken by Leventon, Grimson and Faugeras
in [27]. They interpret the signed distance level set functions of segmented training shapes
as higher dimensional points and apply PCA2 to identify the principal model shapes. They
incorporate an estimating final shape term into the level set evolution equation itself and
guide the evolution into the most likely shape form. Both approaches are categorized among
the shape regularizers segmentation methods in figure 2.2.

Zeng et al. [14] extended the level set segmentation procedure to evolve two surfaces at the
same time. The surfaces are coupled by a distance conserving term which acts as a force on
both surfaces to always keep the same relative distance to each other. He uses this coupling
to achieve excellent results in the segmentation of white and gray matter in MRI images of
the brain. The surface coupling imposes are regularization force which counters extending the
segmented shape in case the surfaces “disagree”, while having no opposing effect when they

1This important subset will be examined in detail when we are concerned with reinitialization of the level
set function in section 3.3.1.

2Principal Component Analysis, see [13].
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2.2. Medical Image Segmentation algorithms overview

agree. Zeng’s approach is a prime example for the coupled regularizer class of segmentation
algorithms.

An interesting approach to gradually refine the segmentation is given by Lin, Yu and
Duncan in [28]. They operate on two-dimensional ultrasound images which are incrementally
blurred within a Gaussian pyramid. The segmentation starts on a coarse scale and the results
of each scale are used both to initialize and to bound the segmentation process on finer scales.
This bounding is a regularization force on the finer scale segmentation. They validate their
approach using real ultrasound data.

Another effort to improve level set segmentation results by merging a-priory knowledge
or regional statistics into the speed function is Ho et al. [22], who replace the propagation
term with a force based on regional statistics and let adjacent regions compete for a common
boundary. They demonstrate improved results for brain tumor segmentation in MRI. Suri
used fuzzy classifications of regions in [52] to build a speed function incorporating shape,
region, edge and curvature information and applied the resulting model successfully to brain
segmentation.

Bubbles. Bubbles are simple object descriptions that are initialized globally and partially
randomly on an image. These simple objects are then evolved nearly identical to the classical
levelset evolution, using the reaction-diffusion equation

∂C

∂t
= S(x, y)(β0 − β1κ) ~N, (1)

where C is a bubble, S(x, y) a stop function based on the image and β0, β1 are reaction-
and diffusion term constants respectively. Numerically, the equation can be discretized using
the levelset techniques outlines in chapter 3. The stop function S(x, y) guides the growth
based on local image properties, such as gradient. Its meaning is identical to the level set
segmentation speed functions, and commonly S(x, y) = 1

1+|∇Gσ∗I(x,y)|m is used. During the
evolution the bubbles are allowed to change topology, to merge, split or vanish.

Figure 2.3: Example bubble evolution. The original image on the left is to be segmented by
bubbles. First bubbles are randomly initialized in homogeneous areas of the image (second
image from left), which successively are subject to evolution under equation 1. Images taken
from [54].

Initially, the bubbles are randomly placed on the image where the image is uniform homo-
geneous with respect to the stop function S. Using the above function, this would place the
bubbles at regions with a small gradient. This global initialization allows the bubble method
to hypothesize about object components, while the following reaction-diffusion process vali-
dates, modifies or annihilates them. This process is shown in figure 2.3.

While closely related to the level set method from an implementation point of view, Tek
and Kimia [54] also provide a strong theoretical and mathematical justification for their
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2.3. Thresholding based segmentation methods

Figure 2.4: Gray
scale image of
objects to be seg-
mented.

Figure 2.5: Im-
age 2.4 thresholded
at T = 94.

Figure 2.6: Im-
age 2.4 thresholded
at T = 109.

Figure 2.7: Im-
age 2.4 thresholded
at T = 167.

Bubble model by building a connection to shock-based description of shapes, reducing shape
in a hierarchical representation to four fundamental type of shocks [26].

Summarizing, bubbles can solve some of the important problems occurring in medical
image segmentation, such as the segmentation initialization. Additionally, the use of the
reaction- and diffusion term constants can be used to balance result towards the expected
shapes.

2.3 Thresholding based segmentation methods

2.3.1 Basic thresholding

Basic thresholding has been popular since the beginnings of digital image processing [17, 18].
The idea is to create a region membership function based on the intensity and then to apply
this function to every single pixel in the input image to obtain a region membership map.
This membership map groups the pixels into regions, which is the segmentation result.

More formally, for a two-region case a function f(I) is used

f(I) =
{

0 if I ≤ T
1 if I > T

,

where I is the intensity value, and T the threshold value. For more than two regions, the
function similarly divides the input intensity range into intervals, assigning one set index for
each.

Consider the gray scale image shown in figure 2.4. The histogram, the relative count of
the different intensity values is shown in figure 2.8. In figures 2.5, 2.6 and 2.7 the resulting
thresholded sets are shown for the values T = 94, T = 109 and T = 167 respectively. If our
interest lies in separating the small objects from the background, clearly T = 109 gives the
best result. For T = 94 part of the background is included in the positive set, for T = 167
the positive set does not include parts of the objects in the lower right corner of the image.
Generalizing from this example, we now analyze the properties of the basic thresholding
procedure.

While for simple cases the basic thresholding method is sufficient, the results achievable
are limited by four factors:

21



2.3. Thresholding based segmentation methods

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  50  100  150  200  250  300

co
un

t

intensity

Histogram

Figure 2.8: The intensity histogram of the gray scale image shown in figure 2.4.

1. Only a single pixel value is considered at a time.

The region classification decision is made based only on one pixel’s intensity value, with-
out considering its neighborhood or the overall image structure, discarding all spatial
information.

We will discuss local thresholding below, which introduces information about the neigh-
borhood into the classification decision.

2. Thresholding uniform over the entire image.

The image may be uniform in structure, or it may be not. Basic thresholding can deal
well with the uniform case, where the intensity of one region does not change. When
the intensity varies, the segmentation performance decreases. Local thresholding leads
to an improvement in this case.

3. Threshold value T strongly dependent on the image.

The only free parameter T defines the resulting segmented regions. To choose the “right”
value of T , that is, the value producing the minimal segmentation error, is generally
impossible for all images. It is strongly dependent on the input image, which makes
choosing a good default value difficult. The adaptive thresholding methods we discuss
below try to obtain a good threshold value T automatically.

4. No geometric interpretation.

No geometric interpretation is done to obtain the classification decision; the resulting
segmented regions have no regular geometric properties, such as “being smooth”. In
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2.3. Thresholding based segmentation methods

Figure 2.9: Gray
scale image of
objects to be seg-
mented.

Figure 2.10: OTSU
algorithm, T = 125.

Figure 2.11: Entropy
method, T = 121.

Figure 2.12: Isodata
algorithm, T = 124.

general, threshold based segmentation algorithms can not overcome this limitation, as
it is inherent in the approach of dealing with a small part of picture at a time.

2.3.2 Adaptive thresholding

In this section we give a brief introduction to three common generic threshold algorithms,
the OTSU algorithm, the Entropy method and the Isodata algorithm. For many applications
there exist modified versions of the algorithms presented here or novel schemes producing
better results. The algorithms given here are still popular as preprocessing-step on images,
but have fallen out of use for segmentation due to the invention of more powerful methods.

OTSU algorithm

The OTSU algorithm, named after its creator Nobuyuki Otsu, and published in [41] is a
well known algorithm to automatically derive a “good” threshold value to use with binary
thresholding.

We first define
p(i) =

ni

N
,

where ni is the number of pixels which have an intensity value of i, and N is the total number
of pixels in the image. Next the frequencies ω0 and ω1 for each class are defined as

ω0 =
T∑

i=0

p(i), ω1 =
255∑

i=T+1

p(i).

The mean values are obtained using

µ0 =
T∑

i=0

ip(i)
ω0

, µ1 =
255∑

i=T+1

ip(i)
ω1

,

and additionally the total mean is calculated as

µT =
255∑

i=0

ip(i).
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2.3. Thresholding based segmentation methods

The OTSU algorithm chooses the threshold value T which maximizes the term

η = ω0 · (µ0 − µT )2 + ω1 · (µ1 − µT )2.

For the example image, the OTSU algorithm chooses T = 125, the result is shown in
figure 2.10.

Entropy algorithm

The entropy threshold value selection method introduced by Wong and Sahoo in [57] works
by measuring the information theory entropy values for the classification sets. These entropy
measures, H0 and H1 are defined as

H0(t) = −
t∑

i=0

pi(0) log(pi(0)) H1(t) = −
255∑

i=t+1

pi(1) log(pi(1))

where pi(k) = ni
Nk

, k ∈ {0, 1} denotes the quotient of the number of pixels ni that have the
intensity value i, divided by the number of total pixels Nk in the class 0 or 1.

Then, the threshold value is selected by choosing the value t that maximizes H(t), defined
as

H(t) = H0(t) + H1(t).

For the example image, the entropy method chosen threshold value is t = 121. The result
of the thresholding is shown in figure 2.11.

Isodata algorithm

The so called Isodata algorithm introduced by Ridler and Calvard in [43]3 iteratively finds a
threshold by taking the sample mean value of the gray values associated with each class.

Algorithm IsodataThreshold
Input: A histogram h[0 . . . n] of an image.
Output: A threshold value T to use with binary thresholding on the image.
1. T ←n

2
2. repeat
3. Tl ←T
4. R0 = h[0 . . . T ]
5. R1 = h[T + 1 . . . n]
6. µ0 ←mean intensity of R0

7. µ1 ←mean intensity of R1

8. T ←µ0+µ1

2
9. until Tl = T
10. return T

For the example image, the isodata algorithm selects a threshold value of T = 124, the
result is shown in figure 2.12.

3With additional good comments available in [29].
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2.4. Region based segmentation methods

2.3.3 Local thresholding

The above thresholding algorithms can be improved by adapting the threshold to local image
regions. That is, instead of only one threshold value T for the entire image, different values
are used for different parts of the image. This makes it possible to deal with changes in
illumination. Details of different local thresholding methods are given in [18].

2.4 Region based segmentation methods

In region based segmentation algorithms, the image is interpreted as a region which is the
sum of disjoint, connected partitions. Formally, the complete image region R is defined as

R =
n⋃

i=1

Ri, Rj ∩Ri = ∅ for all i, j, i 6= j,

where Ri is an individual connected subregion.
Two popular region based segmentation methods using this definition are region growing

and region splitting and merging, which we discuss briefly now.

2.4.1 Region growing

Region growing produces the set of regions Ri to satisfy the above definitions using an iterative
algorithm. Initially there are seed regions, of which regions with just one element – seed pixels
– are a common special case. In each iteration the neighbors of each region which do not
belong to any region yet are checked if they satisfy a similarity criteria. The end of the
iteration process is controlled by a stopping rule.

Similarity criteria. The similarity criteria decides about whether to join a neighboring
element of a region into the region or not. It is strongly dependent on the segmentation
problem itself and the image modality.

Usually the similarity criterion is designed to base its decision on the absolute intensity4,
the relative intensity difference and the gradient, texture, etc.

Stopping rule. The similarity criteria decides when a neighboring pixel shall be merged
into the region, but still is entirely local in its nature. That is, the global properties of each
region, such as size or contour length are not considered. By allowing an additional stopping
rule to be based on such region-global properties the power of the region growth method is
improved.

Comparing region growing to basic thresholding. The higher segmentation perfor-
mance of region growing segmentation stems from its additional use of connectivity. In the ba-
sic thresholding methods we discarded all spatial information, including the inter-relationships
of the picture elements. Connectivity is a simple, but one of the most important relationships
between picture elements in regard to segmenting single objects.

We will see in the following sections how more and more spatial information is incorporated
into the segmentation process, improving the results.

4Or for multicolor images, a region in a color space.
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2.5. Watershed segmentation

2.4.2 Region splitting and merging

Whereas region growing starts at seed regions, successively adding elements to them, region
splitting starts with the entire image as one region. This region is recursively split and
the similarity criteria evaluated for each subregion. For every subregion which satisfies the
similarity criteria the recursion is stopped. If the similarity is not present, the subregion is
further split.

Figure 2.13: Region splitting scheme on a quad-tree structure.

In figure 2.13 the quad-tree structure [45] is used to split the regions into four subregions
each. Regions R1, R3 and R4 satisfy the similarity criteria, while region R2 does not. In the
recursion of R2, it is split into four subregions R2,1, R2,2, R2,3 and R2,4.

More formally, if P (R) is the similarity criterion predicate which is true in case all elements
in the region R are similar, then the region Rk gets split to Rk,1, . . . , Rk,4, iff P (Rk) =
FALSE.

Using the quad-tree structure there might be neighboring regions that are similar, but
which are still split because they belong to different larger regions. These similar neighboring
regions are merged after the splitting is complete. Formally, any two neighboring regions Rk,
Rl for which P (Rk ∪Rl) = TRUE are merged.

The recursion is stopped in case no further splitting is possible.

2.5 Watershed segmentation

A well known segmentation algorithm that can produce sufficient results in many segmentation
problems is the watershed segmentation algorithm. Its approach is based on the concept of
morphological watershed, which represent regions in an image [6, 36].

Idea. To understand what a morphological watershed is, the image is often visualized as
three dimensional landscape, where the intensity at a point gives the height of the landscape at
that point. Areas with a relatively small height in the landscape correspond to valleys, whereas
areas with a relatively large height correspond to mountains. The idea of the watershed
segmentation algorithm is to simulate artificial rainfall by immersion of the landscape with
water.

Naturally, the valleys catch the water and catchment basins form where the water is
collected. If the rainfall continues, at some point the basins in the valleys merge, as a mountain
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2.5. Watershed segmentation

ridge that separates the valleys is overflown by the rising water. Instead of allowing the two
basins to merge, the watershed segmentation algorithm constructs an artificial dam that
separates the valleys. When the whole landscape is covered by the water, the segmentation
stops.

Algorithm. We now reconsider the intuitive idea outlined above in a more formal and
algorithmic approach. One implementation of the watershed segmentation is shown below in
the WatershedSegmentation algorithm.

Algorithm WatershedSegmentation
Input: The intensity image I, a dilation mask M .
Output: The set of segmented regions R, the built set of dams dam.
1. min ←minimum intensity in I
2. max ←maximum intensity in I
3. R ←∅
4. dam ←∅
5. for height = min to max
6. New ←{(x, y)|(x, y) ∈ (thresh(I, height) \ thresh(I, height− 1))}
7. NewC ←set of connected components in New
8. R ←R ∪ (NewC \ {e ∈ NewC|{(x, y) ∈ e|(x, y) ∈ r for any r ∈ R} 6= ∅})
9. New ←New \ {(x, y) ∈ r, r ∈ R}
10. while New 6= ∅
11. D ←()
12. P ←∅
13. for region rk ∈ R
14. Dk ←Dilate(rk,M) ∩New
15. dam ←dam ∪ (P ∩Dk)
16. P ←P ∪Dk

17. New ←New \ P
18. for region rk ∈ R
19. rk ←rk ∪ (Dk ∩ dam)
20. return R, dam

The function thresh(I, height) is defined as

thresh(I, height) = {(x, y) ∈ I|I(x, y) ≤ height}.

The function Dilate(r,M) is the standard binary mathematical morphology dilation operation
for all elements in r using the dilation mask M .

The implementation is straightforward. The main loop in line 5 increases the water level
in each iteration. The newly flooded elements are identified in line 6, then grouped into
connected components. Those components that have no interconnection to already known
regions are added to the set of regions in line 8, as they represent distinct valleys. The
remaining pixels which are connected with known regions are kept in line 9 while the pixels
belonging to the new regions are discarded. The following iterating loop in line 10 deals with
only these remaining pixels.
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2.5. Watershed segmentation

Figure 2.14: Blobs to
be segmented.

Figure 2.15: Gaus-
sian smoothed im-
age 2.14, σ = 3.0.

Figure 2.16: Seg-
mented water-
shed/divide lines.

Figure 2.17: Wa-
tershed catchment
basins.

Figure 2.18: Normal-
ized gradient magni-
tude image of im-
age 2.14.

Figure 2.19: Gaus-
sian smoothed im-
age 2.18, σ = 3.0.

Figure 2.20: Seg-
mented water-
shed/divide lines.

Figure 2.21: Wa-
tershed catchment
basins.

In the loop a successive dilation is performed using the supplied dilation mask D5. In
each dilation iteration pixels belonging to more than one region are identified and a dam is
created at their place (line 15).

The dams, also known as watershed lines form connected pathes, separating the segmented
regions.

In most cases, the watershed segmentation is not done on the original image, but on the
gradient magnitude of the Gaussian smoothed image, |∇Gσ ∗ I|. The smoothing using the
Gaussian reduces noise and smoothes the resulting landscape, improving the robustness of
the segmentation. The larger the smoothing parameter σ, the smaller the number of regions
found6. The gradient image is often used, because the resulting dams are located at large
gradient magnitudes, which correspond to large intensity changes in the original image. Such
large intensity changes happen at the edges of the objects to be segmented if the object
intensity varies from the background intensity.

Example. Lets consider the example7 shown in figures 2.14 to 2.17.
The original image 2.14 shows a number of different sized dark objects on a white back-

ground. The segmentation should identify regions, each containing only one such object. In
5Normally a 3x3 cross or a 3x3 square mask is used for the dilation.
6Commonly values σ = 1.0 to σ = 5.0 are used, but this can vary depending on the relative resolution of

the image, the noise present in it and the regions of interest to be segmented.
7Images provided by the Biomedical Imaging Group, EPFL, http://bigwww.epfl.ch/sage/soft/watershed/.
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this case, the segmentation is directly applied on the smoothed image Gσ ∗ I, not on the
gradient image. A parameter σ = 3.0 produces the smoothed input image 2.15 to the seg-
mentation algorithm. The dams are shown overlayed on the image in figure 2.16 and the
identified regions are shown in figure 2.17.

The same segmentation procedure is applied in figure 2.18 to 2.21, but as input picture the
normalized gradient magnitude image of the image shown in figure 2.14 is used. The resulting
watershed lines lie on places of strong intensity changes, in this case on the boundary of the
blobs. In the final result shown in figures 2.20 and 2.21 every blob has its own region, but
oversegmentation is apparent.

Problems and improvements. A general problem with the watershed segmentation is
oversegmentation, leading to regions that do not correspond to actual objects of interest.
Some of the oversegmentation can be suppressed using a Gaussian smoothing step or by
introducing additional constraints, such as a minimal region size or catchment basin depth.
However, the underlying cause for the oversegmentation is the global nature of the watershed
algorithm, which adds new regions whenever a new local minimum is found, disregarding any
information about the segmentation history and the other regions present. Such local minima
exist at noisy parts and local irregularities of the image. The Gaussian smoothing reduces
them to some extend but also deteriorates the segmentation performance by reducing the
number of regions that can be found.

The segmentation results can be improved by incorporating previous knowledge about the
structure of the image into the process. A straightforward way to do this is the use of markers
which explicitly mark known region seeds and regions not belonging to objects of interest.
Often a natural way to obtain such seed regions exists for a given segmentation problem.
For example, in the image shown in figure 2.14 a simple thresholding step followed by binary
morphological erosion could have been used to obtain seed markers for the blobs. The use of
markers is detailed in [18].

Since its invention in [6], a large number of modifications have been proposed to the wa-
tershed segmentation algorithm which are too numerous to list here. The main improvements
can be grouped into four groups: runtime performance improvements, adding preprocessing
and constraints, incorporating additional problem-specific knowledge and the combination
with other segmentation methods. A good overview is given in [36].

2.6 Snakes - Parametric active contour segmentation methods

Snakes were the first deformable model used for segmentation. Introduced by Kass et. al [24]
in 1987, a snake is a parametrized curve C(s) = (x(s), y(s)), which has an associated energy
term E(C), defined originally by Kass as

E(C) =
∫ 1

0
[Eint(C(s)) + Eimage(C(s)) + Econ(C(s))] ds. (2)

A segmentation using snakes minimizes the energy term E(C) for C. In a successful
segmentation, the resulting energy-minimized snake C correspond to the boundary of the
object of interest in the image. The energy term in equation 2 itself is composed from three
energies, namely

1. Eint, the internal force controlling the snakes rigidity and elasticity,
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2.6. Snakes

2. Eimage, the image dependent force attracting the snake to the object boundaries, and

3. Econ, the external force (also called constraint energy) controlling the snake by means
of user input,

acting on the snake C. A common form of equation 2 is given in [39] as

E1(C) = α

∫ 1

0

∣∣C ′(s)
∣∣2 ds (3)

+ β

∫ 1

0

∣∣C ′′(s)
∣∣2 ds (4)

− γ

∫ 1

0
|∇u0 (C(s))|2 ds. (5)

The function of Eint is taken by the squares of the first and second derivatives C ′(s) and
C ′′(s), terms 3 and 4. The constants α and β control how much they influence the snake.
The Eimage energy is found in term 5, where ∇u0 is the image gradient8. The user controlled
energy Econ dropped out of equation 2.

2.6.1 Parametrization methods

To implement the snake model described above, the snake C(s) has to be parametrized.
Commonly polygonal approximations are used, of which the simplest one are piecewise linear
approximations. A more powerful and commonly used parametrization is based on Bézier-
Splines. The snake is parametrized using the B-spline expression

∀s ∈ [0; 1], C(s) =
i=n−1∑

i=0

Piαi(s), (6)

where Pi ∈ R2 are the n control points and αi is the spline basis function. To obtain a
discrete polygonal approximation of the contour from the above parametrization the Oslo
algorithm [35] is used. The evolution of the curve happens on this polygonal approximation
by first moving the control points and then reconstructing a new B-Spline curve from the new
control points. This evolution step is detailed in section 3.1.1.

An overview of the issues involved in approximating snakes using B-Splines is given by
Cottet et al. in [11]9.

2.6.2 Problems of the original Snake model

We give a brief list of the common problems in the original snake approach. The problems
inherent to the representation of the contour will be examined further in section 3.1.1.

The original snake approach has the following limitations:

8Normally, u0 is a presmoothed version of the original image, so that u0(x, y) = Gσ ∗ I(x, y) with Gσ being
a Gaussian filter.

9A more general introduction to B-Splines and other interpolation methods is given by Heath in [21].
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• Parametrization.

Without prior knowledge about the object of interest in the image, it is unclear how to
choose the number of parametrized segments. A simple shape is better captured by few
segments, whereas a convoluted shape requires a more complex parametrization.

• Initialization.

Prior information about the location and size of the object of interest in the image is
necessary to properly initialize the snake. Otherwise it might fail to capture the shape
of the object.

• Merges and splits.

In case the contour merges with itself or splits due to regularization constraints in Eint

, the original snake method fails to adapt the topology of the snake10.

• Loops.

During evolution loops might appear when two adjacent parametric segments cross over
each other. These loops are problematic as they make the numerical evolution unstable,
as examined in section 3.1.1.

• Use of image information only at the contour.

The image dependent part of the evolution is guided only by the local image information
around the contour. Structure away from the contour is ignored.

• Non-adaptiveness.

The choice of the free parameters in equations such as 3 has to be carried out manually
by the user.

2.6.3 Proposed solutions

There exist many variations of the snake segmentation method, which address one or more
of the above problems. We briefly reference the most important ones here.

The problem of being unable to handle topological changes has been addressed by McIn-
erney and Terzopoulos in [33] and [34] for both the 2D and 3D cases. They propose T-Snakes,
topology adaptive snakes. By discretizing the domain using affine cell image decomposition
(ACID) into convex polygons topological change is detected and handled efficiently. A draw-
back of the approach is the introduction of the unintuitive extra discretization of the image.

The problem of looping is commonly addressed using a delooping step after each evolution
time step. In this delooping step, loops are identified, the intersection points located and a
new snake is constructed omitting the loop [23]. For 3D this becomes considerably more
difficult, as surface intersections have to be computed.

In [19], Nixon and Gunn address the initialization and adaptiveness problems. Instead
of using a single contour, they use two opposing snakes, one evolving from the inside of a
hypothesized object, one from its outside. This improves the robustness, but works only in

10As long as only the first and second order derivatives are used the contour cannot split for the two-
dimensional case. It has been shown that a curve evolving under its curvature will collapse to itself without
splitting.
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2.6. Snakes

cases where some location and shape information is already known about the object to be
segmented.

Xu et. al introduce two extra forces in [58] to make the Snake more robust to initial
parameters and location. They achieve this by countering variations in normal forces arising
from local contour shape, and add a normal force that is identical for all points on the contour,
to adjust the growth or shrinking process. This extension provides additional robustness but
at the cost of more terms to the original snake equation 2.

2.6.4 Conclusion

Snakes are powerful, efficient and well researched tools to recover shape information from
medical images. The problems of segmentation using Snakes are well known and understood.
While there are proposed solutions, there is still a lack of a simple, elegant and integrated
snake model solving all of them. An important common disadvantage of all proposed solutions
is the cost of further terms, some of which are unintuitive, ad-hoc and difficult to combine
with other approaches.

Snakes will continue to be used successfully in medical image segmentation. The theoret-
ically more elegant and flexible contour model used in the level set methods is an alternative
that provides significant advantages while still allowing most of the successful snake methods
to be implemented.
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Chapter 3

The Level Set Method

In this chapter we introduce the level set method, which deals with the representation and
evolution of curves and surfaces, generally referred to as interfaces. By first explaining tradi-
tional methods we give the background necessary to understand the workings and advantages
of the Level Set Method. Based on this understanding we give a practical framework to use
the level set method in and give advice on how to implement it.

The Level Set Method is relevant to this thesis as it is the main ingredient in many modern
image segmentation algorithms. In section 5.3 we introduce the segmentation based on level
sets. What follows is the theoretical basis of this thesis’s work.

3.1 Interface evolution

In the most general sense an interface is a boundary between two entities. In the course of this
discussion an interface is a geometric description of a closed contour, such as a curve, surface
or hypersurface, that separates the space in two domains, the inside and the outside domain.
Then, interface evolution is the process of changing the interface according to evolution laws
and constraints.

Interface representation and evolution has some obvious applications in the simulation
of physical phenomena, such as in Computational Fluid Dynamics (CFD) and Computer
Graphics (CG). In many other fields however, the notion of an interfaces is not so natural.
Even so, in these domains there is a surprisingly large number of successful applications of
interface methods, by reinterpretation of the original problem so the solution to the new
problem can be obtained indirectly from the interface. This is the case for Computer Vision
(CV) and Digital Image Processing, where interface methods have been used successfully.

The problem of interface representation and evolution occurs in many places and simulat-
ing and solving the evolution of interfaces has been a long time interest to scientists. As such
many techniques have been developed, and we now discuss two traditional techniques, which
– once dominant – have been largely replaced by the Level Set Method in recent years. The
first technique is commonly referred to as marker method and describes the interface in what
first seems like a very plausible way. It turned out that this method, while successful in many
regards, had problems inherent in the approach, and the second method, the volume-of-fluid
method was aimed to solve some of them. By pinpointing the problems of each of this methods
we learn to appreciate the advantages of the Level Set Methods.
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3.1. Interface evolution

3.1.1 Traditional technique: markers

A popular and well documented method is to discretize the interface into a finite number
of elements. For example, a curve in two dimensional space can be approximated arbitrary
well using line segments. For surfaces in three dimensional space, triangles can be used.
The representation and evolution of the interface using discretized elements to represent the
interface itself is known under a number of names, such as marker particle technique, string
methods and nodal methods [46].

Lets consider a curve in two dimensional space as shown in figure 3.1. As approximation,
we use an ordered list of points X = {x0, . . . , xn} which are connected circularly by n+1 line
segments. To have an equal distribution of accuracy, the points should be placed equidistant
on the interface.

Figure 3.1: Example curve represented by markers.

We now describe how to evolve this curve over time given a speed function F . To evolve the
curve, the time is discretized into fixed steps ∆t. Then, for each point x in the set of points, a
movement vector is calculated using the speed function and the point is moved by this vector.
The moved interface is simply the collection of moved points. In this process, there are two
important aspects, the movement vector calculation and a known speed function, which we
discuss now.

Movement vector We assume the movement always happen in the normal direction of
the curve and the speed function returns the signed speed in normal direction. The normal
of the curve can be given as

~n =
(ys,−xs)

(x2
s + y2

s)
1
2

where xs and ys are the spatial derivatives dx
ds , dy

ds in x and y directions at the given point
(xi, yi). Using a finite central difference approximation for a spatial step size ∆s between the
individual points one can derive

dxi

ds
≈ xi+1 − xi−1

2∆s
,

dyi

ds
≈ yi+1 − yi−1

2∆s

For details the reader can refer to [46]. Using the normal vector we can construct the derivative
over time for the point positions as the product of the normal relative speed function F with
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the x and y component of the normal vector ~n as follows

(xt, yt) =

(
F ·

(
ys

(x2
s + y2

s)
1
2

)
, F ·

(
−xs

(x2
s + y2

s)
1
2

))
.

Speed function The speed function F gives the speed in normal direction for a point
(xk, yk). While the speed function can vary for each time step and point, often a curvature-
dependent term is used to smooth the curve during evolution. In section 3.2.3 we explain the
concept of curvature in general. In the marker method, the curvature is approximated using
finite differences by replacing the second order spatial derivatives xss and yss in the general
curvature definition

κ =
yssxs − xssys

(x2
s + y2

s)
3
2

using the finite approximations

d2xi

ds2
≈ xi+1 − 2xi + xi−1

∆s2
,

d2yi

ds2
≈ yi+1 − 2yi + yi−1

∆s2
.

Evolution equation Combining the above results, we can evolve every point position
(xk

i , y
k
i ) at time step k to the new position (xk+1

i , yk+1
i ) at time step k + 1 using

(
xk+1

i , yk+1
i

)
=

(
xk

i , y
k
i

)
+ ∆tF~ni.

The movement of every individual marker in normal direction and the resulting curve is shown
in figure 3.1.

Disadvantages of the marker method While the marker method has been used suc-
cessfully in many fields, the underlying idea has some disadvantages that are not easy to
cure.

1. Unstable.

The approach is unstable because small errors in the markers position are amplified
during evolution. Because the calculation of the derivatives are based on the neighboring
markers positions, small errors in the positions lead to errors in the derivatives. The
derivatives are in turn used to calculate the marker velocities, which move the markers,
further introducing errors in their positions. However, the amplification can be limited
to ensure stability by using very small time steps ∆t, which reduces the performance.

2. Loss of equidistancy.

Even when the evolution is accurate and the markers have originally been positioned in
equal distances ∆s on the interface, this property is not conserved. This leads to errors
in the approximated derivatives.

3. Problems with singularities.

Consider a speed function that does not use the curvature to obtain a smooth curve.
The evolution of a V-shaped curve using the speed function F = 1 is shown in figure 3.2.
While the original curve at t = 0 is smooth, a sharp corner develops at the bottom of
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3.1. Interface evolution

the V, which finally leads to two parts of the curve crossing each other, where the
crossed part is characteristically named “swallowtail”. Using the marker method there
is no solution to this problem, but a workaround is known and applied in practice by
removing the swallowtail manually after each iteration. This can be complex in three
dimensions [46].

Figure 3.2: Marker method swallow-tailing the curve for F = 1.

4. Problems to handle topological change.

Related to the swallowtail problem is the problem of topological change of the front,
that is, what happens when the front merges or splits. Using the marker method such
a change has to be detected and the front has to be reconstructed much in the way the
swallowtail is removed.

We have listed a number of disadvantages of the marker technique. Nevertheless the
technique is still used in practice because it is well understood and able to model local front
behavior well. Globally it is limited by its inability to naturally cope with singularities and
topological change as well as by its instability. These limitations are inherent in the marker
approach and even while there exist workarounds for each of the given problems, the method
is fundamentally flawed in these respects.

3.1.2 Traditional technique: Volume-of-fluid

Another approach to represent an interface is the so called Volume-of-fluid method. The basic
idea is a simple one: the computational domain is divided in a finite number of identical sized
cells. Each cell is assigned a number between zero and 1.0, representing the relative amount
of “fluid” in the cell, where zero means the cell is totally empty, and 1.0 means the cell is
totally filled. An example curve is shown in figure 3.3.

While this representation is less accurate than the marker based one, it is the first step
away from an explicit representation of the interface to an implicit one. Its main advantages
over the marker method are:

• Topology can change.

The topology of the curve or surface can change without affecting the workings of the
method or its representation of the curve.

• There are entropy condition-satisfying evolution methods.
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3.2. Level Set Method

Figure 3.3: A curve represented as area in the Volume-of-fluid method.

In case the curve or area develops a singularity, such as a sharp corner, with the volume-
of-fluid method it is still possible to obtain the correct solution, which is said to be a
weak solution, satisfying the entropy condition.

• Area conservation.

During evolution it is possible to conserve the exact amount of area or volume occupied
by the original curve.

The ideas behind the volume-of-fluid method ultimately lead to the development of the
level set method. However, the volume-of-fluid method itself has disadvantages that are
not easy to work around. Sethian [46] lists four: (a) the amount of resources to accurately
represent the interface is high due to the inaccuracy of the volume-fraction approximation,
(b) the evolution results are often dependent on the underlying orientation of the grid, (c)
calculation of geometric properties such as the normal vector and curvature are inaccurate
and (d) the volume-of-fluid method does not extend well to higher dimensions.

3.2 Level Set Method

Armed with an understanding of two traditional methods for interface representation and
evolution, we can now examine the Level Set method in detail. The fundamental idea is
similar to the Volume-of-fluid method, in that the interface is represented implicitly, but a
different representation is chosen. We first examine this representation of the interface, and
then specify important properties. The level set method was first introduced by Osher and
Sethian in [40].

3.2.1 Implicit representation of an interface

A closed curve or surface can be represented implicitly by a function defined on a domain Ω.
Consider the curve shown in figure 3.4. The domain Ω is two dimensional and bounded by
the drawn box, so it completely contains the curve. The curve - which is one dimensional -
divides Ω into two disjunctive sets Ω+ and Ω− so that Ω = Ω+ ∪ Ω− and all elements in Ω
that are located on the outside of the curve belong to Ω+ and all elements on the curve or
inside of it are in Ω−.

Usually the domain is addressed using Cartesian coordinates and an embedding function
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3.2. Level Set Method

Figure 3.4: A curve represented implicitly by a function.

φ defined so that for each coordinate c = (cx, cy):

φ(c) =
{ ≤ 0 c ∈ Ω−

> 0 c ∈ Ω+

Not considering how to evolve the interface, this representation alone has some advantages:

1. Union, intersection and difference operators defined.

The geometric interfaces embedded into an implicit representation can be combined
easily using the union, intersection and complement operators. The operators have
a simple interpretation for the interface-representing functions, namely min (union),
max (intersection) and negation for the complement. The resulting function is again an
implicit function, however the resulting function may not conserve important properties
of the original embedding functions.

2. Generalizes to higher dimensions.

The concept of embedding an interface in a function φ of a dimensionality one higher
than the interface is applicable in any dimension.

There is an infinite number of functions that can be used to embed an interface. How-
ever, one function is particularly well suited for embedding an interface, the signed distance
function. We now explain its characteristics in detail by giving an example and list reasons
why it is a good choice.

3.2.2 The signed distance function

The signed distance function φsd for a two dimensional computational domain capturing a
closed one dimensional curve is defined as follows:

φsd(x, y) =





∣∣∣∣
(

x
y

)
− P (x, y)

∣∣∣∣ if (x, y) is on the interface or outside of it

−
∣∣∣∣
(

x
y

)
− P (x, y)

∣∣∣∣ otherwise





where P (x, y) is one of the nearest point from (x, y) on the interface. Intuitively φsd(x, y)
always tells the distance to the nearest point on the interface, but for points located inside of
the curve the distance has a negative sign. Lets see an example.
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Figure 3.5: Example curve (circle) em-
bedded into a higher dimensional function
(signed distance function). Additionally
the zero plane is shown.
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Figure 3.6: The zero isocurve extracted
from figure 3.5

Consider the circle curve shown in figure 3.6. The circle curve itself is one dimensional,
that is, it can be parametrized using a function taking a one dimensional input value, such as

c(t) = (cos(t), sin(t)).

Where t is bound to be within the interval [0; 2π]. One problem in handling this function is
that it is a vector valued function in the output domain. Lets change that by converting the
explicitly defined curve it into an implicit one, called a level set.

In figure 3.5 an implicit representation of the circle is shown. The embedding function φ
is two dimensional now in its input domain and the one dimensional function value implicitly
defines the circle by its zero crossings1.

We now give reasons why the signed distance function is a good choice as embedding
function. Some of the reasons will be discussed in detail in the later sections.

1. It’s definition is unique.

Except for the sign, that is if you assume the interior of the interface to be negative or
positive, for every given interface, there is exactly one signed distance function.

2. |∇φ| = 1 almost everywhere.

Except for points where no gradient is defined the length of the gradient vector is always
one. This is an important in that it simplifies definitions of geometric properties such
as the curvature.

3. Geometric properties easily derived.

The gradient, normal vector and curvature of the interface is easily derived from the
values of the function φ.

1Note that while by convention it is φ > 0 outside the interface, it is perfectly legal to flip the sign of the
function.
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4. Evolution of the interface can conserve all properties.

Except for small discretization errors the function φ can be evolved conserving its signed
distance property everywhere.

5. Can be easily (re)constructed.

Given any closed interface the signed distance function can be easily constructed. Partic-
ularly well suited to efficiently construct φ is the Fast Marching Method. Reconstructing
a new signed distance function from a quality deteriorated one is also possible, in case
the function values are still of sufficient quality around the interface itself. This is used
in the narrowband level set method.

6. Extends naturally to higher dimensions.

The signed distance function exists for any natural dimension and hence interfaces of
any dimension can be used with it.

For this reasons, most modern implementations of the level set method use the signed
distance function to embed the interface.

3.2.3 Geometric properties

In most applications of the level set method, geometric properties of the embedded interface
relate to important properties in the application domain. As such, it is desirable to know the
definitions of common geometric properties. While most of them are available rather directly
in the level set method, sometimes it is necessary to first convert the implicit representation
into an explicit one. For example, to measure the length of a closed curve accurately, one
could apply an isocontour plotting algorithm on the embedding function and then easily
measure the length in the resulting plotted curve. We now discuss the geometric properties
that are easily available in the implicit representation of the interface. In section 3.3.4 we
give a isocontour plotting algorithm for closed curves embedded into a 2D signed distance
function.

The normal vector

The normal vector ~N is defined as
~N =

∇φ

|∇φ| ,
where

∇φ =
(

∂φ

∂x
,
∂φ

∂y

)

is the gradient of the embedding function. The gradient always points in the direction of
increasing values of φ perpendicular to the interface contour. In the level set method, the
gradient and hence the normal vector are defined for the entire computational domain, even
extending away from the interface.

Assume we want to locate the nearest point on the interface from a given point. When
using the signed distance function, given any point (i, j) in the domain, we can obtain the
nearest point (p, q) on the interface by subtracting the product of the distance φi,j to the
interface with the normal Ni,j at the point from it:

(p, q) = (i, j)− φi,j · ~Ni,j .

40



3.2. Level Set Method

However, this definition is not unique. There are points for which there are two or more
points at the interface having the same shortest distance. In fact, the points which have more
than one unique nearest neighbor at the interface make up the skeleton of the interface2. In a
numerical implementation this can be a problem as a finite difference approximated gradient
is inaccurate at such points or – in the extreme case – does not even exist. Therefore, we now
examine finite approximations of the gradient and second order derivatives.

Finite approximations

Following Sethian [46], we will now discuss the basic idea of implementing the level set method
by means of finite approximations. So far we have assumed a continuous computational
domain in both spatial and time dimension, which – while appealing in theory – is not
realizable in practice. By discretizing the continuous space we can implement it in a computing
system. However, the discretized version is just an approximation, and attention must be
paid to what continuous properties are lost and how the numerical quality of the solution is
diminished.

Commonly the computational domain is two or three dimensional in space plus one time
dimension. For simplicity lets assume a two dimensional space here. The spatial dimensions
are discretized by ordered points (x, y) on a grid, where the distance between the points
is horizontal ∆x and vertical ∆y. Most often ∆x = ∆y. Similarly the continuous time is
discretized in time steps ∆t.

We now show how the gradient φx(x, y, t) can be approximated by means of finite difference
methods. The idea is to use the first terms of a Taylor series to obtain an approximation to
the gradient. We first consider the expanded Taylor series to obtain φ(x + ∆x, y, t):

φ(x + ∆x, y, t) = φ(x, y, t) + φx(x, y, t)∆x + O(∆x2)

To obtain the gradient we are interested in, we rearrange the equation to get

φx(x, y, t) =
φ(x + ∆x, y, t)− φ(x, y, t)

∆x
−O(∆x2)

and drop the O(∆x2) term3, which contains all the second order and higher order terms of
the Taylor series.

φ+x
x (x, y, t) =

φ(x + ∆x, y, t)− φ(x, y, t)
∆x

≈ φx.

This approximation is called forward difference approximation, and there also exist a backward
difference approximation as

φ−x
x (x, y, t) =

φ(x, y, t)− φ(x−∆x, y, t)
∆x

≈ φx.

A more accurate approximation is the centered difference scheme which takes the average
between the forward and backward difference approximations as

φ0x
x (x, y, t) =

φ+x
x (x, y, t) + φ−x

x (x, y, t)
2

=
φ(x + ∆x, y, t)− φ(x−∆x, y, t)

2∆x
≈ φx.

2Which is strictly true only for points within the interface, but there is a similar analogy outside of it.
3There are also higher order schemes that use more terms of the Taylor series. One of them is the Lax-

Wendroff scheme.
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Similarly the second derivative can be approximated as centered difference scheme with

φ+x−x
xx =

φ(x + ∆x, y, t)− 2φ(x, y, t) + φ(x−∆x, y, t)
∆x2

≈ φxx. (1)

The other spatial dimensions are defined in the same way and the derivative over time is
approximated using the same first order forward difference expansion, as

φt =
φ(x, y, t + ∆t)− φ(x, y)

∆t
−O(∆t).

With so many choices to approximate φx, which shall we choose? The main concerns are
stability and accuracy. Because we use a finite grid, singularities such as sharp corners are
not well represented and by using finite difference approximations to obtain the derivative,
they affect the derivative of neighbor grid points. Informally speaking, in such situations it
is preferable to abandon accuracy in favor of choosing the finite approximation that bases
its resulting value on smooth parts of the domain away from singularities that cause prob-
lems. We will discuss this concept more formally later, when introducing upwind schemes in
section 3.3.2, where we will also discuss more advanced approximation methods to achieve
higher order accuracy and how the time derivative is used in the evolution equation.

Curvature

A good introduction about the various means to measure curvature and theorems relating
to them can be found in [16]. Here we are concerned with the curvature in the level set
framework. We first give a short intuitive description of the meaning of curvature and then
formally show how it can be derived when using level sets.

Figure 3.7: Osculating circle defining the curvature on a curve.

Intuitively, the curvature is a local property of a curve or surface which describes how
“bend” the curve or surface is around a point. Visually for a curve, this can be described
using the concept of the osculating circle. Consider the curve shown in figure 3.7. Let
C(t1, t, t2) be a circle through the three non-identical points t1, t and t2, where all the points
lie on the curve. Then, the osculating circle is the unique circle C, where

C = lim
t1,t2→t

C(t1, t, t2).

Visually, in highly twisted parts of the curve this circle is small. In near linear parts the circle
is becoming large. For the special case of a line, the circle radius goes to infinity. Formally,
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Figure 3.8: Three commonly used discrete approximations to the Laplacian.

the radius r of the osculating circle relates to the curvature κ(t) at the point t by

r =
1
|κ(t)|

The sign of the curvature is defined depending on which side of the curve the circle is located.
It is chosen so convex parts of the interface have a positive curvature and concave parts have
a negative one. For the three dimensional case, there is more than one measure of curvature.
We now examine the curvature for the two dimensional case in the level set framework.

Formally, the curvature is defined on the normal ~N = (n1, n2) of an interface as

κ = ∇ ~N =
∂n1

∂x
+

∂n2

∂y
.

Further, when using the signed distance function as embedding function we know that except
for a few boundary cases we have |∇φ| = 1. So we have

κ = ∇ · ~N = ∇ ·
( ∇φ

|∇φ|
)

= ∇ · (∇φ) = ∆φ = φxx + φyy.

So the beautiful result of embedding the interface into the signed distance function is that
the curvature at the points in the domain is identical to the Laplacian at that position. From
a practical viewpoint this simplifies the implementation of the level set method, as there
are well known discrete approximations for the Laplacian which can be implemented using
convolution. Three commonly used approximations from [15] are shown in figure 3.8.

To show how these approximations relate to the formulas of the curvature above, we derive
the first approximation from finite difference gradients. We first have

κ = φxx + φyy.

Now, assuming a discretized domain with a spatial resolution of ∆x and ∆y, we can use
the simple finite difference approximations to the first and second order derivatives as in
equation 1. Expanding each of the second derivatives for a single point at (i, j) yields

κi,j =
φ(i + ∆x, j)− 2φ(i, j) + φ(i−∆x, j)

∆x2
+

φ(i, j + ∆y)− 2φ(i, j) + φ(i, j −∆y)
∆y2

.

Usually we have ∆x = ∆y, so we can combine the terms to

κi,j =
φ(i + ∆x, j) + φ(i, j + ∆y)− 4φ(i, j) + φ(i−∆x, j) + φ(i, j −∆y)

∆x2
,

which corresponds to convolution using the first approximation of the Laplacian in figure 3.8
and a division by ∆x2, the squared spatial step size4.

4Another way to say this is that the Laplacian convolution masks implicitly assume ∆x = ∆y = 1.
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The curvature representable using a discretized domain of a spatial step size ∆x is limited
by

− 1
∆x
≤ κ ≤ 1

∆x
.

For practical purposes, values exceeding this range are set to the boundary values, as explained
in [39]. It makes no sense to define a higher absolute curvature than the boundary values
because the implicit representation cannot model structures smaller than ∆x.

The Laplacian is sensitive to noise in the embedding function φ. If φ is noisy, derivatives
of φ will be even noisier. As the curvature makes use of second derivatives, it is even more
noisier [39].

3.3 Ingredients

To work with and implement level set methods, there is a basic “toolbox” of functions required.
Here I give descriptions and implementations to the algorithms I use. In detail, the following
methods are explained.

• Initialization of the level set function from a given parametric contour.

• Reinitialization of a partially deteriorated level set function.

• Evolution of a level set function under given evolution equations.

• Hamilton-Jacobi Essentially-Non-Oscillatory schemes (HJ ENO) for high order spatial
approximation to the gradient of the level set function.

• Isocontour extraction algorithms to obtain a parametrized contour from a given level
set function.

3.3.1 Initialization/Reinitialization methods

The level set function φ represents the interface and is the structure the evolution methods
modify. To provide the levelset function for an arbitrary interface, we need an initialization
method which can construct the levelset function from an arbitrary explicit interface repre-
sentation. Equally important is the reinitialization function, which can convert a quality-wise
deteriorated levelset function into a “repaired” one. The latter is important for two reasons,
(a) numerical approximation errors could degrade the signed distance property locally, and
(b) in the narrowband levelset method, we need to advance the narrowband every few time
steps, providing a new signed distance function.

Initialization from an explicit interface

For the initial construction of the signed distance function φ from an explicit interface, we
need to answer only two questions for every point (x, y) in the computational domain:

1. Is (x, y) inside or outside of the interface?

The answer to this question determines the sign of the resulting function value φ(x, y).
By convention φ(x, y) < 0 for points inside the interface, and φ(x, y) > 0 outside of it.
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2. What is the distance of (x, y) to the nearest point on the interface?

The distance is just the absolute function value |φ(x, y)|, namely, the normal distance
function.

The following pseudo code algorithm works on any consistent explicit interface represen-
tation.

Algorithm InitializeLevelset
Input: The set of explicit interface elements S. The dimensions of the computational domain.
Output: A new signed distance levelset function φ for the interface.
1. for (x, y) in the computational domain
2. minDist ←+∞
3. for e ∈ S
4. minDist ←min{minDist, dist(e, (x, y))}
5. if IsInsideInterface(x, y)
6. minDist ←−minDist
7. φ(x, y) ←minDist
8. return φ

The algorithm is straightforward. For every point in the domain, the minimum distance
to the interface is determined in lines 2 to 4. The function dist(e, (x, y)) depends on how
the explicit interface is specified. For example, in polygon based approximation of a curve,
this could be the minimum distance from all the line points to (x, y). To not explicitly
specify this function allows the algorithm to work on complex interface representations. In
line 5 the sign is made negative in case the point is inside the interface. Again the predicate
IsInsideInterface(x, y) is left unspecified so it could work in a general way.

Reinitialization

Reinitialization of the level set function φ means restoring the signed distance function without
moving the underlying interface, as summarized in [25]:

This is exactly what is desirable for reinitialization: an equation that finds the
distance function from the zero level set without moving the zero level set itself
and without knowing explicitly the position of the zero level set.

There is a tradeoff between how well the signed distance property is restored and how far the
interface is moved. For example, consider the case if φ only roughly approximates the signed
distance function, even around the contour. Then, only approximately |φ(x, y)| = 1 around
the zero crossings. If we choose to perfectly restore the signed distance property, we would
have to change the values of φ(x, y) even on points very close to the interface, which would
move the locations of the zero crossings. Instead, if we choose to conserve the values φ(x, y)
nearby the interface, we do not restore |φ(x, y)| = 1 at those places. We choose to implement
the later approach, although there are more advanced schemes discussed in detail in [25].

The simple scheme we use does not move the interface at all and approximates the signed
distance function in first order accuracy5.

5However, “not moving the interface” depends on how to locate the interface in the first place. If a high
order accurate method is used to extract the interface from φ, it may appear to have moved after reinitialization
with our scheme, too. If a simple one-grid stencil is used to locate it, as in the scheme given in section 3.3.4,
it will not move.
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We now give pseudo code to reinitialize a fully defined levelset function φ(x, y) so the
position of the isocontour is conserved while the signed distance function condition is restored
everywhere.

Algorithm ReinitializeLevelset
Input: The discretized levelset function φ to be reinitialized.
Output: A new signed distance levelset function φ′ having the same contour as φ.
1. KNOWN1 ←{}
2. KNOWN2 ←{}
3. for (x, y) in φ except the right lower border elements
4. if sign(φ(x, y)) 6= sign(φ(x + 1, y))
5. KNOWN1 ←KNOWN1 ∪ {(x, y, φ(x, y)), (x + 1, y, φ(x + 1, y))}
6. KNOWN2 ←KNOWN2 ∪ {(x, y,−φ(x, y)), (x + 1, y,−φ(x + 1, y))}
7. if sign(φ(x, y)) 6= sign(φ(x, y + 1))
8. KNOWN1 ←KNOWN1 ∪ {(x, y, φ(x, y)), (x, y + 1, φ(x, y + 1))}
9. KNOWN2 ←KNOWN2 ∪ {(x, y,−φ(x, y)), (x, y + 1,−φ(x, y + 1))}
10. KNOWN1 ←EvolveFMM (KNOWN1, F (x, y) = 1)
11. KNOWN2 ←EvolveFMM (KNOWN2, F (x, y) = 1)
12. φ′ ←{}
13. for (x, y) in φ
14. hasElement ←false
15. for (x, y, v) ∈ KNOWN1

16. φ′(x, y) ←v
17. hasElement ←true
18. if hasElement = false
19. for (x, y, v) ∈ KNOWN2

20. φ′(x, y) ←−v
21. hasElement ←true
22. if hasElement = false
23. abort
24. φ′ ←FixBorder(φ′)
25. return φ′

The ReinitializeLevelset procedure works in three steps.

1. Zero crossing element identification (lines 3 to 9).

In both horizontal and vertical direction the zero crossing elements are extracted. A
zero crossing is present between φ(x, y) and φ(x + 1, y) or φ(x, y) and φ(x, y + 1) if the
signs are not equal. The function values and their coordinates are stored in two sets,
KNOWN1 and KNOWN2, where the sign is flipped for KNOWN2.

The geometric interpretation of these two sets is given in figure 3.9, in which only the
x direction is drawn and φ(x, y) < 0 < φ(x + 1, y). Then, the outside of the interface is
in direction of increasing x-coordinates, and we store the two values in the KNOWN1

set. By reversing the sign of both values and adding them to the KNOWN2 set, the
following FMM propagation step will walk inward. The idea is to have two unsigned
distance functions, one for the inside and one for the outside of the interface. Note that
by reversing the sign, we do not modify the interface position.
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Figure 3.9: Constructing two KNOWN sets from the zero crossing elements.

2. Building two distance functions using FMM (lines 10 and 11).

From the given KNOWN sets, the Fast Marching Method is used to evolve the given
known values with a unit normal speed F (x, y) = 1 everywhere. This effectively con-
structs the unsigned distance function for the outside (KNOWN1) and the inside
(KNOWN2) of the curve.

3. Merging two unsigned distance functions to one signed distance function (lines 12 to
the end).

The resulting KNOWN1 and KNOWN2 sets are merged into one signed distance
function φ′. Except for the zero crossing elements, KNOWN1 and KNOWN2 share
no elements. Together they cover the entire computational space, which is checked in
line 22.

3.3.2 Evolution methods

The general level set equation capturing the evolution of level sets is

φt + ~V · ∇φ = 0, (2)

where φt denotes the partial derivative of the embedding function φ over time. Equation 2 is a
partial differential equation that defines the motion of the interface as a property of φ, namely
φ(x, y) = 0. ~V denotes a continuous velocity field defined in the computational domain and
deserves some attention.

The velocity field ~V

The velocity field determines the motion of the interface in the computational domain. The
velocity depends on the specific problem to be solved and can often be easily derived for
points on the interface. But for the use of equation 2 we need ~V to be defined in the entire
computational domain. In fact, not only the interface is embedded into the computational
domain, but also the interface velocity needs to be defined on the higher dimensional domain.
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In many evolution problems there is a meaningful way to derive the velocity away from
the interface. This is the case for image segmentation, as the embedding domain has the
same dimensionality as the original image and the velocity is derived from the image. For
some cases, such relationship cannot be found easily. Then, the extension velocity away from
the interface can be used, which states that for every point in the computational domain
the velocity at the nearest interface point is used [60]. The method has the advantage that
the signed distance property is conserved and the extension velocity can be found efficiently
everywhere in the domain. A numerical evaluation of the accuracy is given in [9].

In order to discretize equation 2, we have to examine the dependency of the velocity term
and its effect on the interface. We follow the excellent discussion in [39].

Hyperbolic terms

Lets first assume a given velocity field independent of the interface itself, where the velocity ~V
is known at every point in the domain. In order to evolve the levelset function φ over time, we
can discretize equation 2 over time using the first-order accurate forward Euler method [61]
to obtain

φn+1 − φn

∆t
+ ~V n · ∇φn = 0, (3)

where ∆t is one time step, φn+1 is the levelset function at time step n + 1, and ~V n is the
velocity field at time n. Without going into depth about the reasons, the discretization of
the hyperbolic equation 3 requires that only information from the direction which determines
the outcome of the equation is used6. Lets see how to solve for φn+1. If ~V n = (un, vn) is the
vector field, equation 3 can be rewritten as

φn+1 − φn

∆t
+ unφn

x + vnφn
y = 0, (4)

with φn
x, φn

y being the spatial derivatives of φ at time step n. For every dimension these
derivatives need to be approximated directionally according to the method of characteristics.
For example, consider a positive un, which means the values of φ move from left to right.
Then, in order to approximate the component φn

x, the method of characteristics tells us to
look into the direction of the origin, that is to the left of the values in φn, to determine the
outcome φn+1.

To implement the evolution equation, the time discretized form in equation 4 also needs to
be discretized in the spatial dimensions, which is straightforwardly done by using a Cartesian
grid with a step size of ∆x and ∆y to obtain for every grid point (i, j):

φn+1
i,j − φn

i,j

∆t
+ un

i,j(φx)n
i,j + vn

i,j(φy)n
i,j = 0. (5)

The derivatives (φx)n
i,j and (φy)n

i,j at the grid points have to be approximated using finite
difference methods, as shown in section 3.2.3. Back then, we had more than one stencil to
choose from to approximate the derivative. Which stencil we choose now depends on the sign
of un

i,j and vn
i,j respectively. The resulting method is called upwinding.

6In the context of this thesis we will not discuss the numerical discretization of partial differential equations,
but only give the schemes necessary to implement the levelset method. For a more detailed discussion see [39,
46, 61]
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Now we can straightforwardly solve equation 5 for φn+1
i,j to obtain

φn+1
i,j = φn

i,j −∆t
[
un

i,j(φx)n
i,j + vn

i,j(φy)n
i,j

]
. (6)

Parabolic terms

We have just examined the evolution for a given velocity field. In most applications the
velocity the interface is moved with depends on the interface itself. A common case is moving
the interface under the influence of its curvature. We now discuss the discretization of these
cases, which are parabolic equations.

Lets assume a velocity field ~V depending on the interface, where the velocity at every
point can be given as (Vn

~N + Vt
~T ), the sum of the velocity in normal direction to the front

Vn plus the tangential velocity Vt. Clearly, by evaluation of equation 2 we yield

φt + (Vn
~N + Vt

~T ) · ∇φ = 0, (7)

with the product Vt
~T ·∇φ = 0 everywhere, as ~T ·∇φ = 0. Hence, we only have to consider

Vn
~N , the velocity normal to the interface. The term ~N∇φ can be reduced:

~N · ∇φ =
∇φ

|∇φ| · ∇φ = |∇φ|. (8)

Combining 7 and 8, the simplified evolution equation is

φt + Vn|∇φ| = 0, (9)

which is also referred to as the levelset equation. In the usual case the normal velocity
depends on the second derivative of φ, as is the case if it contains a curvature dependent term.
Then, the term is a parabolic term and we cannot use the upwinding scheme of the previous
section. Instead, we need a discretization of the second derivative that includes information
from all directions. We have given such a finite difference stencil in section 3.2.3. Because
we use a signed distance function, |∇φ| = 1 and so the term can be dropped. Otherwise the
discretization is the same as for hyperbolic terms and the final evolution equation is

φn+1
i,j = φn

i,j −∆t
[
(Vi,j)n

]
. (10)

One has to be aware though, that when using this Euler time discretization, the resulting
function may not be a signed distance function anymore. To further evolve it using equa-
tion 11, the function has to be reinitialized again. For the common case of (Vi,j)n = ακi,j ,
with κi,j being the curvature as defined in section 3.2.3, where κi,j = ∆φi,j , equation 11
becomes

φn+1
i,j = φn

i,j −∆t (ακi,j) = φn
i,j −∆t (α∆φi,j) . (11)

Convergence

For the finite difference approximations used above to be a usable approximation, they have
to converge to the correct solution of the partial differential equation, namely the solution to
the levelset equation. The given schemes above are convergent if and only if it is consistent
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and stable7. We have to examine both the upwind scheme and the given approximation to
the parabolic term for convergence.

1. Upwind scheme.

The given upwinding scheme uses Euler time discretization. This makes it consistent,
as for ∆t → 0 and ∆x,∆y → 0 the approximation error converges to zero. What
is left to examine is stability, the guarantee that small approximation errors are not
amplified over time. The Courant-Friedreichs-Lewy (CFL) condition provides a time
step restriction of

∆t <
min {∆x,∆y}

max {|u|} ,

where max {|u|} is the maximum velocity in the computational domain. Using ap-
propriate values of ∆t, ∆x and ∆y, this makes the upwinding scheme stable, hence
convergent.

2. Parabolic central differencing scheme.

Using the central differencing scheme, the above scheme to solve parabolic terms is
still consistent. Stability however cannot be achieved anymore using the above CFL
condition. For Vn = ακ it can be achieved using the stricter CFL condition of

∆t

(
2α

(∆x)2
+

2α

(∆y)2

)
< 1

Unfortunately, because of the much smaller time step the additional computational
effort is high. There are two alternative methods to make the scheme stable without
using this very strict CFL condition. (a) Using higher order temporal discretization
schemes8, or (b) introducing an artificial dissipation term into the levelset equation.
The discussion of these two techniques are out of the scope of this thesis.

Algorithmic Implementation

We now give a pseudo code implementation of the evolution algorithm that solves one time
step of the evolution equation. It uses Euler time discretization, upwinding for hyperbolic
terms and also allows parabolic terms in the speed function. The speed function F (φ, x, y) is
represented as the sum of parabolic and hyperbolic terms:

F (φ, x, y) = Fparabolic(φ, x, y) + Fhyperbolic(φ, x, y).

The algorithm only deals with a two dimensional φ, but can be easily extended to handle
an arbitrary number of dimensions.

Algorithm EvolveLevelset
Input: The levelset function φ, the time step ∆t. The speed function terms Fhyperbolic and

Fparabolic, where one of them could be undefined. Fhyperbolic returns a directional vector
(sx, sy) the interface is moved with, whereas Fparabolic is expected to return the speed in
normal direction.

7As explained in [39] with reference to the Lax-Richtmyer equivalence theorem.
8Such as Runge-Kutta temporal discretization.
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Output: A new levelset function φ′. In case Fparabolic is used, its not guaranteed to be the
signed distance function.

1. for (x, y) in φ except the border elements
2. chyper ←0
3. cpara ←0
4. if Fhyperbolic is defined
5. (sx, sy) ←Fhyperbolic(φ, x, y)
6. if sx ≥ 0
7. gx ←calculateDerivativeBackwardX (φ, x, y)
8. else
9. gx ←calculateDerivativeForwardX (φ, x, y)
10. if sy ≥ 0
11. gy ←calculateDerivativeBackwardY (φ, x, y)
12. else
13. gy ←calculateDerivativeForwardY (φ, x, y)
14. chyper ←sx · gx + sy · gy

15. if Fparabolic is defined
16. cpara ←Fparabolic(φ, x, y)
17. φ′(x, y) ←φ(x, y)−∆t · (cpara + chyper)
18. φ′ ←FixBorder(φ′)
19. return φ′

The algorithm EvolveLevelset is straight forward by handling the hyperbolic and parabolic
terms separately. Starting at line 4 the hyperbolic speed function Fhyperbolic is evaluated,
which returns a velocity vector (sx, sy) for the position. The components of this vector de-
termines the movement direction for each dimension, which in turn defines the upwinding
direction. Up to line 14 the gradient is approximated using the appropriate upwinding direc-
tion, and the product ~V∇φ is calculated, which determines the movement in normal direction
chyper stemming from the hyperbolic term. Note that we do not explicitly specify how the
gradient is approximated, and any upwinding scheme can be used here9.

The calculation of the parabolic component cpara starting from line 15 using the speed
term Fparabolic is more straightforward and can be evaluated directly. In line 17 the two terms
are combined and the Euler time discretization is used to obtain the next value in φ′.

3.3.3 HJ ENO scheme

In this section we explain a high order scheme to approximate the gradient φ+
x and φ−x of

the levelset function φ. Previously we have discussed first and second order finite difference
schemes for φx for use with upwinding schemes and parabolic terms. For upwinding, we
can improve upon the accuracy by using a higher order scheme which uses more information
around the point to approximate φx. One such scheme is the Essentially Non-Oscillatory
scheme (ENO), invented by Harten and Osher in [20] for conservation laws. Osher and
Sethian later realized in [40] that the ENO scheme could be adapted to approximate the
gradient in Hamilton-Jacobi (HJ) equations such as equation 2. The simplified scheme here
is taken from [39] which points to [48] and [49].

9In fact, in our implementation we use a high order ENO scheme, but the given algorithm works as well
with the simple finite difference schemes given in section 3.2.3.
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In the ENO scheme every partial derivative is approximated by using only values from its
respective dimension. Therefore we only consider the one dimensional case φ(x) and higher
dimensional functions φ are treated dimension-by-dimension. The idea of the ENO scheme is
to approximate φ(x) as a polynomial

φ(x) = Q0(x) + Q1(x) + Q2(x) + Q3(x).

Where Qn is a n’th order polynomial term. When differentiating over x, the approximation
becomes

φx(x) = Q′
1(x) + Q′

2(x) + Q′
3(x).

The polynomial terms are selected from a subset of the function values around the grid
point i in the respective dimension d, namely {φd(i − 3), φd(i − 2), φd(i − 1), φd(i), φd(i +
1), φd(i+2)}. The terms Q1, Q2 and Q3 are build from subsets of these values by choosing the
direction which minimizes the absolute gradient. This construction is based on the observation
that a large gradient is present in case the function oscillates around the given index i.
By choosing the grid points that lead to small absolute gradients, the smoothness of the
result polynomial is maximized. We now give a pseudo code algorithm to evaluate φd

x(i), the
derivative at grid point i in dimension d, where d ∈ {x, y}. φx(x) is a cut of the original
function φ at a given value of y, so φx(x) = φ(x, y) for a known y. This allows us to write
the algorithm below in a dimension-independent way.

Algorithm DerivativeENO
Input: The one dimensional levelset function φd in dimension d of φ, the index i at which

the derivative is taken, is the direction bias (0 for forward derivative, 1 for backward
derivative) and the spatial step size ∆x.

Output: The numerical approximation to the derivative φd
x(i).

1. k ←i− is
2. d ←D(φd, k, 1, ∆x)
3. if |D(φd, k, 2, ∆x)| ≤ |D(φd, k + 1, 2, ∆x)|
4. c1 ←D(φd, k, 2, ∆x)
5. k1 ←k − 1
6. else
7. c1 ←D(φd, k + 1, 2,∆x)
8. k1 ←k
9. d ←d + c1(2(i− k)− 1)∆x
10. if |D(φd, k1, 3,∆x)| ≤ |D(φd, k1 + 1, 3,∆x)|
11. c2 ←D(φd, k1, 3, ∆x)
12. else
13. c2 ←D(φd, k1 + 1, 3, ∆x)
14. d ←d + c2(3(i− k1)2 − 6(i− k1) + 2)(∆x)2

15. return d

Algorithm D
Input: The one dimensional levelset function φd in dimension d of φ, the index j at which

the derivative is taken, the finite difference recursion depth k and the spatial step size
∆x.

Output: The k’th divided difference of φd at index i.
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1. if k = 0 return φd(j)
2. if k is odd
3. return D(φd,j+1,k−1,∆x)−D(φd,j,k−1,∆x)

k∆x
4. else
5. return D(φd,j,k−1,∆x)−D(φd,j−1,k−1,∆x)

k∆x

In the DerivativeENO procedure, the values of Q′
1 (line 2), Q′

2 (lines 3 to 9) and Q′
3

(lines 10 to 14) are approximated and φd
x(i) is approximated in d.

Commonly, divided difference polynomial approximation is used to build the polynomial
terms. The divided difference computation is realized in algorithm D . Heath explains this
and other polynomial approximations in his introduction to scientific computing [21].

3.3.4 Isocontour extraction

We give a simple isocontour extraction method based on bilinear interpolation. It can be
used to extract an explicit line segment representation of a closed curve embedded into a
two dimensional signed distance function φ. Without loss of generality, the line segments are
extracted only for one spatial cell between the coordinates (0, 0), (0, 1), (1, 0) and (1, 1). We
define

a := φ0,0, b := φ0,1, c := φ1,0, d := φ1,1

and the bilinear interpolant inside the cell as

φ′x,y := (c− a)x + (b− a)y + (d + a− b− c)xy + a

By solving φ′x,y = 0, we obtain two functions g(x) and h(y) as

g(x) = y = − x(c− a) + a

(b− a) + x(d + a− b− c)
if (b− a) + x(d + a− b− c) 6= 0

h(y) = x = − y(b− a) + a

(c− a) + y(d + a− b− c)
if (c− a) + y(d + a− b− c) 6= 0

A simple scheme is now used to extract line segments. Each cell coordinate axis is dis-
cretized into a fixed number of equal sized segments. For each axis, we test the function
values of the function taking as input the axis coordinate. For the x-axis, we obtain the point
(x, g(x)), for the y-axis the point (h(y), y). If the resulting point is within the domain, that
is 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, the point is kept for that axis. The resulting set of points is
connected by line segments. One special case to be considered remains if

sign(φ0,0) = sign(φ1,1) 6= sign(φ0,1) = sign(φ1,0).

This corresponds to two separate parts of the contour within the cell. In this case, we do not
generate a line between the two separate parts.

For three dimensional isosurface extraction, the Marching Cubes algorithm [5, 37] is often
used.

Although these schemes are sufficient when the output is presented to humans for eval-
uation, in some cases higher precision algorithms are needed to correctly reflect underlying
singularities of the curve or surface. One such scheme based on the ENO scheme discussed
in section 3.3.3 is given by Siddiqi et al. in [50].
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3.4 The narrow-band level set method

So far we have discussed the discretization of the level set function on the whole computa-
tional domain. This is called the full level set method, as the whole embedding function φ is
represented and evolved. In this section we discuss a small change to the above method so
that only a part of the embedding function is discretized and evolved. The motivation behind
this change is a large complexity reduction, as only the elements in the discretized part have
to be evolved.

For interface evolution problems we are interested only in the interface itself. The exten-
sion of the interface dimensionality when embedding it into φ is done in order to obtain a
natural implicit description of the interface. However, by extending the interface the resulting
evolution equation also has to be applied to the entire embedding function, not just the part
covering the zero level contour. Moreover, the speed function also has to be embedded and
calculated for all discrete points. Additional to the problem of the computational complexity,
the added resources needed to just store the level set function in the whole domain can be
large.

In the narrowband level set method the computational domain is split into three disjoint
sets at any timestep t:

• The narrowband around the zero level contour.

Every discrete point whose distance to the zero level contour is below some given dis-
tance dn is in this set. Intuitively this is a band around the interface of width 2dn.
Formally, any discrete point p for which |φ(p)| < dn is in this set.

• The part outside of the narrowband and outside the interface.

Formally, any point p for which φ(p) ≥ dn is in this set.

• The part outside of the narrowband and inside the interface.

Formally, any point p for which φ(p) ≤ −dn is in this set.

The idea of the narrowband method is simply to only consider the first set of points, which
lie within the narrowband. As the interface is completely contained within this narrowband,
no information about the position of the interface is changed or lost by doing so. The second
two sets of points are ignored.

In figure 3.10 the idea is illustrated by showing the three domains around an interface
curve. The narrowband is the shaded area around the interface.

It is easy to see that for a large dn value the narrowband becomes so thick that it covers the
entire computational domain. Then, the method is no different from the full levelset method.
However, commonly small values are selected, often 2 ≤ dn ≤ 10. Then the narrowband
method differs in some ways from the full level set method10. We will now examine problems
that can arise from using the narrowband method.

Problems in the Narrowband Level Set Method

• The interface leaves the narrowband.
10An analysis of typical narrowband sizes is given by Adalsteinsson in [1]
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3.4. The narrow-band level set method

Figure 3.10: Interface with the narrowband neighborhood, inside and outside domains.

If we keep a static narrowband around the interface at one timestep t0 and evolve the
interface over time using the evolution equation, it might leave the narrowband domain.

There are two possible solutions to this problem. The first is to identify the narrowband
at every few timesteps k and assign new levelset function values to the narrowband
points. This is called reinitialization, and an algorithm similar to the one given in
section 3.3.1 is used. The second possible solution is to continuously identify points
that join or leave the narrowband and to move the narrowband at every timestep.
Because the first solution is well understood and easy to implement it is often preferred.

• The narrowband boundary has no completely defined neighborhood.

For points in the narrowband that lie at the boundary to the inside or outside domain,
the function φ is not defined for the complete neighborhood. Finite differencing approx-
imations of the gradients run into problems there, as they require at least the direct
neighbors in both directions for each dimension to be defined.

A simple solution is to define φ(po) := dn, φ(pi) := −dn for points inside (pi) and out-
side (po) the narrowband domain. This is similar to the approach taken in defining the
boundary of the computational domain in the FixBorder algorithm in section 3.5.2. Us-
ing this approach, the gradient is always underestimated at the boundary points which
smoothes the levelset function during evolution, deteriorating its |∇φ| = 1 property
over time from the outer points of the narrowband to the middle of the narrowband,
where the interface is located. The wrongly estimated gradient information propagates
only slowly towards the interface, and as long as we reinitialize the levelset function φ
every few timesteps the numerical error is minimal.

Implementing the narrowband levelset method is straightforward. From the full levelset
method, only the reinitialization algorithm requires changes. Additionally, we have to find a
way to efficiently manage the three sets of points.

Reinitialization in the Narrowband Level Set Method. The reinitialization method is
nearly identical to the ReinitializeLevelset algorithm, with the minor change that the evolution
in lines 10 and 11 only proceeds until the distance dn – half of the narrowband width – is
reached in each direction. As the Fast Marching Method iteratively processes one point at a
time it is easy to check when this width is reached. All points in the resulting KNOWN set
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are marked as being in the narrowband, whereas all other points are in the outside or inside
domain.

Handling the sets. For a two-dimensional levelset function φ it is sufficient to use a sim-
ple labeling scheme, similar to the scheme used in the Fast Marching Method. For three-
dimensional embedding functions or for large computational domains it is more efficient to
organize the narrowband points in quad-tree and octree datastructures, which are introduced
in any algorithm textbook, such as [3, 10].

3.5 Implementation concerns

The algorithms described above provide almost everything that is needed to reimplement a
level set framework. For clarity some important details have been omitted so far, and we now
take the time to consider them.

1. Discretization.

The discretization of the computational domain has some parameters we can choose,
such as the spatial step width ∆x and ∆y, and the narrow band width in case we use
the narrow band method.

2. Handling the boundary.

The discretized domain has a boundary. Some operations, such as approximating the
gradient may not be possible on or nearby this boundary, and care is required to not
let this limitation diminish the numerical results throughout the evolution of the level
set function.

3. Reinitialization frequency.

Reinitialization is computationally costly and should be done as few times as possible.
But then, there is a clear lower limit of the reinitialization frequency, below which the
evolution method will produce errors.

3.5.1 Discretization

For our level set implementation we assume a Cartesian grid with equal spaced grid points
at a step size of ∆x = ∆y. If the contour in the domain relates to some actual real world
contour and its evolution is guided by physical properties, ∆x has to be chosen small enough
to account appropriately to the underlying physical evolution forces. If chosen to large, places
of high curvature will not be represented correctly. However, if the forces guiding the contour
evolution are independent of scale, a convenient choice is ∆x = ∆y = 1.0, as it simplifies
most computations11.

The choice of a good narrow band width largely depends on the expected evolution behav-
ior and the resulting need for reinitialization of the narrow band. Equally advancing fronts
benefit from a relatively small narrow band width, while fronts that differ a lot in their evo-
lution locally – for example expanding at one place while shrinking at another – benefit from
a larger narrow band and less frequent reinitialization. A good generic choice is a width of
six elements in each direction.

11Because ∆x and ∆y commonly appear as denominators.

56



3.5. Implementation concerns

3.5.2 Handling the boundary

So far, albeit we already discussed the spatial discretization, we practically have assumed a
limitless computational domain. Of course, in an actual implementation this is not possible
and there has to be a boundary. This introduces a problem when the local neighborhood of
a grid point is used to evaluate the gradient or curvature at that point. After all, what is the
neighborhood of a grid point on the boundary?

A simple yet in most cases sufficient solution to this problem lies in separating a small read-
only boundary around the real computational domain. This boundary is only kept in order to
have a neighborhood available for all grid points in the real domain. For all actions on φ, only
the inner grid points are processed and afterwards the boundary grid points are reinitialized to
be copies of their closest inner grid points. Consider the evolution algorithm EvolveLevelset ,
which processes all grid points except the ones lying at the boundary. After processing, it
calls the FixBorder procedure, which is given below. It restores a one pixel border around
the inner computational domain.

Algorithm FixBorder
Input: The levelset function φ, with a discretized domain x ∈ {0, . . . , xn}, y ∈ {0, . . . , yn}.
Output: A new levelset function φ′ with the border grid points restored.
1. for (x, y) in φ except the border elements
2. φ′(x, y) ←φ(x, y)
3. for x in {1, xn − 1}
4. φ′(x, 0) ←φ(x, 1)
5. φ′(x, yn) ←φ(x, yn − 1)
6. for y in {1, yn − 1}
7. φ′(0, y) ←φ(1, y)
8. φ′(xn, y) ←φ(xn − 1, y)
9. φ′(0, 0) ←φ(1, 1)
10. φ′(xn, 0) ←φ(xn − 1, 1)
11. φ′(0, yn) ←φ(1, yn − 1)
12. φ′(xn, yn) ←φ(xn − 1, yn − 1)
13. return φ′

3.5.3 Reinitialization frequency

We have already seen that in most cases reinitialization of the level set function is unavoidable.
But how to determine when it is necessary to reinitialize? There are two common methods.

1. Every n steps.

The easiest and most often used method is to reinitialize the level set function every fixed
n evolution timesteps. This is adequate for equally advancing contours. We employ this
method and reinitialize every 12 or 20 evolution steps.

2. Landmines.

In cases the contour almost stands still or is moving irregularly, a faster way than to
reinitialize every few steps is to detect the necessity for reinitialization. To do this, some
grid points away from the front by a chosen distance d and −d are marked as landmine
points.
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For every evolution step, the sign of the level set function φ at the landmine points is
compared before/after the evolution. If φ changes its sign at any landmine grid point,
the contour has crossed the grid point and the entire level set function φ is reinitialized.

The advantage of this method stems from its adaptive detection of change in the contour.
To check the landmines is far less computationally expensive than to reinitialize without
the need. However, a disadvantage of the landmine method is the additional complexity
in setting up and observing the landmines.
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Chapter 4

The Fast Marching Method

In this chapter we provide an introduction to the “cousin” of the Level Set Method, namely
the Fast Marching Method (FMM). We first contrast the FMM with the Level Set Method
and follow up with an in depth algorithmic explanation of the method. We provide pseudo
code allowing reimplementation of the method, unlike common literature covering the FMM
and give implementation advice.

4.1 Comparison to the Level Set Method

While the Fast Marching Method and the family of Level Set methods share the same origin
and overlap in their applications, there are practical and theoretical differences, such as the
following.

• Initial Value Problem versus Boundary Value Problem.

In the Fast Marching method, the interface evolution problem is stated so the solution is
constructed to be the arrival time at every grid point. In the Level Set perspective, the
solution is iteratively evolved in the whole domain, so the solution at every time step
are the new values of the embedding function. As such, a Boundary Value Problem is
solved during the Level Set evolution, while the FMM solves an Initial Value Problem.

• The speed function F .

In the Fast Marching Method, the speed function has to remain static. One constructs
the solution instead of evolving it, hence the notion of time during the progress of the
algorithm is a different one. The result is that the speed function F (x, y) can only
depend on the grid position, not on time dependent properties or local properties of the
interface. This rules out a large class of important speed terms used with Level Sets,
such as curvature and other regularization terms.

• The runtime performance.

If a min-heap is used for the Fast Marching Method, the resulting complexity is O(N log N),
compared to O(N2) for the Narrowband Level Set Method and O(N3) for the full do-
main Level Set Method.

To summarize, any problem you can solve with the Fast Marching Method, you can solve
with the Level Set method. However, the inverse is not true. The solution process in the
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FMM cannot incorporate knowledge of local interface properties, which rules FMM out as a
solution to a large class of important problems where the solution has to obey some boundary
conditions, most importantly smoothness.

4.2 The method

The Fast Marching method is an algorithm to efficiently solve curve and surface evolution
problems. Consider a closed curve that evolves under a fixed-sign speed F (x, y) in normal
direction dependent only on the position (x, y) in the computational domain. The curve either
expands outward all the time or moves inward all the time and once a point has been crossed
by the curve it will never be crossed again. Then, the Eikonal equation can be given as

|∇T |F = 1

where T (x, y) is the arrival time at which the surface crosses the given point (x, y). The
Eikonal equation states the relationship that the gradient of arrival time is inversely pro-
portional to the speed of the propagating curve [32]. The Fast Marching Method explicitly
constructs the solution to T (x, y) for all points (x, y) in the domain by marching away from
known solution values, constructing new solutions on the way. The complexity for N points
is O(N log N)1.

Recently, a variation of the Fast Marching Method has been proposed in [59] by Yatziv
et. al, that makes use of an untidy priority queue that only approximates the monotonicity
of the min-heap. This allows for a fast implementation in O(N) running time, while virtually
has no effect on the numerical accuracy2. Here we only consider the classic Fast Marching
Method with a tidy heap.

There is a close relationship between the Fast Marching Method and the Dijkstra shortest
path algorithm. In fact, the Fast Marching Method is an adaption of the Dijkstra algorithm,
on the one hand (a) limiting it by explicitly specifying the structure of the graph to be
searched in, and on the other hand (b) extending it by giving the search process a geometric
interpretation. The graph to search in is a regular Cartesian grid of points (x, y), with edges
connecting adjacent grid points3. Every point (x, y) has a propagation speed value F (x, y)
associated with it. One could interpret F−1(x, y) as a cost function for traveling through the
point. Given initial front arrival times T (x, y) for one or more of the grid points, the FMM
iteratively constructs T (x, y) for all remaining points in the domain. We now describe this
iteration procedure in detail.

4.2.1 Marching step

The Fast Marching Method’s name is based on its iterated processing, which is called “down-
wind marching”. In this section we explain the marching algorithm in detail, using the Fast
Marching update rule and the min-heap data structure.

1And besides the low complexity in Big-O notation, it can be implemented efficiently on today’s computing
systems.

2The reason they give why this does not diminish the accuracy as much as one would expect is that the
order of accuracy loss in the time dimension is less or in the same order of magnitude compared to the spatial
discretization.

3We describe the original Fast Marching Method, in [46] the method is extended to allow triangulated
domains.
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Downwind marching is the process of constructing the solution to the |∇T |F = 1 equation
iteratively from small to large arrival times. Consider the situation shown in figure 4.1. The
single dot in the center represents the front in the grid. For this point P0 we know the arrival
time of the front, say T0 = 0. To advance the front from its positions in the grid, we have
to consider the neighborhood around all the points belonging to the front and compute their
arrival times. In figure 4.2 we show the neighbors of the front.

The crux of the FMM lies in the order the neighbors are considered. In the Fast Marching
Method they are processed in the order the front arrives at them. To achieve this, the points
are divided among three disjoint sets, KNOWN , TRIAL and UNKNOWN points. All
the points with known arrival times, drawn black in the figure, are in the KNOWN set.
All the points that are in the four neighborhood of KNOWN points are in the TRIAL
set, drawn in shaded gray. Finally, all other points, which are far away from the front are
in the UNKNOWN set, drawn in white. The method works by assigning each point in
the KNOWN and TRIAL set an arrival time T . The arrival times associated with the
KNOWN set are fixed and cannot change. However, the arrival times for the points in the
TRIAL set are temporary arrival times and can change.

If we consider all arrival times of the points in the TRIAL set, the point with the minimal
time is the point that will be crossed next by the front. As the front propagates only outwards,
the other points in the TRIAL set with higher arrival time values cannot anymore influence
the point with the lowest arrival time. Hence we can be sure that, for this single point, the
interim arrival time is its real arrival time. Thus the point is moved from the TRIAL set to
the KNOWN set. This is one downwind marching iteration in the Fast Marching Method.

However the front around this point just changed and the neighbors are closer to the
advanced front now. Some neighbor points might not be in the TRIAL set. To make the
TRIAL set the set of neighbor points to the front again, all four neighbors of the point that
are not in the KNOWN set are moved into the TRIAL set. Additionally for all 4-neighbors
that are in the TRIAL set, new temporary arrival times are calculated.

With this basic description, there are three areas left which have to be clarified, (a) how
we calculate the temporary arrival times, (b) how we manage the TRIAL points efficiently
and (c) a formal algorithm of the above description. The first concern is described below as
the Fast Marching update rule. The second concern deals with a specific type of heap data
structure and is explained in detail below. Now we describe the third area, a formal algorithm
for the above description.

Algorithm Fast Marching Method
Input: The initialized KNOWN and TRIAL sets, T (p) for all p ∈ KNOWN .
Output: The arrival time field T for all points in KNOWN .
(∗ One iteration in the Fast Marching Method ∗)
1. while TRIAL 6= ∅
2. let Pmin the point with the minimum arrival time Tmin in TRIAL
3. remove Pmin from TRIAL and add it to KNOWN
4. T (Pmin) ←Tmin

5. for n is a 4-neighbor of Pmin and n /∈ KNOWN
6. T (n) =UpdateT (n)
7. remove n from UNKNOWN
8. add n to TRIAL
9. return T
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Figure 4.1: FMM Step 1 Figure 4.2: FMM Step 2

Lets see how the pseudo code for the Fast Marching Method works on the example figure.
In figure 4.1 only one point is in the KNOWN set. For consistency in the algorithm, we assume
the state of 4.1 as input, except that the single point is not in the KNOWN set but instead
belongs to the TRIAL set. The algorithm is started with KNOWN = ∅, TRIAL = {P0},
T (P0) = 0.

As first step Pmin is identified to be P0 and Tmin = T (P0) = 0. P0 is converted to a
KNOWN point and removed from the trial set, which reflects the state shown in figure 4.1.
Now all the neighbors of P0 are considered which are not in KNOWN , which happen to be
all neighbor points, P1, P2, P3 and P4. They are all added to the TRIAL set and a interim
arrival time is computed for them. The state is reflected in figure 4.2.

In the second iteration of the main loop, P2 is identified to be the point with the minimum
interim arrival time over the other points P1, P3 and P4. P2 is converted to a KNOWN point
and removed from the TRIAL set. Its interim arrival time is taken as the final arrival time
by T (P2) = Tmin. The neighbors which are not in KNOWN , that is P5, P6 and P7 are
converted into TRIAL points and an interim arrival time is computed for them. The final
step after the second iteration is shown in figure 4.3.

In the third iteration, P7 happens to be the point with the smallest arrival time Tmin = T7.
It is again converted to a KNOWN point and removed from TRIAL. When considering the
neighbors we have three distinct cases to consider, (a) point P9 and P8 are converted from
UNKNOWN to TRIAL, as in the previous two iterations, (b) P0 is ignored because it is
in the KNOWN set, a case we already seen so far. But the new case is (c) for P7, which is
already in the TRIAL set. Its interim arrival time value is also updated – decreased in fact
– as the front “surrounds” it. The final step after the third iteration is shown in figure 4.4.

While we have a good understanding of the general working of the FMM now, we have
not touched upon two critical parts. The first is the construction of the interim arrival time
values, which is known as Update Rule. The second is how do we efficiently manage the grid
points in the TRIAL set as to optimize the FMM’s performance, which will lead us to min-
heaps. By answering these two questions, we provide the complete recipe for implementing
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Figure 4.3: FMM Step 3 Figure 4.4: FMM Step 4

the FMM.

4.2.2 Update rule

The novel part of the Fast Marching Method is the way of updating the interim arrival
times. Here the geometric extension to the Dijkstra algorithm comes into play. Whenever
the neighborhood of a value in the TRIAL set changes, its arrival time is reconsidered and
in case the front moved closer, a new arrival time is computed. In this section we discuss the
details of how this is done.

Figure 4.5: Choosing one of the four considered quadrants for two-dimensional FMM.

Consider the situation depicted in figure 4.5. The center point Pc is in the TRIAL set
and the front has not crossed it so far. It has crossed three neighbors P0, P1 and P2, yielding
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arrival time values T0, T1 and T2, where the current time T = T2, which means the front has
just arrived at P2, the western neighbor of the considered center point. Given this situation,
the problem is to calculate a new interim arrival time Tc for the center point. For this example
we assume a speed of F = 1 everywhere.

Intuitively, as the front moves in normal direction with equal speed everywhere, we only
have to consider the points on the front whose normal vectors extend from the front to the
considered point. For the given situation, by only considering the arrival times, at least two
such points have to exist. In figure 4.5 they are marked C0 and C1. If we can calculate the
distance from these points to the center point, we can calculate a good approximation to a
new arrival time.

If the center point has the correct new arrival time, the gradient in the quadrant will
have a magnitude of one, as we solve for |∇T |F = 1, with F = 1 to |∇T | = 1. By knowing
which quadrant has the smallest distance from the front to the center point, we only have to
consider this quadrant and can ignore all the others. To do this, we first define four quadrants
Q = {Q0, Q1, Q2, Q3}4, so Q0 is marked by the corners Pc, P0, and P1, the quadrant shaded
gray in the figure.

With this definition of quadrants we can select the quadrant containing the point on the
front nearest to the center point. For this, in each dimension d we select the neighboring
point Pd in the KNOWN set with the smallest arrival time. For each dimension the following
three cases can occur:

1. There are no neighbors in the KNOWN set in the given dimension.

If a dimension has no neighboring point in the KNOWN set we simply ignore that
dimension. This case does not appear in figure 4.5.

2. There is one neighboring point in the KNOWN set.

Then we always use the point in the KNOWN set. In figure 4.5 this case appears for
the y-direction, where P1 and P3 are considered. As P3 is not in the KNOWN set, it is
ignored and P1 is selected.

3. There are two neighboring points in the KNOWN set.

In figure 4.5 this case appears when the x-direction is considered. The points P0 and P2

are checked, both of which are in the KNOWN set. Their associated arrival times T0

and T2 are compared and P0 is selected as T0 < T2, so T0 is the minimal arrival time.

In general, let P be the set of neighboring points that have been collected. For n dimen-
sions 1 ≤ |P | ≤ n. In case |P | = n, the points in P mark the quadrant with the closest front.
For two dimensions in case |P | = 1, the closest point from the front to the center point lies
on a grid line.

Algorithm UpdateT (p)
Input: p, a point in the UNKNOWN or TRIAL set with at least one neighbor in KNOWN .
Output: The new interim arrival time T for p.
(∗ Initialize or update the interim arrival time for p. ∗)
1.
(∗ The set of minimum neighbors in KNOWN ∗)

4In general for n dimensions there are 2n quadrants.
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2. P ←∅
3. for each 4-neighbor n of p with n ∈ KNOWN
4. opp ←the opposing neighbor of n
5. if opp ∈ P and Topp < Tn

6. continue
7. remove opp from P
8. add n to P
9. T ←SolveQuadratic(P )
10. return T

The general update procedure for the the arrival time estimate is shown as UpdateT (p).
The algorithm selects the neighbors from the KNOWN set under the constraints detailed
above. The compiled set of neighbors P is used as input to solve the quadratic equation.

In the concrete case depicted in figure 4.5, we have P = {P0, P1}, so |P | = n = 2. Then
the arrival time Tc of the front at the center point Pc can be calculated from the arrival times
T0 and T1. From the data given in the selected quadrant we can approximate the gradient
∇Tc at the center point Pc using first order accurate finite difference approximations:

|∇Tc|F (xc, yc) = 1 (1)
⇒ |∇Tc| = 1 (2)

⇒
∣∣∣
(

Tc−T0
∆x , Tc−T1

∆y

)∣∣∣ = 1 (3)

⇔
√(

Tc−T0
∆x

)2
+

(
Tc−T1

∆y

)2
= 1 (4)

⇒ (
Tc−T0

∆x

)2
+

(
Tc−T1

∆y

)2
= 1 (5)

In step 1 to 2 we use F = 1 for all points. For equation 3 we approximate the gradient
using first order finite differences from the known values T0 and T1 in x- and y-direction. To
obtain equation 4 we use the definition of the gradient magnitude by euclidean distance. To
solve 4 we get rid of the root by squaring to obtain the final quadratic equation 5. With the
constraints Tc > T0 and Tc > T1 the quadratic equation can be solved uniquely.

In the general case for a position dependent speed function F (i, j) and the minimal-
quadrant points P = {P0, P1, . . . , Pn} with associated arrival time values T0, T1, . . ., Tn, the
quadratic equation is

n∑

k=0

(
Tc − Tk

∆dk

)2

=
(

1
F (i, j)

)2

(6)

where ∆dk is the appropriate spatial resolution in the given dimension, for example ∆x,
∆y, and so on.

Now we give the generic algorithm the ITK5 uses to solve the quadratic equation 6 for
arbitrary number of dimensions.

Algorithm SolveQuadratic (P)
Input: P , the set of neighbors of the point p considered, the arrival time field T . The position

dependent speed function F .
5National Library of Medicine Insight Segmentation and Registration Toolkit (ITK), http://www.itk.org/
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Output: The solution to equation 6.
(∗ Solve equation 6 to obtain the new interim arrival time. ∗)
1. x ←-1
2. a ←0
3. b ←0
4. c ←− 1

F (p)2

5. P ′ ←sorted P so for any pi, pj ∈ P ′, i ≤ j: T (p1) ≤ T (p2)
6.
(∗ Process d dimensions. ∗)
7. for d ←0 to |P ′|
8. n ←the neighbor in P ′ at place d
9.
(∗ In case the arrival time calculated is lower than the ∗)
(∗ time already attached to a point we consider TRIAL or KNOWN . ∗)
(∗ It should only happen for TRIAL points, and as the values are ∗)
(∗ ordered with increasing times, we can break out early. ∗)
10. if x ≥ 0 and x < T (n)
11. break
12. a ←a + 1
13. b ←b + T (n)
14. c ←c + T (n)2

15. dis ←b2 − ac
16. x ←

√
dis+b
a

17. return x

4.2.3 Heap details

The heap is the central data structure in the Fast Marching Method. It is used to keep an
ordered list of interim arrival times, one for each grid point within the TRIAL set. By using a
min-heap structure the element with the smallest interim arrival time can be located in O(1)
time complexity, while removing and inserting an element into the heap can be achieved in
O(log N) complexity.

For the sake of completeness, we now explain the min heap algorithm as used by the Fast
Marching Method. We follow the excellent description of heap variants in [3].

A heap, is an almost-complete binary tree whose elements all fulfill the heap condition.
Almost-complete means every element except possibly elements in the lowermost layer or
possibly rightmost elements in the second lowermost layer have two child nodes. The heap
condition constraints the order of nodes in any path from the root node to a leaf node as either
non-decreasing (min-heap) or non-increasing (max-heap). For the Fast Marching Method we
use a min-heap.

The two procedures that characterize the heap data structure are SiftUp and SiftDown.
Both share the same goal, to restore the heap condition after a modification of the heap
structure.

Algorithm SiftUp
Input: An index i into an array H[1 . . . n] with 1 ≤ i ≤ n.
Output: The element at H[i] is moved up and the heap condition is restored.

66



4.2. The method

1. done ←false
2. if i = 1
3. return
4. repeat
5. if key(H[i]) < key(H[bi/2c])
6. interchange H[i] and H[bi/2c]
7. else
8. done ←true
9. i ←bi/2c
10. until i = 1 or done

Algorithm SiftDown
Input: An index i into an array H[1 . . . n] with 1 ≤ i ≤ n.
Output: The element at H[i] is moved down and the heap condition is restored.
1. done ←false
2. if 2i > n
3. return
4. repeat
5. i ←2i
6. if i + 1 ≤ n and key(H[i + 1]) < key(H[i])
7. i ←i + 1
8. if key(H[bi/2c]) > key(H[i])
9. interchange H[i] and H[bi/2c]
10. else
11. done ←true
12. until 2i > n or done

The Insert procedure inserts a single element into the heap by appending it to the tree
and successively restoring the heap condition using the SiftUp procedure.

Algorithm Insert
Input: A heap H[1 . . . n] and a new heap element x.
Output: The heap is modified to be H[1 . . . n + 1] and x is element of the heap.
1. n ←n + 1
2. H[n] ←x
3. SiftUp(H,n)

The Delete procedure removes an element from the heap by swapping it with the last
element, shrinking the heap by one element and finally restoring the heap condition again
using the SiftDown procedure.

Algorithm Delete
Input: A nonempty heap H[1 . . . n], and an index i with 1 ≤ i ≤ n.
Output: A heap H[1 . . . n− 1] with the element at H[i] removed.
1. x ←H[i]
2. y ←H[n]
3. n ←n− 1
4. if i = n− 1
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5. return
6. H[i] ←y
7. if key(y) ≤ key(x)
8. SiftUp(H, i)
9. else
10. SiftDown(H, i)

The DeleteMin procedure removes and returns the topmost element of the heap, the
element with the minimum value.

Algorithm DeleteMin
Input: A nonempty heap H[1 . . . n].
Output: The element in the heap with the minimum key is returned.
1. x ←H[1]
2. Delete(H, 1)
3. return x

4.3 Implementation

The above algorithms constitute an almost complete implementation of the FMM. However,
two things of importance in the context of this thesis have so far been omitted for clarity.

1. Grid coordinate to heap indexing.

In line 6 of the Fast Marching Method algorithm the arrival time is updated for all grid
points in the 4-neighborhood of a point. As these updated grid points are in the TRIAL
set of points, they are kept in the heap structure. Updating – reducing in fact – their
arrival time will change their position in the heap. To maintain the heap condition, we
first remove the point from the heap and add it again with its updated time.

However, to remove it from the heap we have to know its position within the heap. This
is achieved by keeping a “backpointer” function H(x, y) for all grid points in the TRIAL
set, that returns the index into the heap. In practice, this is realized by using an extra
grid storing the indexes and also exchanging the elements therein upon interchanging
them in the heap in both the SiftUp and SiftDown algorithms.

2. Conversion to a level set.

To convert the FMM arrival time surface T to a levelset, we first decide the arrival
time ta at which we want to extract the contour and then use a standard isocontour
extraction on T ′(x, y) = T (x, y)− ta. The extracted contour is in turn used to initialize
the level set function φ.
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Chapter 5

Liver Perfusion - Approach

5.1 Overview

A schematic overview of the liver perfusion measurement approach proposed in this chapter
is shown in figure 5.1.

Figure 5.1: Liver perfusion measurement approach: the series and initialization is processed
automatically to obtain the perfusion intensity curve.

The initial data provided to the algorithm is the MRI perfusion series set plus initialization
parameters. Using a cascade of automatic algorithms the perfusion intensity curve is obtained.
The individual steps this chapter is concerned with are the following.

1. Segmentation, the process of extracting an approximate shape of the liver from the
images.
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2. Registration, the process of finding the geometric relationship between the extracted
liver shapes.

3. Measurement, the process of measuring the perfusion intensity across all the images
in the series.

The rest of this chapter documents the workings of each step.

5.2 MRI - Magnetic Resonance Imaging

Magnetic resonance imaging (MRI), also called magnetic resonance tomography (MRT) is a
medical imaging technique based on nuclear magnetic resonance, where nuclei of atoms absorb
or emit electromagnetic energy within a magnetic field based on their angular and a magnetic
moments. In modern MRI the resonance absorption of the nuclei of hydrogen atoms is used
to take slice images of soft biological tissue at arbitrary orientation, resulting in images quite
similar to classical x-ray images. X-ray and MRI images are different in a number of respects:

• With MRI one can incrementally obtain different slices of the patient and reconstruct
a three dimensional volume from them.

• MRI images have a strong soft tissue contrast, which is used to take images of blood
vessels and of the brain, which x-ray is not capable of.

• The spatial resolution of MRI is inferior to x-ray images and the usual pixel or voxel
sizes of MRI images are unsuitable to take images of very fine biological structures. A
usual good voxel resolution is 8mm3 [42]. In comparison, x-ray images offer a very high
resolution.

The advantages of MRI have lead to a fast adoption since the 1980s. A good introduction
is given by Oppelt [38].

Contrast agents

As image contrast is based on the magnetic properties of the atoms and molecules in the
imaged tissue, the chemicals causing a strong contrast are called contrast agents. An impor-
tant natural contrast agent in the human body is deoxygenated hemoglobin (Hb), which is
paramagnetic. The concentration of Hb varies with the local oxygen supply of the human
body and it can be used for blood oxygen level dependent (BOLD) contrast in functional MRI,
as Oppelt explains in [38].

For some clinical applications, artificial contrast agents are used to enhance the image or
to study the flow of the contrast agent in blood vessels or organs. In such case, a biologically
inert chemical with a strong magnetic response is injected into the patient’s body. After the
injection, concentration time curves are measured using MRI and by the known properties of
the used agent, the concentration agent dependent parameters and physiological parameters
are calculated. Prato et al. [42] give a recent introduction into contrast agent modeling.

In the context of this thesis, the contrast agent modeling is relevant to the clinical liver
perfusion application, because an artificial contrast agent is used.
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5.3. Segmenting the liver

5.2.1 MRI data modality

We obtained three perfusion series from the Shanghai First People Hospital. The series
consists of two-dimensional 256x256 MRI images taken with a GE Medical Systems Genesis
Signa HiSpeed CT/i system at the Shanghai First People Hospital. They show the patients
abdomen in coronal view. The imaging parameters are the following: slice thickness 15.0,
repetition time 4.7, echo time 1.2, magnetic field strength 15000, flip angle 60 degrees.

The first series consists of 240 images, the second series of 59 images and the third series
of 200 images.

5.2.2 Employed data format

The original data format was DCM, the Digital Imaging and Communications in Medicine
(DICOM) image format, which is commonly used for the exchange of medical images. The
DCM format varies a lot across different vendors, and not every DCM enabled software is
able to read this files. I successful read the image data using the opensource tools Medcon1,
CTN2 and the ImageMagick toolkit3.

As preprocessing step, the images were first converted to the PNG file format using medcon
with the following options: medcon -e 1 0 -fb-dicom -c png -f *.dcm. Afterwards the
images are converted to Portable GrayMap (PGM) files using ImageMagick. PGM is a simple
textual format that is easy to read from and write to.

5.3 Segmenting the liver

We developed a segmentation process for liver shape segmentation employing three steps.
The first step locates a seed point for the segmentation in every image. The second step
applies the Fast Marching Method to the original image at the given seed point to yield a
first approximation of the liver shape. In the third step, this shape is used to initialize a level
set segmentation step, which introduces a regularization term to improve the segmentation
results and repair local irregularities in the segmented shape. We now describe the steps in
detail.

5.3.1 Locating the seed point

The seed point marks the initial curve position in the image. The initial curve is then evolved
to segment the shape of the liver. As such, knowing the position of the seed point for every
image is the basic requirement to start segmenting it. We use two distinct methods to locate
the seed point.

• Trivial method.

We ignore any movement and use one initial marked seed point for all images.

• Gradient maximizing method.

For one image, the radiologist manually marks the segmentation seed point. For all
other images it is located using the following robust, but non-general procedure.

1Medcon, Medical Image Conversion Utility, http://xmedcon.sourceforge.net/
2Central Test Node, a DICOM implementation, http://www.erl.wustl.edu/DICOM/ctn.html
3ImageMagick, http://www.imagemagick.org/
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5.3. Segmenting the liver

In almost all series, the top of the liver shape is well contrasted to the background and a
strong gradient response is always found at this place. As the patient breathes through-
out the series, the liver moves only vertically. Combining this with the strong gradient
we get a simple method to reliably obtain a point inside the liver. For every image the
gradient magnitude is extracted inside a vertical strip at the horizontal position of the
initial seed point along a given expected liver movement window. The values in this
strip are mean smoothed. We found a smoothing window of +/- 3 good at eliminating
local noise. The maximum gradient magnitude is located in the strip, which is at the
top boundary of the liver shape. From this, we step a fixed length ∆y down to yield
a seed point inside the liver shape. The value of ∆y is determined once in the original
image, for which we already know the seed point location.

Both methods are specific to the liver perfusion problem.

5.3.2 FMM Segmentation Step

The FMM segmentation step takes as input all the images and a single seed point for each
image. As result, a segmented liver shape is returned as bitmap of the same dimension as the
input image. For each pixel in the map which has a positive truth value the pixel is thought
to belong to the liver shape.

The FMM algorithm is fairly straightforward and the only flexible part is the definition
of the speed function to use and the stopping criteria. The speed function determines the
propagation speed in normal direction for any point in the computational domain. The
stopping criteria tells us when to stop the segmentation.

Speed function

The speed function FFMM we use for the FMM segmentation step is a thresholded variation
of the well known speed function used in [31]. We first define

Fbase(x, y) =
1.0

1.0 + |Sk · ∇(Gσ ∗ Ix,y)|Sp
(1)

which is the interface propagation speed in normal direction based on the gradient mag-
nitude image. The gradient image ∇(Gσ ∗ Ix,y) is the Sobel approximated gradient of the
original image I convolved with a Gaussian of width σ. σ, Sk and Sp are constants and we
had good results using σ = 3.0, Sk = 13.0 and Sp = 2.0 for the series examined.

The speed image is generated from Fbase by using one of the following two methods.

1. Thresholded Fbase.

By using Fbase in the thresholded speed function FFMM , defined as

FFMM (x, y) =
{

Fbase(x, y) Fbase(x, y) ≥ St

0.0 Fbase(x, y) < St
(2)

with St being the threshold value. We used a quite high value of St = 0.6, the reason
giving below.
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5.3. Segmenting the liver

2. Gaussian biased Fbase.

One natural idea to cut small speeds from Fbase down even further while not reducing
larger speeds is to use a Gaussian function, as shown in equation 3. Here, Fbase is used
in FFMM2 as

FFMM2(x, y) = e−
(1−Fbase(x,y))2

2σ2 (3)

Three possible choices for σ, the Gaussian standard deviation, are shown in figure 5.2. A
small value leads to a strong cutoff, and almost completely removes small speed values,
producing similar results as equation 2. A larger value leads to a smooth reduction
towards smaller values.

 0
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 0  0.2  0.4  0.6  0.8  1

Gaussian speed modifier term

sigma = 0.5
sigma = 0.3
sigma = 0.2

Figure 5.2: Three speed modifier functions based on the Gaussian equation 3, with σ = 0.2,
σ = 0.3 and σ = 0.5.

Because the FMM cannot incorporate curvature dependent information, a segmentation
using an unthresholded or unbiased speed function such as Fbase defined in equation 1 could
leak out of the liver shape at positions where the gradient is locally weak. By using a cautious
threshold or bias we limit the risk of leaking in exchange for a higher probability to not cover
the entire liver shape in the first segmentation step. This defect is effectively repaired in
the following two segmentation steps, using the more powerful and robust levelset evolution
method.

Stopping criteria

The stopping criteria for the FMM segmentation is simply a constant of the area size. As
soon as this area size is reached, the segmentation stops. This corresponds to the number
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5.3. Segmenting the liver

Figure 5.3: Result of the FMM seg-
mentation step.

Figure 5.4: Liver region inside image 5.3.

of iterations of the FMM, as it always accepts exactly one new pixel to the shape for each
iteration. The value is configurable but the default of 1500 elements yielded good results.

Problems

Consider a typical result of the FMM segmentation step, as shown in figure 5.3 and 5.4. While
the overall shape of the liver has been captured to some degree, the shape has the following
deficiencies.

1. Holes.

The patient’s liver shown in figure 5.3 most certainly does not contain any holes. Hence,
the captured shape also should not have any. In the FMM segmentation result however,
there are four such holes, small and large, which are caused by a strong local gradient at
their place. Because of the way Fbase is defined, the front slows down at strong gradients
and holes remain.

2. Irregular shape.

The speed function Fbase depends only on the image and the position of the front inside
the image and there is no regularization force acting upon the shape itself. Thus, the
resulting shape has many corners, which does not reflect the liver as a smooth shape.

3. Leaks.

Leaks occur when the shape’s front crosses the real liver contour on the image. There
are three distinct reasons for leaks to happen in FMM segmentation.

(a) Fbase(x, y) > 0 for any (x, y).
The front is always extending outward in FMM and only the relative ordering of
the Fbase(x, y) values matter, not their absolute size. Hence, there is a time t for
any point in the image when the front crosses that point. Given enough time,
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5.3. Segmenting the liver

leaks are unavoidable. With that in mind, our goal is to construct a good speed
function which only leads to leaks once the entire liver shape is already successfully
segmented, which is the point we hope to stop the segmentation.

(b) Initialization symmetry.
Surprisingly, FMM segmentation is very sensitive to the segmentation initializa-
tion. The reason for this is related to the previous point. As the relative order
of the function values Fbase(x, y) are important, points that are closer to the seed
point have a time-advantage of being processed, while points that are more far
away from the seed point are reached by the front later in time. Thus, to recover
a shape successfully using FMM segmentation, it is important to have the seed in
the approximate center of the shape. We try to achieve a good seed position by
the method detailed in section 5.3.1.

(c) Missing gradients at object boundary.
The FMM segmentation we employ is agnostic of the real liver shape and can only
use information from the image to recover it. It has no understanding of what a
liver is supposed to look like. Therefore, two assumptions are important for the
segmentation to succeed, (a) that the object of interest, the liver, is delimited by a
high gradient response in the image, and (b) that the liver has a regular, smooth
shape in the image. In case assumption (a) ceases to hold, the curve leaks over the
object boundary and pixels that do not correspond to the liver are taken as being
member of the liver shape. Some of the effect a small gradient response causes can
be compensated by the regularization force, which we discuss below. In general,
it is not possible to avoid leaks due to missing gradients without incorporating
assumptions about the spatial expression of the liver shape into the segmentation,
which is known as model-driven or atlas-based segmentation and outside the scope
of this thesis.

Using a second segmentation step employing level set segmentation, we can improve upon
the results and can overcome most of the limitations of the Fast Marching Method segmen-
tation. We now discuss the level set segmentation in detail.

5.3.3 Level set segmentation step

The input to the levelset evolution step is the first rough FMM segmentation result. In this
step we incorporate a regularizing curvature term to smooth the shape, remove holes and
refine the segmentation result. The result is the level set signed distance map for the entire
computational domain.

Speed function

We use a narrow band 2D levelset implementation with a narrow band extending 6 elements
into both directions. The speed function used is the original function used above plus a
curvature regularizing term. It is

F (x, y, t) = α · −κx,y,t + Fbase(x, y) (4)

with α = 0.4 constant, κx,y,t being the local curvature at the point (x, y) at time t
and the remaining term being the unthresholded gradient based speed term of the FMM
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segmentation used above. The negative curvature term removes any small local irregularities
the FMM segmentation has left over, such as sharp corners and single non-shape points within
the shape due to noise in the original image. Globally it leads to a smoother overall shape.

We use a fixed number of evolution time steps of ∆t = 0.2. To improve the results of the
FMM segmentation, we found 80 time steps to be a good value.

Finally, to simplify the perfusion area localization, the narrow band levelset function is
extended to a full levelset in the entire domain by redistancing from the shape contour in the
narrow band.

Alternative approach

An alternative approach inspired by [54] is to convert the speed function into a convergent
one, i.e. one in which for any (x, y) in the domain fulfills

lim
t→∞F (x, y, t) = 0.

Using the above Fbase function, we define a new speed function Fc as

Fc(x, y) = (Fbase(x, y)− s)β0 − Fbase(x, y)β1κx,y,t (5)

with Sk = 12, Sp = 2 for Fbase, s = 0.3, β0 = 0.5 and β1 = 0.5 for Fc.
The important part of equation 5 is the ratio β1

β0
, β1 being the diffusion term constant

and β0 determining the reaction component. Reaction means the propagation of the contour
in normal direction and diffusion means the regularization through the curvature. A good
discussion about their relationship is given in [54].

The advantage of equation 5 over equation 4 comes from the ability to be pushed back
by strong gradients as a result of the subtrahend s applied to the gradient dependent speed
function, while still allowing the full original gradient-dependent speed function to influence
the curvature regularization term. This means the reaction part of equation 5 – the constant
advancing into the normal direction by speed β0 – is stable and convergent, while the curvature
dependent part controlled by β1 can overcome any gradient if necessary to regularize the shape.
As the shape cannot be regularized ad infinitum, this second term must also converge.

While equation 5 converges, for practical reasons it can also be used to define a stopping
criteria, such as

SFc(t) =


 ∑

(x,y)∈Ω

|Fc(x, y)|

 < St, (6)

where St is a constant defining the absolute change necessary for evolution to continue.

Pushback force

Consider the situation shown in figure 5.5. There two contours surrounding the areas shown
in gray. Using both equation 4 and equation 5, the contour surrounding the top area will
eventually collapse, as the curvature-dependent forces acting from the outside are quite strong.
In case of equation 4 they have no opposing forces but the speed is reduced by a strong
gradient. However, when using equation 5 there is an opposing pushback -force, which is
too small to stop the contour. If we would increase the size of the circle object, the local
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Figure 5.5: Two contours surrounding one object each under influence of the speed function
Fc. While both the objects produce the same gradient-based reaction force pushing back the
contour, the first contour has a high curvature which overcomes the pushback force (larger
forces from outside than from the inside). The second contour’s reaction and diffusion forces
are in balance and no change happens (equal sized forces/arrows from inside and outside).
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curvature decreases and with it the regularization force acting from the outside. At some
point, a balance between the pushback- and regularization forces is reached and the contour
will not move, which is what happens for the second object, shown at the bottom of figure 5.5.
Using equation 5 the forces are in balance and the contour is stable, as shown in the figure.
If we would use equation 4, there is no pushback-force and eventually this contour collapses
as well.

Other possible speed functions

The success of the segmentation depends on the choice of the speed function. Here we briefly
discuss other alternative choices following Droske et al. [12].

Intensity dependent speed functions. Similar to Fbase, which depends on the gradient
image, the following speed functions could be defined depending only on the image.

FI1(x, y) := e−
(Ix,y−µ)2

2σ2 (7)

Speed function FI1 produces large speed values if the pixel intensity value Ix,y in the
image is close to a reference gray value µ. The sensitivity is controlled using σ. Using this
speed function, a thresholding-like segmentation respecting connectivity can be implemented.
However, as the original image intensity Ix,y is taken, it is sensitive to noise, and in most
cases a better choice would be to first apply a Gaussian smoothing filter to the image.

FI2(x, y) := e−
((Gt∗Ix,y)−µ)2

2σ2 (8)

FI2 does reduce the sensitivity to noise using the Gaussian smoothed image with a standard
deviation of t.

Gradient dependent speed functions. Beside the popular function Fbase we use, these
two gradient dependent speed functions are also popular.

F∇1(x, y) := e−α|∇Gσ∗I|x,y (9)

F∇2(x, y) =
1

1 +
|∇Gσ∗I|2x,y

λ2

(10)

In F∇1 , the constant α controls the edge sensitivity. In F∇2 this is done using the constant
λ.

Curvature dependent speed functions. In the speed function F , defined as equation 4,
we introduce the negative curvature as regularizing term, where the curvature is given as
κ = ∇ ·

(
∇φ
|∇φ|

)
.

This is the standard procedure to introduce a smoothing force, but slight variations exist.
For example, to make the normal relative speed function F positive everywhere Fκ1 can be
used, defined as

Fκ1(F, x, y, t) = max(F (x, y)− ε max(κx,y,t, 0), 0). (11)
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Figure 5.6: Result of the level set seg-
mentation step.

Figure 5.7: Liver region inside image 5.6.

In equation 11, a speed function F is modified so a negative curvature force is introduced.
In Fκ1 , the curvature force is a limiting force only and cannot push the contour. The overall
max term also makes the speed zero or positive everywhere.

This combination of speed functions often makes sense, and for two speed functions F1,
F2 commonly the combinations

F := F1 + F2, F := F1 · F2, F := min(F1, F2), F := max(F1, F2)

are used.

Levelset segmentation results

A typical result of the level set segmentation step is shown in figure 5.6, with an enlarged
version in figure 5.7. Compared with the FMM segmentation results in figure 5.3, the shape
is much more regular, hole free and captures the liver better. At the bottom part of the liver
there is a small leak due to the low absolute gradient response there. In general, two of the
three problems mentioned above for the FMM segmentation, the shape irregularity and the
holes can be solved using level set segmentation. The third problem, leaking of the shape over
the object boundary, can be reduced by the regularization term, but not completely solved.

Why can our level set segmentation not overcome the leaking problem? The speed function
we use for the segmentation uses two assumptions to recover the liver shape: (a) the liver shape
is regular, smooth in the image, and (b) the liver boundary has a gradient response associated
with it. If one of them is locally not true, the shape may not be recovered successfully. In
the image shown in figure 5.7, the gradient response is small on the complete bottom side
of the liver, hence the contour leaks over it. If it would be locally small, such as a small
gap on an otherwise strong line in the gradient image, the regularization force can prevent
leaking of the contour. In our case, this is not possible and the only thing that can be done
without modifying the assumptions is to stop segmentation early enough. More generally,
in order to overcome the leaking problem we have to incorporate model driven term into
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the segmentation that can guide the contour and stop leaking even when a small or even no
gradient response is present.

The results of the level set segmentation step are used to locate the perfusion area in each
image, the exact details of which we describe now.

5.4 Perfusion Area Localization

After the segmentation of the liver area is completed for all images, we locate the area where
to measure the perfusion intensity in every image.

We now introduce a new method to locate this area. In this method, the radiologist first
marks the perfusion area in one image. Afterwards, this area is automatically located in all
remaining images.

Our method is based on the following five observations. First, the movement of the liver
is constrained to mainly vertical movements with only small horizontal movement. Second,
shape of the segmented liver changes only slightly throughout the series. Third, rotation
relative to the body is minimal and can be ignored. Fourth, the segmentation quality is not
equal across the entire shape but the best at the top half of the liver, due to a strong gradient
response there, while the weak gradient response in the lower half of the liver leads to more
variation throughout the series. Fifth, when the contrast agent reaches the perfusion area a
strong gradient response appears, which changes the segmentation result locally, up to the
case of where the perfusion area is not considered part of the liver shape anymore.

5.4.1 Distance Vector Transform

We now describe the details of the method. The idea is to anchor a coordinate system at
each segmented shape which can be used to estimate a point location within and nearby the
liver shape across all the images. As the method employs limited redundancy it also allows
for a definition of an error term which can be used to evaluate the relative quality of the
localization among the images.

Definition

Consider the point P in figure 5.8. Assume for now, we know for sure the position of P
absolutely in the image and that we have a good segmentation result of the liver shape. Then,
we define a set of non-parallel lines L = {L0, L1, . . . , Ln}. For each line Lk we determine the
following for the image I

1. The distance d(Px,y, Lk, I) of every point Px,y within the segmented liver shape to Lk.

2. The shortest distance ds(Lk, I) among all d(Px,y, Lk, I).

Then, any point within the liver in an image I can be represented as a line relative distance
vector DPx,y(I):

DPx,y(I) := (d(Px,y, L0, I)− ds(L0, I), d(Px,y, L1, I)− ds(L1, I), . . . , d(Px,y, Ln, I)− ds(Ln, I))

For example, for the trivial case let L = {L0, L1} with L0 being a vertical line through
the origin, and L1 being a horizontal line through the origin. The resulting DPx,y is nothing
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Figure 5.8: A point P defined by a three element distance vector (d0, d1, d2) relative to the
lines L0, L1 and L2

but (xr, yr), the relative coordinates of the point Px,y to the leftmost point and the topmost
point of the liver shape.

Using the above model, what remains to be discussed is how to find suitable lines to build
the distance vector from and - equally important - how to transfer from a given distance
vector and the lines back to an absolute coordinate. The question of which lines to use can
be answered by considering the fourth observation made above. We use lines which always
have their minimum distance point at the boundary of the shape where the segmentation
result is of good quality. For example, due to the strong gradient at the top of the liver, the
segmentation result is always good there. Then, by using a horizontal line above the liver
as distance measurement line, the resulting component in the distance vector will accurately
reflect the relative position to the top of the liver across all the images. Similarly, the top
left part of the liver is always well segmented and by fitting a diagonal line with a 45 degree
angle, we yield another good element for the distance vector. We now discuss in detail the
second question, how to convert a distance vector back to absolute coordinates.

Given DP (Ip) for the initial radiologist-marked image Ip and the segmentation results
for all other slices, we determine the position within or nearby the segmented shape that
minimizes an error term.

Error term

We first describe this error term and then show how it is used to find the error minimizing
point in the image. Consider a two dimensional coordinate system. For such a system, two
non-parallel lines are enough to define a base and any additional lines are redundant. This
redundancy can be used to define an error term ε which describes how much the distance
vector for a point (x0, y0) in image I0 diverges geometrically from the distance vector of the
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original known perfusion area point (xp, yp) in the radiologist-marked image Ip:

ε(x0, y0, I0) :=
∣∣∣DPx0,y0

(I0)−DPxp,yp
(Ip)

∣∣∣

The error minimizing point (x, y) in the image I is one of the points that minimizes
ε(x, y, I). To find this point we test all points (x, y) for which the level set value is below some
small positive threshold value t and keep the minimal error point. Because the embedding
function used with the levelset method is the signed distance function, the use of a threshold
of zero would correspond to all points within the segment liver. Adding a small positive value
t allows for points nearby the segmented shape to be found and is identical to a number
of dilation operations using a circular disc. The threshold value is necessary because of the
observation made above about the strong gradient response when the contrast agent reaches
the liver, where the perfusion area may lie slightly outside of the (bad) segmented shape.

After all the minimizing error points are located in the images, the perfusion area is simply
a circle area centered around the point in each image. Because the liver shape is deformed
only slightly throughout the series and the circle area is invariant to rotation, it is a simple
but sufficient approximation.

For each image, the resulting perfusion intensity is the mean value of all the MRI intensity
values within the circle area4. As final step, the resulting curve of perfusion intensity over
time is Gaussian-smoothed using σ = 3.0 to remove variation from intensity values resulting
from outliers.

4The unit of this intensity is arbitrary and to obtain the contrast agent concentration from them requires
more effort and also depends on which contrast agent is used.
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Chapter 6

Liver Perfusion - Experiments and
Results

In this chapter we apply the approach to real world perfusion series and evaluate the results.
First, I give details about the prototype implementation program that realizes the approach
and describe the typical user behavior. Secondly, the experiment is described, and third the
results are evaluated and discussed.

6.1 Prototype implementation

The prototype implementation has the following features.

• 2D implementation of the narrow band level set method and the fast marching method
written in C.

All algorithms described in chapters 3 to 5 have been implemented in C. The code has
been optimized for speed but does not make use of any adaptive data structure, such
as a quad-tree to organize the computational domain1.

• Reading and writing PGM2 image files.

The relatively complex DICOM file format has not been implemented but instead a
simple common text based format (PGM) is used to load and save images from the
program. DICOM files can be converted to PGM files using tools such as medcon and
ImageMagick.

• A wrapper to a high level C# interface.

To have a good compromise between performance and rapid development speed, the
performance critical functions have been developed entirely in C, but for the GUI and
its interactions, the higher level C# language has been used. The necessary interfaces
to interoperate between the C and C# code have been semi-automatically generated
using SWIG3.

1Extension to 3D for large domains would require using such an adaptive structure to avoid extensive
memory consumption. One such approach can be found in [12].

2PGM, Portable GrayMap format from the ImageMagick tools.
3SWIG, Simplified Wrapper and Interface Generator, http://www.swig.org/
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6.1. Prototype implementation

• Gtk# based GUI written in C#.

Using the portable Gtk# GUI toolkit4 only one source is used to compile binaries for
Windows as well as Linux; enabling a platform independent development. The perfusion
intensity plot has been realized using the NPlot library5.

6.1.1 Graphical User Interface

Figure 6.1: Graphical user interface of the prototype implementation in the initialization and
configuration view.

The screen shown in figure 6.1 shows the main interaction point between the user and
the program. On the left side the MR images are shown for examination and selection. All
the loaded images can be selected using the slider below the image; it is also possible to use
the cursor keys to browse between the images. On top of the image three elements can be
displayed, namely (a) the seed point used to start the segmentation of the image (red tinted
circle), (b) the approximate segmented shape of the liver (yellow area) and (c) the located
perfusion area (green tinted circle).

On the right side in figure 6.1 the possible actions and configuration settings are shown.
The four available actions are (a) set seed point, (b) propagate seed, (c) set perfusion area
and (d) start measurement. The normal way for a user to interact with the program is the
following:

4Gtk#, .NET binding to GTK, http://gtk-sharp.sourceforge.net/
5NPlot, http://netcontrols.org/nplot/
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6.1. Prototype implementation

Figure 6.2: Graphical user interface of the prototype implementation in the perfusion intensity
measurement view.
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6.2. Experiments

1. Load the images through the File/Open menu item.

2. In one image: set a seed point by pressing the “Set seed point” button and subse-
quently clicking into the image.

3. Propagate the seed to all other images by pressing the “Propagate seeds” button.

4. Selecting the perfusion area. For this the user first selects one image in which the per-
fusion area is particularly salient and subsequently presses the “Set perfusion area”
button. The following click in the image sets the perfusion area. This has to be done
for one image only.

5. Starting the segmentation and measurement process by pressing the “Start measuring”
button.

In figure 6.2 you see the resulting perfusion curve as displayed in the program. The plotted
graph displays both the measured values (blue crosses) and a Gaussian smoothed curve (red
line).

6.2 Experiments

The experiments are the following.

1. Clinical evaluation.

The measured perfusion curves have been discussed with radiologists from the Shanghai
First People’s Hospital and the general accuracy has been discussed.

2. Performance evaluation.

The runtime performance is taken for a common system configuration.

3. Segmentation accuracy evaluation.

Ultimately, the location accuracy of the perfusion area is the most important, as the in-
tensity measurement is taken from it. However, the segmentation accuracy is important
as well, because its results are used by the registration algorithm to locate the perfusion
area. Hence I use the following two-step method of testing the segmentation for accu-
racy: (a) the top of the liver is manually marked in a large representative set of images,
and (b) the vertical position is compared with the topmost position in automatically
segmented liver shapes for these images. The difference between the two measurements
will give information about the segmentation performance.

The choice of only comparing points is based on the registration method used. The
segmentation quality is not equal throughout the liver shape, hence we take the actual
positions used by the registration method instead of relying on potentially bad parts of
the segmentation.

4. Perfusion area location accuracy evaluation.

The perfusion area location accuracy can be evaluated by the error term produced in the
registration step. I list the error terms for all series and interpret them geometrically.
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6.3. Results and discussion

6.2.1 Parameters

For the evaluation, all freely configurable settings in the program are set as shown in figure 6.1.
The intrinsic parameters were the following. We use FFMM2 for the FMM segmentation step.
The set L of distance measurement lines were a horizontal and vertical line at the origin plus
a 45 degree line in mathematical positive rotation through the coordinate system origin.

The evaluation has been performed using the prototype GUI in the manner described
in section 6.1.1. One perfusion series is loaded and a particular good image of the series is
selected and both the segmentation seed point and the perfusion area is manually marked
in this image. Then the seed point is automatically located in all the remaining images and
can be examined. Afterwards the actual segmentation and perfusion measurement process
is started. The output of the measurement process is the intensity curve at the estimated
perfusion area and the minimal error term value at that position for each slice.

6.3 Results and discussion

The results and interpretation to the proposed experiments are given here.

6.3.1 Clinical evaluation
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Figure 6.3: Typical liver perfusion intensity curve obtained with the prototype. Shown for
comparison are the results of the original method using a fixed point across the series, the
measured results using our method and the smoothed final results of our method.
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6.3. Results and discussion

In figure 6.3 the Gaussian smoothed measured perfusion intensity is plotted over time.
Clearly visible around t = 15 to t = 20 is the drastically increased intensity as the contrast
agent reaches the perfusion area.

Two radiologists from the Shanghai First People’s Hospital confirmed that the results
produced using our method are an improvement over their current method. The reasons for
the improvement are twofold:

1. Compensation of movement, that is, the movement of the liver is compensated for.

2. Filtering of the result curve. While only the compensation of movement already leads to
an improvement, both the original data and our compensated data benefit from filtering
it through an interpolation or approximation filter. In figure 6.3 we used a Gaussian
filter of σ = 1.5, but we obtained similar results using BC-spline filtering.

6.3.2 Performance evaluation

For the performance evaluation, a combined set of 240 images has been used. The system is
a Pentium-M 1500Mhz, 512Mb RAM system running Linux 2.6.6 with the Mono 1.0.5 CLR.

Step time time per image
Locating seed point 44s 0.183s
FMM and levelset liver segmentation 443s 1.845s
Locating perfusion area 23s 0.095s
Total 510s 2.125s

The absolute runtime performance of around two seconds per image is adequate and
compares favorable to manual marking of the perfusion area in every image, while being
slower than an instant simple non-compensating measurement.

6.3.3 Segmentation accuracy evaluation

The overall segmentation accuracy is not too good, and the leaking problem is not easy to
solve. Of importance for the registration is only the part of the segmentation result that is
used as input to the registration. One such part is the top point of the liver, the point inside
the segmented shape that has the smallest vertical coordinate.

In figure 6.4 the vertical coordinate top point of the liver is shown over 121 pictures of two
combined perfusion series6. Additionally manually marked positions are shown. Besides being
important for the registration, the top point is also easy to find manually and the manual
results are believed to be correct. The low mean of the error term shows the segmentation at
the top of the liver to be quite good.

6.3.4 Perfusion area location accuracy evaluation

In table 6.3.4 we analyze the error terms within twelve of the thirteen series7. Interpreting
the error values as the geometric distance from an optimal fit, the low mean error values for

6The images of the two series are joined in sequence, so that all images from the second series follow the
one from the first.

7Series number 11 failed to load into our prototype program for unknown reasons.

88
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Figure 6.4: Comparing the automated results of finding the vertical pixel position of the top
boundary of the liver against manual marking for 121 pictures in two combined perfusion
series. The error function ε(t) = |manual(t)− automatic(t)| has a mean of 1.2149 pixels with
a standard deviation of 1.5395 pixels and a maximum value of 10 pixels.
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6.3. Results and discussion

Series Error mean Error maximum Error standard deviation
1 0.94 3.53 0.78
2 1.03 3.53 0.71
3 3.00 6.00 2.08
4 3.02 5.05 1.06
5 1.64 5.05 1.36
6 1.26 4.53 1.01
7 1.44 3.08 0.84
8 2.86 13.34 2.13
9 1.86 3.54 1.06
10 1.79 5.05 1.25
12 4.44 11.02 3.10
13 0.98 3.08 0.71

Table 6.1: Error term comparisons for the twelve of the thirteen example perfusion series.

all the series - except for series 8 and 12 - indicates a good perfusion area localization success.
This is confirmed by manually inspecting the located perfusion area.

For series 8 and 12 the segmentation has failed to accurately recover the liver shape and
the following registration step lead to a mislocated perfusion area.
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Chapter 7

Conclusions

The following things have been achieved by this thesis’s work.

• The main difficulties in the liver perfusion problem have been identified.

• A robust, automatic and performant segmentation and measurement process has been
devised for liver perfusion MRI series.

• The level set method, the narrow band level set method and the Fast Marching Method
have been implemented, tested and optimized for its application in the liver perfusion
approach.

• Different aspects of the approach have been evaluated, (a) the overall approach against
its value in clinical applications, (b) the prototype’s runtime performance on a common
system configuration, (c) the segmentation accuracy and (d) the perfusion area location
accuracy.

• Throughout the thesis I gave brief explanations for possible alternative approaches to
the segmentation problem. Together they give rise to the possible directions of future
work described below.

The problem introduced in section 1.1 has been solved and the goals introduced in sec-
tion 1.2 have been achieved. The clinical value has been validated by radiologists. While the
overall approach as such is a valuable one, there are still deficiencies we hope to remove in
the future. I now give final remarks on these possible future developments.

7.1 Future work

The possible future work can be divided into two parts, namely (a) improving the approach
of this thesis to obtain better results, and (b) adapting the approach to related fields.

Improving the approach

We have seen the segmentation results have not been optimal. While a part of this problem is
caused by the bad input image quality, the larger part is caused by the segmentation algorithm
not knowing anything in advance about the shape to segment. Thus, by incorporating a
prototype model of the liver and letting it fit to and guide the segmentation of the liver, the
results will improve. This is known as Atlas-based segmentation.
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7.1. Future work

Adapting the approach

The current approach manages to measure the perfusion intensity at an area inside the liver
for 2D time series. However, the notion of perfusion occurs in other organs as well. A prime
example is the heart ; measuring the perfusion intensity throughout a time series can be of
high clinical value and thus an extension of this approach to the heart could be pursued.

The approach could also be extended to 3D images. Usually, extending algorithms from
2D to 3D has two disadvantages, namely (a) the added computational complexity, and (b)
introducing new algorithmic complexity to cope with the extra dimension. In the approach
this thesis describes both problems would be minimal. The added computational complex-
ity could be reduced by using an adaptive approach to the grid discretization. The added
algorithmic complexity, if any, would be minimal, as both the level set method and the Fast
Marching Method extend to 3D easily. A large part of the benefit of extending the approach
to 3D would be added accuracy in the measurement. Because a natural image of the human
body is 3D, the 2D slices we use are always just an approximation of a part of the 3D volume
it is contained in. In this 2D slice it is difficult to interpret certain structures and to relate
them to be either caused by noise or being an artifact of interpreting 3D data as 2D slice at
that place1.

1For example, imagine a small bright spot on a 2D slice. This spot could be just noise and in that case
should be ignored by the segmentation process. It could also be a part of a thin anatomical structure running
perpendicular to the image plane. In that case, its structure cannot be captured by the 2D image alone, but
ignoring the structure discards possibly important information from the image. The level set segmentation
step we employ with a negative curvature flow will remove such small structures from the image, discarding its
information. Incorporating – making sense of it in fact – this information by allowing segmentation to happen
in 3D would improve the approach.
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