4. Übungsblatt zur Mafi I

Aufgabe 13: Bestimmen und skizzieren Sie die Lösungsmengen L der folgenden Ungleichungen:

- (a) $|x^2 10x + 9| \ge 4$.
- (b) $\frac{|3x+6|-2x}{x-3} < -3 \text{ mit } x \neq 3.$

4+4 Punkte

Aufgabe 14: Beweisen Sie (die verallgemeinerte Dreiecksungleichung): Für alle $n \in \mathbb{N} \setminus \{0,1\}$ und für alle $a_1, a_2, \dots, a_n \in \mathbb{R}$ gilt

$$\left| \sum_{k=1}^{n} a_k \right| \le \sum_{k=1}^{n} |a_k|.$$

4 Punkte

Aufgabe 15: Zeigen Sie anhand der Definition der Konvergenz von Folgen (Skript 8.5), daß gilt:

$$\lim_{n \to \infty} \frac{n!}{n^n} = 0.$$

4 Punkte

Aufgabe 16: Gegeben seien die Nullfolge $(a_n)_{n\in\mathbb{N}}$ mit

$$a_n:=\frac{n}{n^3+n^2+1}\,,\quad n\in\mathbb{N},$$

und $\varepsilon := 0,01$. Bestimmen Sie ein $N \in \mathbb{N}$, so daß für alle $n \in \mathbb{N}$ mit $n \geq N$ gilt: $|a_n| < \varepsilon$.

Hinweis: Die Aussage:

$$\forall n \in \mathbb{N}, \ n \geq N : |a_n| < \varepsilon$$

ist für das gewählte N zu beweisen.

Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt genau dann Nullfolge, wenn $\lim_{n\to\infty}a_n=0$ erfüllt ist. 4 Punkte

Abgabe: Spätestens zu Beginn der Übung am 21.11.2001.

Klausurtermin: 20.02.2002 um 15 Uhr.

Weitere Information zur Vorlesung sind unter www.math.tu-berlin.de/~mafi1 zu finden.