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Abstract

In this thesis we address structured machine learning problems. Here “struc-
tured” refers to situations in which the input or output domain of a prediction
function is non-vectorial. Instead, the input instance or the predicted value
can be decomposed into parts that follow certain dependencies, relations and
constraints. Throughout the thesis we will use hard computer vision tasks as
a rich source of structured machine learning problems.

In the first part of the thesis we consider structure in the input domain.
We develop a general framework based on the notion of substructures. The
framework is broadly applicable and we show how to cast two computer
vision problems — class-level object recognition and human action recognition
— in terms of classifying structured input data. For the class-level object
recognition problem we model images as labeled graphs that encode local
appearance statistics at vertices and pairwise geometric relations at edges.
Recognizing an object can then be posed within our substructure framework
as finding discriminative matching subgraphs. For the recognition of human
actions we apply a similar principle in that we model a video as a sequence of
local motion information. Recognizing an action then becomes recognizing a
matching subsequence within the larger video sequence. For both applications,
our framework enables us to finding the discriminative substructures from
training data. This first part contains as a main contribution a set of abstract
algorithms for our framework to enable the construction of powerful classifiers
for a large family of structured input domains.

The second part of the thesis addresses structure in the output domain of a
prediction function. Specifically we consider image segmentation problems in
which the produced segmentation must satisfy global properties such as con-
nectivity. We develop a principled method to incorporate global interactions
into computer vision random field models by means of linear programming
relaxations. To further understand solutions produced by general linear pro-
gramming relaxations we develop a tractable and novel concept of solution
stability, where stability is quantified with respect to perturbations of the
input data.

This second part of the thesis makes progress in modeling, solving and
understanding solution properties of hard structured prediction problems
arising in computer vision. In particular, we show how previously intractable
models integrating global constraints with local evidence can be well approxi-
mated. We further show how these solutions can be understood in light of
their stability properties.





Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit strukturierten Lernproblemen im
Bereich des maschinellen Lernens. Hierbei bezieht sich “strukturiert” auf
Prädiktionsfunktionen, deren Definitions- oder Zielmenge nicht wie sonst
üblich in Vektorform dargestellt werden kann. Stattdessen kann die Eingabe-
instanz oder der prädizierte Wert in Teile zerlegt werden, die gewissen Ab-
hängigkeiten, Relationen und Nebenbedingungen genügen. Im Forschungs-
feld der Computer Vision gibt es eine Vielzahl von strukturierten Lernproble-
men, von denen wir einige im Rahmen dieser Dissertation diskutieren werden.

Im ersten Teil der Arbeit behandeln wir strukturierte Definitionsmengen.
Basierend auf dem Konzept der Unterstrukturen entwickeln wir ein flexi-
bel anwendbares Schema zur Konstruktion von Klassifikationsfunktionen
und zeigen, wie zwei wichtige Probleme im Bereich der Computer Vision,
das Objekterkennen auf Klassenebene und das Erkennen von Aktivitäten
in Videodaten, darauf abgebildet werden können. Beim Objekterkennen
modellieren wir Bilder als Graphen, deren Knoten lokale Bildmerkmale
repräsentieren. Kanten in diesem Graphen kodieren Informationen über
die paarweise Geometrie der adjazenten Bildmerkmale. Die Aufgabe der Ob-
jekterkennung lässt sich in diesem Schema auf das Auffinden diskriminativer
Untergraphen reduzieren. Diesem Prinzip folgend können auch Videos als
Sequenz zeitlich und räumlich lokaler Bewegungsinformationen modelliert
werden. Das Erkennen von Aktivitäten in Videos kann somit analog zu den
Graphen auf das Auffinden von passenden Untersequenzen reduziert wer-
den. In beiden Anwendungen ermöglicht unser Schema die Identifikation
einer geeigneten Menge von diskriminativen Unterstrukturen anhand eines
gegebenen Trainingsdatensatzes.

In diesem ersten Teil besteht der Forschungsbeitrag aus unserem Schema
und passenden abstrakten Algorithmen, die es ermöglichen, leistungsfähige
Klassifikatoren für strukturierte Eingabemengen zu konstruieren.

Im zweiten Teil der Arbeit diskutieren wir Lernprobleme mit strukturier-
ten Zielmengen. Im Speziellen behandeln wir Bildsegmentierungsprobleme,
bei denen die prädizierte Segmentierung globalen Nebenbedingungen, zum
Beispiel Verbundenheit klassengleicher Pixel, genügen muss. Wir entwickeln
eine allgemeine Methode, diese Klasse von globalen Interaktionen in Markov
Random Field (MRF) Modelle der Computer Vision mit Hilfe von linearer
Programmierung und Relaxationen zu integrieren. Um diese Relaxationen
besser zu verstehen sowie Aussagen über die prädizierten Lösungen machen
zu können, entwickeln wir ein neuartiges Konzept der Lösungsstabilität unter
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Störungen der Eingabedaten.
Der Hauptbeitrag zum Forschungsfeld dieses zweiten Teils liegt in der

Modellierung, den Lösungsalgorithmen und der Analyse der Lösungen
komplexer strukturierter Lernprobleme im Feld der Computer Vision. Im
Speziellen zeigen wir die Approximierbarkeit von Modellen, die sowohl glo-
bale Nebenbedingungen als auch lokale Evidenz berücksichtigen. Zudem
zeigen wir erstmals, wie die Lösungen dieser Modelle mit Hilfe ihrer Stabili-
tätseigenschaften verstanden werden können.
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Introduction

Beware of the man of one method or one
instrument, either experimental or theoretical.
He tends to become method-oriented rather
than problem oriented. The method-oriented
man is shackled: the problem-oriented man is
at least reaching freely toward what is most
important.

John R. Platt (1963)

Overview

Throughout this thesis we address structured machine learning problems. In
supervised machine learning we learn a mapping f : X → Y from an input
domain X to an output domain Y by means of a given set of training data
{(xi, yi)}i=1,...,N , with (xi, yi) ∈ X ×Y . A typical well-known setting is binary
classification where we have Y = {−1, 1}.

In structured machine learning the domain X or Y , or both, have associated
with it a non-trivial formalizable structure. For example, X might be a
combinatorial set such as “the set of all English sentences”, or “the set of all
natural images”. Clearly, being able to learn a function taking as input such
objects and making meaningful predictions is highly desirable.

When the structure is in the output domain Y , the problem of learning
f is often referred to as structured prediction or structured output learning. A
typical example of a structured output domain Y is in image segmentation,
where each pixel of an image must be labeled with a class such as “person”
or “background” and Y therefore is the “set of all possible image segmenta-
tions”. Because the label decisions are not independent across the pixels, the
dependencies in Y should be modeled by imposing further structure on Y .

In this thesis we address the challenging problem of learning f . Further-
more, we will use computer vision problems to demonstrate the applicability
of our developed methods.

Our key contributions in this direction are threefold. First, we propose a 1. Substructure poset framework

novel framework for structured input learning that we call the “substructure
poset framework”. The proposed framework applies to a broad class of input
domains X for which a natural generalization of the subset relation exists, such
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as for sets, trees, sequences and general graphs. Second, for structured predic-2. Random fields with global interac-
tions tion we discuss Markov random field models with global non-decomposable

potential functions. We propose a novel method to efficiently evaluate f in
this setting by means of constructing linear programming relaxations. Third,3. Solution stability in linear program-

ming relaxations we develop a novel method to quantify the solution stability in general linear
programming relaxations to combinatorial optimization problems, such as the
ones arising from structured prediction problems.

In the remainder of this introduction we describe in more detail the two
main parts of this thesis.

Part I: Learning with Structured Input Data

X RΩ

φ g

Y

f (·) = g(φ(·))

Figure 1: Schematic illustration of f :
X → Y as composition g(φ(·)).

The first part of this thesis addresses the input domain X in learning f : X →
Y . When X consists of non-vectorial data it is not obvious how f can be
constructed. In general, computers are limited to process numbers and we
can therefore reduce the problem of learning f into two steps. First, a set of
suitable statistics φ = {φω : X → R|ω ∈ Ω} has to be defined over a domain
Ω. Second, the statistics φ : X → RΩ serve as a proxy to reason about the true
input domain X , such that f can now be defined as f (x) = g(φ(x)) for some
function g : RΩ → Y . This construction is illustrated in Figure 1.

This set of accessible statistics is the feature space or feature map, a single
statistic is also called feature.

In the first chapter we review two existing approaches, propositionalization
and kernels, for solving the problem of learning with structured input domains.

We argue in favor of rich feature spaces that preserve most of the informa-
tion from the structured domain. Learning a linear classifier f : X → {−1, 1}
using such feature space consists of assigning a weight to each feature. Be-
cause the dimension of the feature space can be very large, we either need
an aggregated representation of the weights or use sparse linear classifiers that
assign a non-zero weight to only a small number of features.

Kernel methods represent the weight vector implicitly within the span of the
feature vectors of the training instances. They can therefore use a rich feature
space at the cost of an implicit representation of the classification function.

In contrast, Boosting can achieve sparse weight vectors. Each feature is
treated as a “weak learner” and the classification function optimally combines
a small set of weak learners in order to minimize a loss function on the training
set predictions. Because we will use Boosting extensively in later chapters we
describe a general Boosting algorithm in detail in the first chapter.

In the second chapter we introduce our novel framework to define feature
spaces for structured input domains which we call substructure poset framework.
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Within the framework, we consider statistics of the form

φt : X → {0, 1}, φt(x) =

{
1 if t ⊆ x
0 otherwise

,

for t ∈ X , i.e., we have Ω = X . The only necessary assumption for this
construction to work is the existence of a natural partial order, the substructure
relation ⊆: X ×X → {>,⊥} relating pairs of structures. Such a relation exists
naturally for sets, but we show how to define suitable relations for other
structured domains such as graphs and sequences.

This substructure-induced feature space has several nice properties which
we analyze in detail. For one, the features preserve all information about a
structure, essentially because φx(x) = 1 holds. Additionally, linear classifiers
within this feature space have an infinite VC-dimension, that is, any given
pair of finite sets S, T ⊆ X with S ∩ T = ∅ can be strictly separated by means
of a function that is linear in the features.

To enable the learning of linear classifiers we show how the Boosting
algorithm introduced in the first chapter can be applied in this feature space.
In particular, we describe an algorithm to solve the Boosting subproblem of
finding the best weak learner within the substructure poset framework.

In the third and fourth chapter of the first part, we demonstrate
the versatility of the substructure poset framework by applying it to computer
vision problems.

In the third chapter we address the problem of incorporating geometry
information into bag-of-words models for class-level object recognition sys-
tems. In class-level object recognition we are given a natural image and have
to determine whether an object of a known class — such as “bird”, “car”, or
“person” — is present in the image. During training time we have access to a
large collection of annotated natural images. The goal of solving class-level ob-
ject recognition problems is important on its own for the purpose of indexing
and sorting images by the objects shown on them. But it is also a fundamental
building block to the larger goal of visual scene understanding, that is, to be
able to semantically reason about an entire scene depicted on an image.

One popular family of approaches to the class-level object recognition
problem are bag-of-words models that summarize local image information
in a bag. Each element in the bag represents a match of local appearance
information to a specific template from a larger template pattern set. The
matches are unordered in the sense that they can happen anywhere in the
image. Surprisingly, classifiers built on top of this simple representation
perform well for the class-level object problem.

The bag-of-words representation is robust, but it discards a large amount
of information contained in the geometry between local appearance matches.
Therefore, in computer vision an alternative line of models that explicitly
model the geometric relationships between parts has been pursued. In the
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third chapter we provide an in-depth literature survey of these part-based
models.

The remaining part of the third chapter then demonstrates how our sub-
structure poset framework can be applied to the problem of modeling pairwise
geometry between local appearance information. We evaluate the proposed
model on the PASCAL VOC 2008 data set, a difficult benchmark data set for
object class-level recognition.

In the fourth chapter of the first part we apply the substructure
poset framework to human activity recognition in video data. Recognizing
and understanding human activities is an important problem because its
solution enables monitoring, indexing, and searching of video data by its
semantic content.

For activity recognition bag-of-words models are again popular but they
discard the temporal ordering of local motion information. We first survey the
literature on human activity recognition, distinguishing the main families of
approaches. We then proceed to show that by using sequences as structures in
the substructure poset framework we can preserve the temporal ordering rela-
tion between local motion cues. Through the addition of a robust subsequence
relation inducing a subsequence-based feature space we can learn a classifier
to recognize human motions that uses the temporal ordering information.

The chapter ends with a benchmark evaluation and discussion of the
approach on the popular KTH human activity recognition dataset.

The main novelty in this first part is the principled development of a
framework for structured input learning. The last two chapters further fill this
framework with life and show how it can be applied to graphs and sequences.

Part II: Structured Prediction

The second part of this thesis is concerned with structured prediction models
and consists of three chapters. In order to build a structured prediction model
f : X → Y one needs to formalize the notion of structure in Y and thus
make clear the assumptions that are part of the model. In the first chapter we
survey the literature of structured prediction models with a focus on undirected
graphical models and their application to computer vision problems.

Undirected graphical models — also known as Markov networks — make
explicit a set of conditional independence assumptions by means of a graph having
as vertices the set of input and output variables. Groups of edges linking
vertices encode local interactions between variables. We discuss in detail the
currently popular models together with training and inference procedures.

In some applications of these models there are additional solution proper-
ties that depend jointly on the state of all variables in the model. We consider
one example in the second chapter of this part, where the global property
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is a topological invariant stating that all vertices which share a common la-
bel must form a connected component in the graph. This constraint on the
solution does not decompose and incorporating it into a Markov network
is unnatural: the graph would become complete and the usual training and
inference algorithms no longer remain tractable.

We overcome this difficulty by directly formulating a linear programming
relaxation to the maximum a posteriori estimation problem of this model. The
key observation we make is that global interactions can naturally be incorpo-
rated by techniques from the field of polyhedral combinatorics: approximating
the convex hull of all feasible solution points. Our construction allows us
to obtain polynomial-time solvable relaxations to the original problem. This
in turn enables efficient learning and estimation procedures; however, we
lose the probabilistic interpretation of the model and can no longer compute
quantities such as marginal probabilities.

In the last chapter of this part we propose solution stability as a
non-probabilistic alternative to describe properties of the predicted solution.
Intuitively, a solution that is stable under perturbations of the input data is
preferable over an unstable solution. We formalize the concept of solution
stability for the case of linear programming relaxations and propose a general
novel method to compute the stability.

Unlike the probabilistic setting where computing marginals might be more
difficult than computing a MAP estimate, our method is always applicable
when the canonical MAP estimation problem can be solved. Again we make
extensive use of linear programming relaxations to combinatorial optimization
problems. For such linear programming relaxations we prove that our method
is conservative and never overestimates the true solution stability in the
unrelaxed problem.

The second part presents in the first chapter a survey of the known litera-
ture, and the novel contributions are in the second and third chapters.
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Learning with Structured Input Data

The combination of some data and an aching
desire for an answer does not ensure that a
reasonable answer can be extracted from a
given body of data.

John Wilder Tukey

Introduction

In many application domains the data is non-vectorial but structured: a data
item is described by parts and relations between parts, where the description
obeys some underlying rules. For example, a natural language document
has a linear order of sections, paragraphs, and sentences and these parts
decompose hierarchically from the entire document down to single words or
even characters. Another example of structured data are chemical compounds,
typically modeled as graphs consisting of atoms as vertices and bonds as
edges, relating two or more atoms. One consequence of structured input data
is that the usual techniques for classifying numerical data are not directly
applicable.

In this chapter we first give a brief overview of approaches to classification
of structured input data. Then we provide an introduction to Boosting, as
a prequisite to the following chapter. Our viewpoint on Boosting is particu-
larly simple and general, avoiding many of the drawbacks of early Boosting
algorithms.

Approaches to Structured Input Classification

We now discuss two general approaches to handle structured input data.
These are propositionalization and kernel methods.

Propositionalization

The simplest and traditionally popular method to handle structured input
data is by first transforming it into a numerical feature vector, a step called
propositionalization1. As a popular example, documents are often transformed

1 Stefan Kramer, Nada Lavrac, and Peter
Flach. Propositionalization approaches
to relational data mining. In Saso
Dzeroski and Nada Lavrac, editors,
Relational Data Mining, pages 262–291.
Springer, September 2001. ISBN 3-540-
42289-7

into sparse bag-of-words vectors, encoding the presence of all words in the
document2. Another example is in chemical compound classification and 2 Thorsten Joachims. Learning to Clas-

sify Text using Support Vector Machines.
Kluwer Academic Publishers, 2002
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quantitative structure-activity relationship analysis, where for a given molecule
certain derived properties such as their electrostatic fields are estimated using
models possessing domain knowledge3.3 Huixiao Hong, Hong Fang, Qian Xie,

Roger Perkins, Daniel M. Sheehan, and
Weida Tong. Comparative molecular
field analysis (comfa) model using a
large diverse set of natural, synthetic
and environmental chemicals for bind-
ing to the androgen receptor. SAR QSAR
Environmental Research, 14(5-6):373–388,
2003

Propositionalization can be an effective approach if sufficient domain knowl-
edge suggests a small set of discriminative features relevant to the task. How-
ever, in general there are two main drawbacks to propositionalization.

First, because the features are generated explicitly, we are limited to using
a small set of features. Usually, this results in an information loss as more than
one element from X is mapped to the same feature vector, i.e., the feature
mapping is non-injective. This can be seen, for example, in the bag-of-words
model: a document can always be mapped uniquely to its bag-of-words
representation, but given a bag-of-words vector it is not possible to recover the
document because the ordering between words has been lost. Therefore, using
a small number of features can limit the capacity of the function class in the
original input domain X when a classifier is applied to the propositionalized
data.

Second, the design of suitable features that are both informative and dis-
criminative can be difficult. Within the same application domain there might
be different tasks, each requiring its own set of features for the same input
domain X . Even to the domain expert it might not be a priori clear which
features can be expected to work best.

In summary, the success of an approach based on propositionalization
depends very much on the application domain, task, and on the existing
domain knowledge. In the best case, the derived numerical features are well
suited to the task and all relevant information important for obtaining good
predictive performance is preserved. In the worst case, the resulting numerical
feature vectors do not contain the discriminative information present in the
original input representation.

Kernels for Structured Input Data

Structured input data can be incorporated into kernel classifiers in a straight-
forward way. In kernel classifiers a function f : X → Y is learned by accessing
each instance exclusively through a kernel function k : X ×X → Y . Informally
the kernel function can be thought of as measuring similarity between two
instances. The use of a kernel function has a far-reaching consequence: it sepa-
rates the algorithm from the representation of the input domain4. Therefore,4 Bernhard Schölkopf and Alexander J.

Smola. Learning With Kernels: Support
Vector Machines, Regularization, Optimiza-
tion, and Beyond. MIT Press, 2001

when changing the structured input domain X , we do not need to change the
classification algorithm but only provide a new suitable kernel function.

First of all, a suitable kernel function needs to be a valid kernel. A function
k : X × X → R is a valid kernel if and only if it corresponds to an inner
product in some Hilbert space H. This condition is equivalent to the existence
of a feature map φ : X → H, such that k(x, x′) = 〈φ(x), φ(x′)〉 for all x, x′ ∈ H.
The existence of a feature map is guaranteed if k is a positive definite function5.

5 Nachman Aronszajn. Theory of repro-
ducing kernels. Trans. Amer. Math. Soc.,
68:337–404, 1950
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Beyond being valid, a “good kernel” considers all information contained in
an instance by having an injective feature map φ. Such kernel is said to be
complete and satisfies (k(x, ·) = k(x′, ·)) ⇒ x = x′ for all x, x′ ∈ X . Gärtner6 6 Thomas Gärtner. A survey of ker-

nels for structured data. SIGKDD Ex-
plorations, 5(1):49–58, 2003

further defines two properties a good kernel should have — correctness and
appropriateness — but these already depend on the specific function class used
by the classifier and we therefore do not discuss them here.

In the following we briefly discuss three popular approaches to derive
kernels for structured input domains: Fisher kernels, marginalized kernels,
and convolution kernels. For a more in-depth survey, see Gärtner7. 7 Thomas Gärtner. A survey of ker-

nels for structured data. SIGKDD Ex-
plorations, 5(1):49–58, 2003

Fisher kernels, proposed by Jaakkola and Haussler8, are based on a gener-
8 Tommi S. Jaakkola and David Haussler.
Exploiting generative models in discrim-
inative classifiers. In NIPS. 1999

ative parametric model of the data. Suppose that for the input domain X we
have a model p(X|θ) with parameters θ ∈ Rd. The model could for example
be learned from a large unsupervised training set. Markov networks such as
Hidden Markov Models (HMM) are another popular example.

Given a single instance x ∈ X , the so called Fisher score of the example is
defined to be the gradient of the log-likelihood function of the model,

Ux = ∇θ log p(X = x|θ),

with Ux ∈ Rd. The expectation of the outer product of Ux over X is the Fisher
information matrix,

I(θ) = Ex∼p(x|θ)

[
UxU>x

]
,

so that (I(θ))i,j = Ex∼p(x|θ)[
∂

∂θi
log p(x|θ) ∂

∂θj
log p(x|θ)]. Jaakkola and Haus-

sler define the Fisher kernel k : X ×X → R as proportional to

k(x, x′) ∝ U>x I(θ)−1Ux′ . (1)

In the limit of maximum likelihood estimated models p(x|θ) we have asymp-
totic normality of I(θ) and therefore can approximate (1) as

k(x, x′) ∝ U>x Ux.

The function defined in (1) can be shown to always be a valid kernel, to
be invariant under invertible transformations of the parameter space θ, and
to be a good kernel in the sense that if p(x|θ) = ∑y∈Y p(x, y|θ) has a latent
variable Y denoting a class label, then a kernel-based classifier with kernel (1)
will asymptotically be at least as good as the maximum a posteriori estimate
y∗ = argmaxy∈Y p(x, y|θ) for a given x.

In summary, for structured input domains X where there exist generative
models, the Fisher kernel is an elegant method to reuse the model in a
discriminative kernel classifier.

Marginalized Kernels, proposed by by Tsuda et al.9, generalize the Fisher 9 Koji Tsuda, Taishin Kin, and Kiyoshi
Asai. Marginalized kernels for biological
sequences. In ISMB, pages 268–275, 2002

kernels considerably. The idea of marginalized kernels is the following. Let
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each instance be composed as z = (x, y) ∈ X × Y , where x is an observed
part and y corresponds to a latent part that is never observed during training
and testing. If we would fully observe (x, y), we could define a joint kernel
kz : (X ×Y)× (X ×Y)→ R on both parts. Marginalized kernels now assume
that we have a model p(y|x) relating the observed to the latent variables. Using
this model, the marginalized kernel k : X ×X → R is defined as

k(x, x′) = ∑
y∈Y

∑
y′∈Y

p(y|x)p(y′|x′)kz((x, y), (x′, y′)) (2)

= Ey∼p(y|x)Ey′∼p(y′ |x′)
[
kz((x, y), (x′, y′))

]
.

The marginalized kernel (2) is a strict generalization of the Fisher kernel (1).
This can be seen by taking the joint kernel to be

kz((x, y), (x′, y′)) = ∇θ log p(x, y|θ)> I(θ)−1∇θ log p(x′, y′|θ)

and using the identity

∇θ log p(x|θ) = ∑
y∈Y

p(y|x, θ)∇θ log p(x, y|θ)

to obtain by (2)

k(x, x′) = ∑
y∈Y

∑
y′∈Y

p(y|x)p(y′|x′)∇θ log p(x, y|θ)> I(θ)−1∇θ log p(x′, y′|θ)

= ∇θ log p(x|θ)> I(θ)−1∇θ log p(x′|θ)

= U>x I(θ)−1Ux′ ,

which is precisely the original Fisher kernel (1).
In contrast with the Fisher kernel, the marginalized kernel separates the

joint kernel from the probabilistic model, making the design of kernels for
structured data easier.

One example of the flexibility gained by the marginalized kernel formula-
tion is exhibited by Kashima et al.10, who defined a marginalized kernel for10 Hisashi Kashima, Koji Tsuda, and Ak-

ihiro Inokuchi. Marginalized kernels
between labeled graphs. In ICML, 2003

labeled graphs. They achieve this by letting the hidden domain Y correspond
to the set of all random walks in the graph. For this choice of Y a simple
closed form solution exists for p(y|x). The joint kernel compares the ordered
labels for a given pair of paths y and y′. Due to the closed form distribution
of random walks on a graph, the computation of (2) is tractable.

Kernels for graphs have been further analyzed and generalized in Ramon
and Gärtner11, where it was shown that the marginalized graph kernel of

11 Jan Ramon and Thomas Gärtner. Ex-
pressivity versus efficiency of graph ker-
nels. In First International Workshop
on Mining Graphs, Trees and Sequences
(MGTS-2003), pages 65–74, September
2003

Kashima is not complete and that any complete graph kernel is necessarily
NP-hard to compute.

Convolution kernels, proposed by Haussler12, are a general class of

12 David Haussler. Convolution kernels
on discrete structures. Technical Report
UCSC-CRL-99-10, University of Califor-
nia at Santa Cruz, Santa Cruz, CA, USA,
July 1999

kernels applicable when the instances can be decomposed into a fixed number
of parts that can be compared with each other in a meaningful way.
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Haussler defines a decomposition of an instance x ∈ X by means of a
relation R : X1 × · · · × RD ×X → {>,⊥} such that R(x1, . . . , xD, x) is true if
x1, . . . , xD are parts of x, each part having domain Xd. The inverse relation
R−1 : X → 2X1×···×XD is defined as

R−1(x) = {(x1, . . . , xD) ∈ X1 × · · · × XD|R(x1, . . . , xD, x)}.

For a specific application, the definition of R can be used to encode allowed
decompositions into parts and the particular invariances that exist between
parts. The convolution kernel is defined as

k(x, x′) = ∑
(x1,...,xD)∈R−1(x)

∑
(x′1,...,x′D)∈R−1(x′)

D

∏
d=1

kd(xd, x′d), (3)

where kd : Xd × Xd → R is a kernel measuring the similarity between the
parts xd and x′d. This general definition is shown by Haussler to contain many
well-known kernels such as RBF kernels. He uses (3) to define kernels for
strings. However, it seems that the use of the relation R and the fixed number
D of parts make it difficult to apply (3) to a novel structured input domain.

Summarizing, kernels for structured input data separate the classification
algorithm from the representation of the input domain. When designed
properly they are efficient and provide a large feature space. Due to the
constraint of being positive-definite it can be difficult to create or modify a
kernel for a new structured input domain.

In the remaining part of this chapter we give an introduction to Boosting.
As with kernel methods, Boosting allows tractable learning in large feature
spaces. In the next chapter we will introduce a family of feature spaces for
structured input domains that can naturally be combined with the Boosting
classifiers introduced in this section. Like in kernel methods we achieve the
separation of the Boosting learning algorithm from the actual input domain.

Boosting Methods

Boosting is commonly understood as the combination of many weak decision
functions into a single strong one. This general idea can be motivated, un-
derstood and realized in many different ways and indeed both the success
of practical Boosting methods and the intuitive appeal of the method have
led to diverse research efforts in the area. Unfortunately, Boosting is often
understood only as an iterative procedure.

In this thesis, we will take a simple, general and fruitful approach to Boost-
ing methods. Our approach is based on formulating a single optimization
problem over all possible decision functions from a hypothesis space. This
problem can be solved iteratively and in that case well-known methods such
as AdaBoost are recovered.
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Two circles dataset

Figure 2: Two class classification train-
ing data. It is not possible to separate
the instances using linear decision func-
tions.
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As an example, consider a two-class classification problem with per-class
distributions as shown in Figure 2. The distributions are radially-symmetric
and we want to learn to separate the two classes by means of a function
h : X → Y , where X = R2 is the input space in this case and Y = {−1, 1} are
the class labels.

Let us choose a particularly simple function class H : Ω → YX , with Ω =
{(ω1, ω2, ω3) : ω1 ∈ {1, 2}, ω2 ∈ R, ω3 ∈ {−1, 1}}. We consider functions of
the form

h(x; ω) =

{
ω3 if xω1 ≤ ω2

−ω3 otherwise.

This class H of decision functions is known as decision stumps. A decision
stump h(x; (ω1, ω2, ω3)) simply looks at a single dimension ω1 of the sample
x, compares it with a fixed value ω2 and returns ω3 or −ω3, depending on
whether the value is smaller or larger than the threshold.

Obviously, no ω ∈ Ω will yield a good decision function for the dataset
shown in Figure 2, because the hypothesis set is too weak. Still, for some
parameters we can produce a function which performs better than chance
performance.

Classifier Response
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Figure 3: Response of the combined
function F : X → R. While artifacts
due to axis-aligned decisions are still
visible, the resulting separation is very
good.

If we consider all possible hypotheses h ∈ H, it should be possible to improve
the classification accuracy by considering weighted combinations of multiple
h1, . . . , hM ∈ H. To this end, we define a new classification function F : X → R

as
F(x; α) = ∑

ω∈Ω
αωh(x; ω), (4)

with mixture weights αω, satisfying

αω ≥ 0, ∀ω ∈ Ω (5)

∑
ω∈Ω

αω = C, (6)

where C > 0 is a given constant. Thus, F evaluates a linear combination of
hypotheses from H. Clearly, F represents a much larger set of hypotheses, the
set

F = {F(·; α)|α satisfies (5) and (6)}.
This includes the set H: each hypothesis h(·; ω′) ∈ H is recovered by setting
αω′ = C and αω = 0 for all ω ∈ Ω \ {ω′}.

Classification Decision
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Figure 4: Hard decision of the combined
function, i.e., sign(F(·)).

For our example dataset, F is powerful enough to separate the points, as
shown in Figure 3 and 4. This holds in more generality: if each point in the
set of samples is unique, there exists a hypothesis in F able to separate the
samples perfectly. The hypothesis set F is said to have an infinite Vapnik-
Chervonenkis dimension13.

13 Vladimir N. Vapnik and Alexey Y.
Chervonenkis. On the uniform conver-
gence of relative frequencies of events to
their probabilities. Theory of Probability
and its Applications, 16(2):264–280, 1971

Summarizing from our example: one way to understand Boosting is the
construction of a powerful hypothesis set F from a weak hypothesis set H by
considering mixtures from H.
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Regarding the set H, we refer to the individual elements h ∈ H as weak
learner or hypothesis, but equivalently they can be seen as feature functions.
Then, F is a linear model in a high dimensional feature space H. Thus, another
way to understand Boosting is to fit a linear model in a large implicitly defined
feature space.

In the remaining part of this chapter we first make a comment on the
generality of Boosting techniques and then formalize a general Boosting model
and an efficient Boosting algorithm, followed by a discussion of the history
of Boosting and current developments. We will then see how the Boosting
idea lends itself ideally to structured input data: structured data often has a
natural substructure-superstructure relation which defines a hypothesis space.

Boosting as Linearization

The consequences of viewing Boosting as learning a linear model are profound:
the construction underlying Boosting is not restricted to supervised learning.
In the above view, Boosting simultaneously achieves two things, i) extending
the function class, and ii) linearizing its representation. Thus, in general, in a
larger model, a possibly non-linear function can be simultaneously replaced
by a more powerful one and made linear in a new parametrization.

In the above example, the elements of H depend non-linearly on ω, yet
the new class F depends only linearly on α. This is achieved by instantiating
all values in Ω and taking the convex mixture of the resulting parameter-free
functions.

This general construction is the underlying principle of the inner linearization
and generalized Dantzig-Wolfe decomposition. For an introduction into this
literature, see Geoffrion14. 14 Arthur M. Geoffrion. Elements of

large-scale mathematical programming:
Part i: Concepts. Management Science, 16

(11):652–675, 1970; and Arthur M. Geof-
frion. Elements of large-scale mathemat-
ical programming: Part ii: Synthesis of
algorithms and bibliography. Manage-
ment Science, 16(11):676–691, 1970

Formalization

We now formalize the above discussion. In the general setting we consider
a family H of functions h : X → R, where the elements of the family are
indexed by a set Ω. The family is thus of the form

h(·; ω) : X → R.

Given N training examples samples {(xn, yn)}n=1,...,N , with (xn, yn) ∈ X ×
{−1, 1}, we want to learn a classification function

F(x; α) = ∑
ω∈Ω

αωh(x; ω),

which generalizes to the entire input domain X .
To achieve this, we minimize a loss function with the addition of a regu-

larization term. For a loss function L : R→ R+, and regularization function
R : RΩ → R ∪ {∞} the task is to minimize the regularized empirical risk
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function

min
α

1
N

N

∑
n=1

L(ynF(xn; α)) + R(α).

We now discuss two popular Boosting methods based on this regularized
empirical risk function, AdaBoost and LPBoost.

AdaBoost
15 was the first practical Boosting algorithm. It is arguably the most15 Yoav Freund and Robert E. Schapire.

A decision-theoretic generalization of
on-line learning and an application to
boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997

well known Boosting method and still popular for its simplicity. Shen and
Li16 show that the optimization problem that AdaBoost solves incrementally

16 Chunhua Shen and Hanxi Li. A dual-
ity view of boosting algorithms. CoRR,
abs/0901.3590, 2009

can be equivalently rewritten as the following convex mathematical program,
the AdaBoost primal.

min
α,z

log
N

∑
n=1

exp(zn) (7)

sb.t. zn = −yn ∑
ω∈Ω

αωh(xn; ω) : λn, n = 1, . . . , N, (8)

αω ≥ 0, ∀ω ∈ Ω,

∑
ω∈Ω

αω =
1
T

: γ, (9)

where λn and γ are Lagrange multipliers and the parameter T > 0 is a reg-
ularization parameter which is implicitly chosen in the original AdaBoost
algorithm by means of stopping the algorithm after a fixed number of iter-
ations. Here, large values of T correspond to strong regularization, small
values to a better fit on the training data.

The convex problem (7) can be dualized17 to obtain the following AdaBoost17 Stephen Boyd and Lieven Vanden-
berghe. Convex optimization. Cambridge
University Press, 2004

dual problem.

max
γ,λ

1
T

γ−
N

∑
n=1

λn log λn (10)

sb.t.
N

∑
n=1

λnynh(xn; ω) ≤ −γ, ∀ω ∈ Ω, (11)

λn ≥ 0, n = 1, . . . , N,
N

∑
n=1

λn = 1.

The two problems (7) and (10) form a primal-dual pair of convex optimization
problems and can be solved efficiently using standard convex optimization
solvers. AdaBoost uses the exponential loss function and we now discuss
alternatives to this choice. It will turn out that for different choices of loss
functions we will obtain slightly different dual problems (10) and we can
formulate a single algorithm for all of them.

An alternative to AdaBoost is the so called Linear Programming Boost-
ing (LPBoost) proposed by Demiriz et al.18 Compared to AdaBoost there are

18 Ayhan Demiriz, Kristin P. Bennett, and
John Shawe-Taylor. Linear programming
boosting via column generation. Journal
of Machine Learning, 46:225–254, 2002
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two notable differences. First, instead of minimizing the exponential loss as
in (7) the Hinge loss is minimized. Second, in LPBoost the margin between
samples is maximized explicitly.
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Figure 5: Different loss functions used
by AdaBoost and generalized linear pro-
gramming boosting.

We can generalize the Hinge loss to a p-norm Hinge loss, and thus obtain
a family of generalized LPBoost procedures. Given the p-norm Hinge loss
parameter p > 1, the loss is simply ξ

p
n, the p-exponentiated margin violation

of the instance. The loss is visualized for p = 1.5 and p = 2 in Figure 5.
Together with an additional regularization parameter D > 0 the generalized

LPBoost primal problem can be formulated as follows.

min
α,ρ,ξ

−ρ + D
N

∑
n=1

ξ
p
n (12)

sb.t. yn ∑
ω∈Ω

αωh(xn; ω) + ξn ≥ ρ : λn, n = 1, . . . , N, (13)

ξn ≥ 0, n = 1, . . . , N,

αω ≥ 0, ∀ω ∈ Ω,

∑
ω∈Ω

αω =
1
T

: γ,

where again λn and γ are Lagrange multipliers of the respective constraints.
As for AdaBoost we obtain the Lagrangean dual problem of (12).

max
γ,λ

1
T

γ− (q− 1)q−1

q(Dq)q−1

N

∑
n=1

λ
q
n (14)

sb.t.
N

∑
n=1

λnynh(xn; ω) ≤ −γ : αω, ∀ω ∈ Ω, (15)

λn ≥ 0, n = 1, . . . , N,
N

∑
n=1

λn = 1 : ρ,

where q = p
p−1 for p > 1 such that q is the dual norm of the p-norm in (12),

i.e., we have 1
p + 1

q = 1.
From the above primal and dual mathematical programs we see that prob-

lem (10) and (14) are the same, except for the objective function. If we separate
out the part of the dual objective which differs as

RAdaBoost(λ) =
N

∑
n=1

λn log λn

for (10), and likewise19 for (14) 19 The q-norm can be interpreted as Tsal-
lis entropy:

Constantino Tsallis. Possible gener-
alization of boltzmann-gibbs statistics.
Journal of Statistical Physics, 52(1–2):479–
487, 1988

RGLPBoost(λ; q, D) =
(q− 1)q−1

q(Dq)q−1

N

∑
n=1

λ
q
n,

then we can use a unified dual problem to solve both the original AdaBoost
optimization problem, as well as the generalized linear programming Boosting
problem.
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Additionally, we define the dual regularization function corresponding to a
variant20 of Logitboost as20 When the standard Logitboost primal

is dualized, the resulting dual prob-
lem is not of the form (16). However,
the distribution constraint (18) can be
added and a meaningful primal prob-
lem can be rederived. The primal Log-
itboost problem which yields a proper
distribution over λ in the dual is of the
form minα,ρ,z ∑N

n=1 log(1 + exp zn) − ρ,
subject to zn = ρ− yn ∑ω∈Ω αωh(xn; ω)
for n = 1, . . . , N, and ∑ω∈Ω αω = 1

T ,
and αω ≥ 0 for all ω ∈ Ω.

RLogitboost(λ) =
N

∑
n=1

(λn log λn + (1− λn) log(1− λn)).

A general totally corrective Boosting algorithm

From the above discussion we see that the structure of the dual problem
remains the same for the exponential loss, the p-norm Hinge loss and the
logistic loss. We can therefore obtain a single dual problem, which we call the
general totally corrective Boosting dual problem. It is given as follows.

max
γ,λ

1
T

γ− R(λ) (16)

sb.t.
N

∑
n=1

λnynh(xn; ω) ≤ −γ : αω, ∀ω ∈ Ω, (17)

λn ≥ 0, n = 1, . . . , N,
N

∑
n=1

λn = 1, (18)

where αω is the Lagrange multiplier corresponding to the constraint (17). For
the above three regularization functions RAdaBoost, RGLPBoost and RLogitboost,
any solution to the above program (16) satisfies the constraint ∑ω∈Ω αω = 1

T .
The overall totally corrective Boosting algorithm is shown in Algorithm 1.

Notice how it is different from classical Boosting algorithms.
First, unlike AdaBoost and Gentleboost it is totally corrective in that in each

iteration all weights αΩ′ are adjusted to optimality with respect to the subspace
indexed by Ω′.

Second, in each iteration an arbitrary large set of hypotheses — indexed by
Γ in Algorithm 1 — can be added to the problem, as long as each hypothesis
corresponds to a violated constraint in the master problem. This property
improves the rate of convergence considerably in practice if multiple good
weak learners can be provided. Whether it is possible to do so efficiently
depends on the structure of the weak hypothesis set H.

Third, we give a convergence criterion based on the constraint violation
of (17).2121 If the exact best hypothesis can be

found in each iteration, it is possible
to compute an alternative convergence
criterion from the duality gap.

For these reasons, in practice the TCBoost algorithm is preferable over
other Boosting algorithms in almost all situations. Empirically it makes
more efficient use of the weak learners, has orders of magnitude fewer outer
iterations, can exploit the ability to return multiple hypotheses and allows
different regularization functions.

The master problem (16) can be solved efficiently using interior-point meth-
ods22. The problem is well structured: for all the considered regularization22 Jorge Nocedal and Stephen J. Wright.

Numerical optimization. Springer, second
edition, 2006. ISBN 0-387-30303-0

functions, the Hessian of the Lagrangian is diagonal, all constraints are dense
and linear.
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Algorithm 1 TCBoost: general Totally Corrective Boosting
1: α = TCBoost(X, Y, R, T, ε)
2: Input:
3: (X, Y) = {(xn, yn)}n=1,...,N training set, (xn, yn) ∈ X × {−1, 1}
4: R : RN → R+ regularization function

(one of RAdaBoost, RGLPBoost or RLogitboost)
5: T > 0 regularization parameter
6: ε ≥ 0 convergence tolerance
7: Output:
8: α ∈ RΩ learned weight vector
9: Algorithm:

10: λ← 1
N 1 {Initialize: uniform distribution}

11: γ← −∞
12: (Ω′, α) = (∅, 0)
13: loop
14: Γ← {ω1, ω2, . . . , ωM} ⊂ Ω, where

∀m = 1, . . . , M : ∑N
n=1 λnynh(xn; ωm) + γ ≤ 0 {Subproblem}

15: maxviolation← maxω∈Γ(∑N
n=1 λnynh(xn; ω) + γ)

16: Ω′ ← Ω′ ∪ Γ {Enlarge restricted master problem}

17: (γ, λ, αΩ′)←


argmax

γ,λ

1
T γ− R(λ)

sb.t. ∑N
n=1 λnynh(xn; ω) ≤ −γ : αω, ∀ω ∈ Ω′

λn ≥ 0, n = 1, . . . , N,
∑N

n=1 λn = 1.
18: if maxviolation ≤ ε then
19: break {Converged to tolerance}
20: end if
21: end loop

Boosting Subproblem

During the course of Algorithm TCBoost, the following subproblem needs
to be solved.

Problem 1 (Boosting Subproblem) Let (X, Y) = {(xn, yn)}n=1,...,N with
(xn, yn) ∈ X × {−1, 1} be a given set of training samples, and λ ∈ RN be given,
satisfying ∑N

n=1 λn = 1, λn ≥ 0 for all n = 1, . . . , N. Given a family of functions
H : Ω → RX indexed by a set Ω, the Boosting subproblem is the problem of
solving for ω∗ such that

ω∗ = argmax
ω∈Ω

N

∑
n=1

λnynh(xn; ω). (19)

The subproblem is an optimization problem over variables defined by the set
of weak learners, maximizing the inner product between a given coefficient
vector and the weak learner response. Throughout this chapter we assume
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the Boosting subproblem can be solved exactly. There are methods which can
deal with the case when the subproblem can only be solved approximately,
see Meir and Rätsch23.23 Ron Meir and Gunnar Rätsch. An in-

troduction to boosting and leveraging.
In Advanced Lectures on Machine Learning,
pages 119–184. Springer, 2003

The Boosting subproblem will take an important part in what follows. We
will derive a family of feature spaces for structured data which share the
property that the subproblem (19) can be solved efficiently. Moreover, the
feature space is a natural one, and a large body of literature of data mining
algorithms working in the same feature space exists. Most of these algorithms
can be easily adapted to solve the Boosting subproblem.

Before we discuss the structured feature spaces, let us briefly reconcile on
the historical development of Boosting approaches.

History of Boosting

We briefly discuss the development of Boosting in chronological order. For a
detailed introduction covering recent trends see Meir and Rätsch24.

24 Ron Meir and Gunnar Rätsch. An in-
troduction to boosting and leveraging.
In Advanced Lectures on Machine Learning,
pages 119–184. Springer, 2003

The origins of Boosting are commonly attributed to an unpublished note25

25 Michael Kearns. Thoughts on hypoth-
esis boosting. (Unpublished), December
1988. URL http://www.cis.upenn.edu/

~mkearns/papers/boostnote.pdf

in which Kearns defined the hypothesis boosting problem: “[Does] an efficient
learning algorithm that outputs an hypothesis whose performance is only
slightly better than random guessing implies the existence of an efficient
learning algorithm that outputs a hypothesis of arbitrary accuracy?”.

Schapire26 provided an affirmative answer in the form of a polynomial-time

26 Robert E. Schapire. The strength of
weak learnability. Machine Learning, 5:
197–227, 1990

algorithm. The first practical Boosting algorithms appeared a few years later,
AdaBoost due to Freund and Schapire27, and Arcing due to Breiman28. Where

27 Yoav Freund and Robert E. Schapire.
A decision-theoretic generalization of
on-line learning and an application to
boosting. In EUROCOLT, 1994; Yoav
Freund and Robert E. Schapire. Experi-
ments with a new boosting algorithm. In
Proc. 13th International Conference on Ma-
chine Learning, pages 148–156. Morgan
Kaufmann, 1996; and Yoav Freund and
Robert E. Schapire. A decision-theoretic
generalization of on-line learning and an
application to boosting. Journal of Com-
puter and System Sciences, 55(1):119–139,
1997

28 Leo Breiman. Prediction games and
arcing algorithms. Technical report, De-
cember 1997. Technical Report 504, Uni-
versity of California, Berkeley

AdaBoost optimizes an exponential loss function, Arcing directly maximizes
the minimum margin.

The empirical success of predictors trained using AdaBoost and the
simplicity of implementation of the original AdaBoost algorithm led to a
flurry of research activity and empirical evidence in favor of the approach:
in the late 1990’s, Boosting and the then recently introduced kernel machines
invigorated the machine learning community.

The empirical success was partially explained by Friedman et al.29 and
29 Jerome Friedman, Trevor Hastie, and
Robert Tibshirani. Additive logistic re-
gression: A statistical view of boosting.
The Annals of Statistics, 28(2):337–374,
2000

Mason et al.30, who viewed Boosting as incremental fitting procedure of a

30 Llew Mason, Jonathan Baxter, Peter L.
Bartlett, and Marcus R. Frean. Boosting
algorithms as gradient descent. In NIPS,
pages 512–518. The MIT Press, 1999

linear model by means of coordinate-descent in the space of all weak learners.
The Boosting subproblem becomes a descent-coordinate identification problem.
In the unified Anyboost algorithm proposed by Mason, the learned function at
iteration t is updated according to

Ft+1 = Ft + αωt h(·; ωt+1),

where h(·; ωt+1) : X → R is the weak learner produced at iteration t and αωt+1

is its weight. The weight is optimized over by solving a one-dimensional line
search problem. The algorithm can be shown to have a strong convergence
guarantee31.

31 Tong Zhang. Sequential greedy ap-
proximation for certain convex optimiza-
tion problems. IEEE Transactions on In-
formation Theory, 49(3):682–691, 2003

http://www.cis.upenn.edu/~mkearns/papers/boostnote.pdf
http://www.cis.upenn.edu/~mkearns/papers/boostnote.pdf
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Although in the literature Boosting is most often viewed as procedure
that fits into the Anyboost framework, this view has a number of shortcom-
ings, i) a poor convergence rate, ii) inability to add more than one weak
learner per iteration, iii) repeated generation of the same weak learner, iv)
inability to incorporate additional constraints into the learning problem, v)
inefficient adjustment of weights of previously generated weak learners (not
totally-corrective), and vi) a fixed number of iterations and absence of a conver-
gence criterion. All the above points are overcome in the TCBoost algorithm
described earlier in this chapter.

The functional gradient view has been instrumental in generalizing Boost-
ing to regression32 and unsupervised learning tasks33. Recently, an interesting 32 Gunnar Rätsch, Ayhan Demiriz, and

Kristin P. Bennett. Sparse regression en-
sembles in infinite and finite hypothesis
spaces. Machine Learning, 48(1-3):189–
218, 2002

33 Gunnar Rätsch, Sebastian Mika, Bern-
hard Schölkopf, and Klaus-Robert
Müller. Constructing boosting algo-
rithms from SVMs: An application to
one-class classification. IEEE Trans. Pat-
tern Anal. Mach. Intell, 24(9):1184–1199,
2002

discussion around the different views on Boosting emerged from contradicting
empirical evidence34. This discussion provides further interesting research

34 David Mease and Abraham Wyner.
Evidence contrary to the statistical view
of boosting. Journal of Machine Learning
Research, 9:131–156, February 2008

directions on Boosting.

Conclusion

In this chapter we first discussed propositionalization and kernels as two
possible methods to learn with structured input data. We then discussed
Boosting as an efficient method to fit linear models in large feature spaces.
By designing a feature space that captured all relevant information about the
input domain we showed that it is possible to use Boosting to learn a classifier
for structured input data. In the next chapter we will introduce our general
approach to construct such a complete feature space.





Substructure Poset Framework

Structured data is abundant in the real-world. In order to perform predictions
on structured data, the learning method has to be able to access statistics
about the data that contain discriminative information. The set of accessible
statistics about the data constitutes the feature space.

This chapter introduces a novel framework called substructure poset frame-
work for building classification functions for structured input domains. The
basic modeling assumption made in the framework is that the input domain
has natural substructure relation “⊆”.

Figure 6: Example substructure relation
for chemical compounds: the functional
group on the left is present within the
larger molecules on the right side.

The substructure relation can capture natural inclusion properties within
a part-based representation of an object. For example, when classifying
documents, this could mean that given a sentence s and a document t the
expression s ⊆ t states whether s appears in t or not. For chemical compounds
the relation could be defined as to test whether certain functional groups are
present in the compound or not, as illustrated in Figure 6.

Based on this substructure assumption we derive a feature space and a set
of abstract algorithms for building linear classifiers in this feature space. In
later chapters we make these abstract algorithms concrete for structured input
domains such as sequences and labeled graphs.

Within our feature space we learn a classification function using Boosting by
combining a large number of weak classification functions in order to obtain a
single strong classifier.

We first define substructures and then examine properties of the associated
feature space. In the latter part of this chapter we discuss in detail how the
Boosting subproblem can be solved efficiently in our framework.

The main contribution of this chapter is the substructure poset framework.
A limited form of the framework was originally proposed by Kudo et al.35 35 Taku Kudo, Eisaku Maeda, and Yuji

Matsumoto. An application of boosting
to graph classification. In NIPS, 2004

and Saigo et al.36, our generalization adds a theoretical analysis as well as two

36 Hiroto Saigo, Sebastian Nowozin,
Tadashi Kadowaki, Taku Kudo, and Koji
Tsuda. gboost: A mathematical program-
ming approach to graph classification
and regression. Machine Learning, 75(1):
69–89, 2009

abstract constructions for efficient enumeration algorithms of which all the
previous works are special instances.

Substructures

We first define what we mean by structure in the input space. Although our
definition is flexible, it does not encompass all of structured input learning. In
particular, all cases included by our definition can naturally be used with the
Boosting learning method.
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Definition 1 (Substructure Poset) Given a set S of structures and a binary rela-
tion ⊆: S × S → {>,⊥}, the pair (S ,⊆) is called substructure poset (partially
ordered set) if it satisfies,

• there exists a unique least element ∅ ∈ S for which ∅ ⊆ s for any s ∈ S ,

• ⊆ is reflexive: ∀s ∈ S : s ⊆ s,

• ⊆ is antisymmetric: ∀s1, s2 ∈ S : (s1 ⊆ s2 ∧ s2 ⊆ s1)⇒ (s1 = s2),

• ⊆ is transitive: ∀s1, s2, s3 ∈ S : (s1 ⊆ s2 ∧ s2 ⊆ s3)⇒ (s1 ⊆ s3).

In other words, ⊆ is a partial order on S and (S ,⊆) is a partially ordered set
(poset) with a unique least element ∅ ∈ S .

In this thesis we will consider three families of substructure posets (S ,⊆),
where the elements in S correspond to sets of integers, labeled sequences and
labeled undirected graphs, respectively. For the case of sets, ⊆ corresponds
to the usual subset relation, but for sequences and graphs we will have to
explicitly define the relation.

We will now use the substructure relation ⊆ to define a covering relation.
The covering relation will later play an important role in devising algorithms
to enumerate the elements of S . It is defined as follows.

Definition 2 (Covering Relation @) Given a substructure poset (S ,⊆), define
@: S × S → {>,⊥}, such that for all s, t ∈ S we have s @ t iff

s ⊆ t and @ u ∈ (S \ {s, t}) : s ⊆ u, u ⊆ t.

Given the definition of substructure poset, we now derive an induced feature
space.

Definition 3 (Substructure-induced Feature) Given a substructure poset
(S ,⊆) and an element s ∈ S , define xs : S → {0, 1} as

xs(t) =

{
1 if t ⊆ s,
0 otherwise.

1 0 1 1 0s = {1, 3, 5}
xs({1})

xs({2})
xs({3})

xs({1, 3})
xs({1, 2, 3})

Figure 7: Example of substructure in-
duced features for the case of sets.

An example of the feature function associated to sets is shown in Figure 7.
The substructure induced feature space has some interesting properties that
we now examine in detail. We first show that the feature mapping preserves
all information about a structure.

Lemma 1 (Structure Identification) Given a substructure poset (S ,⊆), an un-
known element s ∈ S and its feature representation xs ∈ RS , we can identify s from
xs uniquely.

Proof. Consider the set T = {t|xs(t) = 1}. Because s ∈ S , we have xs(s) = 1
and hence s ∈ T. Let U = {u ∈ T|∀t ∈ T : t ⊆ u}. We show that U = {s}.
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First, existence, i.e., s ∈ U: we have s ∈ T and t ⊆ s for all t ∈ T, by definition.
Next, uniqueness: let u1, u2 ∈ U. By definition of U it holds that u1 ⊆ u2

and u2 ⊆ u1. By antisymmetry of ⊆ we have u1 = u2. Therefore U contains
exactly one element, the original structure s. �

In the next section we first discuss how the substructure-induced features
can be used to find frequent substructures in a database. In the section
following it we introduce substructure Boosting for identifying discriminative
substructures.

Frequent Substructure Mining

Given a set of observed structures, an important task is to identify substruc-
tures that occur frequently. We first define the frequency of a substructure, then
define the frequent substructure mining problem.

Definition 4 (Frequency of a Substructure) Given a substructure poset (S ,⊆),
a set of N instances X = {sn}n=1,...,N , and an element t ∈ S , the frequency of t
with respect to X is defined as

freq(t, X) =
N

∑
n=1

xsn(t).

We have the following simple but important lemma about frequencies.

Lemma 2 (Anti-monotonicity of Frequency) The frequency of a fixed element
t ∈ S with respect to X is a monotonically decreasing function under ⊆, that is

∀ t1, t2 ∈ S , t1 ⊆ t2 : freq(t1, X) ≥ freq(t2, X).

Proof. We have

freq(t1, X) =
N

∑
n=1

xsn(t1)

=
N

∑
n=1

I[t1 ⊆ xsn ]

=
N

∑
n=1

(I[t1 ⊆ xsn ] + I[t2 ⊆ xsn ]− I[t1 ⊆ xsn ∧ t2 ⊆ xsn ]︸ ︷︷ ︸
=0

)

=
N

∑
n=1

(I[t2 ⊆ xsn ] + I[t1 ⊆ xsn ]− I[t1 ⊆ xsn ∧ t2 ⊆ xsn ]︸ ︷︷ ︸
≥0

)

≥
N

∑
n=1

I[t2 ⊆ xsn ]

= freq(t2, X),

where I(pred) is 1 if the predicate is true and 0 otherwise.
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The definition of frequency of substructures with respect to a set of struc-
tures already allows us to define an interesting problem, the frequent substruc-
ture mining problem.

Problem 2 (Frequent Substructure Mining) Given a substructure poset (S ,⊆),
a set of N instances X = {sn}n=1,...,N with sn ∈ S , and a frequency threshold
σ ∈N, find the set F(σ, X) ⊆ S of all σ-frequent substructures, i.e., the largest set
such that ∀t ∈ F(σ, X) : freq(t, X) ≥ σ.

The frequent substructure mining problem is an important problem in the
data mining community because substructures which appear more frequently
in a dataset are often more interesting for the task at hand.37 Due to the37 The original frequent itemset mining

methods were invented to do basket anal-
ysis of customers. There, products that
are frequently bought together might re-
veal customer behavior.

importance of the frequent substructure mining problem, a large number of
methods for different structures such as sets, sequences, trees, graphs, etc.
have been proposed38.

38 Xifeng Yan and Jiawei Han. gspan:
Graph-based substructure pattern min-
ing. In ICDM, 2002; Jian Pei, Ji-
awei Han, Behzad Mortazavi-Asl, Jiany-
ong Wang, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei-Chun Hsu.
Mining sequential patterns by pattern-
growth: The prefixspan approach. IEEE
Trans. Knowl. Data Eng, 16(11):1424–1440,
2004; and Takeaki Uno, Masashi Kiy-
omi, and Hiroki Arimura. LCM ver.
2: Efficient mining algorithms for fre-
quent/closed/maximal itemsets. In
FIMI, volume 126 of CEUR Workshop Pro-
ceedings, 2004

Substructure Boosting

We now consider learning a function F : S → {−1, 1}. For applying the
substructure-induced feature space in the Boosting context, we need two
ingredients. First, we need to define the family ω ∈ Ω of weak learners
h(·; ω) : S → R. Second, we need to provide a means to solve the Boosting
subproblem ω∗ = argmaxω∈Ω ∑N

n=1 λnynh(xsn ; ω).
We define the family of substructure weak learners as follows.

Definition 5 (Substructure Boosting Weak Learner) We define Ω = S ×
{−1, 1} and ω = (t, d) ∈ Ω, with

h(·; ω) : S → {−1, 1}, h(s; (t, d)) =

{
d if xs(t) = 1,
−d otherwise.

The family is then given as H = {h(·; (t, d))|(t, d) ∈ Ω}.
This definition of weak learner is natural in the substructure-induced

feature space. Both the presence (xs(t) = 1) and absence (xs(t) = 0) of a
substructure t can cause a response into positive or negative direction.

Moreover, the weak learners can be linearly combined. The linear combina-
tion of a finite number of weak learners is sufficient to linearly separate any
given finite training set. This is formalized in the next theorem.

Theorem 1 (Capacity and Strict Linear Separability) Given a substructure
poset (S ,⊆), a set of N labeled instances X = {(sn, yn)}n=1,...,N with (sn, yn) ∈
S × {−1, 1} and uniqueness over labels, ∀sn1 , sn2 , n1, n2 ∈ {1, . . . , N}: sn1 =
sn2 ⇒ yn1 = yn2 , and given the set H of substructure weak learners, it is possible to
build a function F(·; α) : S → R such that there exists an ε > 0 with

∀n ∈ {1, . . . , N} : ynF(xsn ; α) ≥ ε.

That is, a hard margin of ε is achieved.
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Proof. We give an explicit construction for F. For a fixed constant ρ > 0, let
β ∈ RS be defined as

βsn = ynρ− ∑
sn′∈X\{sn},

sn′⊆sn

βsn′ ,

with βs = 0 for all s /∈ X, including β∅ = 0. The coefficients αω are derived
from β as

α(t,d) = |βsn |, t = sn, d = sign(βsn).

First, we show that for the above construction of β and the derived α we
have F(sn; α)yn = ρ for all sn ∈ X. Then we show that α(t,d) ≤ Nρ and thus
normalization of α leads to a margin of at least 1

N3 . From the definition of β

and the identity y2
n = 1 we have

βsn = ynρ− ∑
sn′∈X\{sn},

sn′⊆sn

βsn′

⇔ ρ =
(

∑
sn′∈X,
sn′⊆sn

βsn′
)

yn

⇔ ρ = F(sn; α)yn.

Now, we show that α(t,d) ≤ N2ρ. To see this, note that

α(sn ,d) = |βsn | = |ynρ− ∑
sn′∈X\{sn},

sn′⊆sn

βsn′ |

≤ |ynρ|+ | ∑
sn′∈X\{sn},

sn′⊆sn

βsn′ |

The last sum can alternatively be expressed as a sum of F(·; α) evaluations:

∑
sn′∈X\{sn},

sn′⊆sn

βsn′ = ∑
sn′∈X\{sn},

sn′@sn

F(sn′ ; α)− ∑
sp∈X\{sn},
sp⊆sn ,sp 6@sn

τsp F(sp; α),

where sp @ sq is the covering relation, i.e., sp @ sq iff sp 6= sq, and sp ⊆ sq

and ¬∃sk ∈ X \ {sp, sq} : sp ⊆ sk ⊆ sq. The coefficients τsp ≥ 0 are the
number of times the respective terms of β need to be removed, i.e., how often
they are duplicated by the first F-terms. Let k(sn) = ∑sn′∈X\{sn},

sn′@sn

1 denote

the number of F-terms under sn, i.e., the number of terms in the first part of
the decomposition. We have k(sn) ≤ N − 1 for all sn ∈ X. From the poset
ordering we further have

∑
sp∈X\{sn},

sp⊆sn

τsp ≤ (N − k(sn))k(sn) + k(sn) ≤ Nk(sn).
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Now, we can further bound

|βsn | ≤ ρ + | ∑
sn′∈X\{sn},

sn′@sn

F(sn′ ; α)− ∑
sp∈X\{sn},
sp⊆sn ,sp 6@sn

τsp F(sp; α)|

≤ ρ + k(sn)ρ + | ∑
sp∈X\{sn},
sp⊆sn ,sp 6@sn

τsp F(sp; α)|

≤ ρ + k(sn)ρ + Nk(sn)ρ

≤ N2ρ.

Therefore, we can normalize α′ = 1
‖α‖1

α and have

ynF(xn; α′) = yn

(
1
‖α‖1

F(xn; α)
)

=
1
‖α‖1

ynF(xn; α)︸ ︷︷ ︸
ρ

=
1

∑sn∈X |βsn |
ρ

≥ 1
∑sn∈X N2ρ

ρ

=
1

N3 .

This completes the proof: every sample has a strictly positive margin with
ε = 1

N3 . �
Note that the theorem does not state anything about the generalization

performance of the constructed classification function. It simply asserts that
the feature space has enough capacity to separate any given set of instances.

We now turn to the Boosting problem and how to solve it for our chosen
weak learners. The key result that allows efficient solution of the subproblem
is a monotonic upper bound on the Boosting subproblem objective due to
Morishita39 and later Kudo et al.40. We first state the bound, then describe39 Shinichi Morishita. Computing op-

timal hypotheses efficiently for boost-
ing. In Progress in Discovery Science,
volume 2281, pages 471–481. Springer,
2002. URL http://citeseer.ist.psu.

edu/492998.html
40 Taku Kudo, Eisaku Maeda, and Yuji
Matsumoto. An application of boosting
to graph classification. In NIPS, 2004

how to use it for solving the Boosting subproblem over H.

Theorem 2 (Bound on the Subproblem Objective (Morishita, Kudo)) Given
a substructure poset (S ,⊆), a training set X = {(sn, yn)}n=1,...,N , with (sn, yn) ∈
S × {−1, 1} and weight vector λ ∈ RN over the samples. Then

∀t ∈ S : ∀(q, d) ∈ Ω, q ⊆ t :
N

∑
n=1

λnynh(xn; (q, d)) ≤ µ(t; X, λ),

holds, where the upper bound µ : S → R is defined as

µ(t; X, λ) = max

2
N

∑
n=1,

yn=1,t⊆xn

λn −
N

∑
n=1

λnyn, 2
N

∑
n=1,

yn=−1,t⊆xn

λn +
N

∑
n=1

λnyn

 .

http://citeseer.ist.psu.edu/492998.html
http://citeseer.ist.psu.edu/492998.html
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Proof. We have for an arbitrary (t, d) ∈ Ω that

N

∑
n=1

λnynh(xn; (t, d)) =
N

∑
n=1

λnyn(2I(t ⊆ xn)− 1)d

=
N

∑
n=1

2dλnyn I(t ⊆ xn)−
N

∑
n=1

λnynd

= 2d
N

∑
n=1,
t⊆xn

λnyn −
N

∑
n=1

λnynd.

Fixing d = 1 gives

= 2
N

∑
n=1,
t⊆xn

λnyn −
N

∑
n=1

λnyn ≤ 2
N

∑
n=1,

yn=1,t⊆xn

λn −
N

∑
n=1

λnyn = µ1(t; X, λ).

Likewise, fixing d = −1 gives

= −2
N

∑
n=1,
t⊆xn

λnyn +
N

∑
n=1

λnyn ≤ 2
N

∑
n=1,

yn=−1,t⊆xn

λn +
N

∑
n=1

λnyn = µ−1(t; X, λ).

Both µ1(t; X, λ) and µ2(t; X, λ) are monotonically decreasing with respect
to the partial order in their first terms. µ1(t; X, λ) bounds the subproblem
objective for all weak learners of the form h(·; (q, 1)) with q ⊆ t, whereas
µ−1(t; X, λ) bounds the subproblem objective for all learners of the form
h(·; (q,−1)) with q ⊆ t. Thus, the overall bound is the maximum of the two,
and by combining µ(t; X, λ) = max{µ1(t; X, λ), µ−1(t; X, λ)} we obtain the
result. �

We can use the upper bound µ(t; X, λ) to find the most discriminative weak
learner if we can enumerate elements of S in such a way that we respect the
partial ordering relationship, starting from ∅. We discuss enumeration of
substructures in the next section.

Enumerating Substructures

For enumerating elements from S that satisfy the property we are interested
in such as being discriminative or frequent, we will use the reverse search
framework, a general construction principle for solving exhaustive enumer-
ation problems. Avis and Fukuda41 proposed the algorithm and applied it

41 David Avis and Komei Fukuda. Re-
verse search for enumeration. Discrete
Appl. Math., 65:21–46, 1996

successfully to a large variety of enumeration problems such as enumerating
all vertices of a polyhedron, all spanning trees of a graph and all subgraphs
of a graph. Because we are interested in enumerating elements from S , from
now on we assume that S is countable.

Definition 6 (Enumeration, Efficient Enumeration) Given a substructure poset
(S ,⊆), and a function g : S → {>,⊥} satisfying anti-monotonicity,

∀s, t ∈ S : (s ⊆ t ∧ g(t))⇒ g(s),
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the problem of listing all elements from the set

T(S ,⊆)(g) := {s ⊆ S : g(s)}

is the enumeration problem for g. An algorithm producing T(S ,⊆)(g) is an enu-
meration algorithm. It is said to be efficient if its runtime is bounded by a
polynomial in the output size, i.e., if there exists a p ∈N such that its runtime is in
O(|T(S ,⊆)(g)|p).

The idea of reverse search is to invert a reduction mapping f : S \ {∅} → S .
The reduction mapping reduces any element from S to a “simpler” one in
the neighborhood of the input element. By considering the inverted mapping
f−1 : S → 2S , an enumeration tree rooted in the ∅ element can be defined.
Traversing this tree from its root to its leaves enumerates all elements from S
exhaustively.

With an efficient enumeration scheme in place, we can solve interesting
problem such as the frequent substructure mining problem, as well as the
Boosting subproblem for substructure weak learners.

Reduction Mapping

Inverse Reduction Mapping

Efficient Enumeration

Substructure Poset

mapping
reduction
(B) define

implies

implies

allows

Total Order

(A) define total order

f : S \ {∅} → S

f−1 : S → 2S

(S ,⊆)

�: S × S → {>,⊥}

Figure 8: Dependencies for the substruc-
ture approach. The dashed arcs indi-
cate possible alternatives: (A) we can
either define a total order � which im-
plies a reduction mapping, or (B) define
the reduction mapping f directly. Once
the reduction mapping is defined, its in-
verse f−1 and an efficient enumeration
scheme follow.

In order to apply reverse search to substructure posets a suitable reduction
mapping needs to be defined. We take two alternative approaches to defining
the reduction mapping. This is illustrated in Figure 8. First, given a substruc-
ture poset (S ,⊆) we can choose to define the reduction mapping directly as
shown as option (B) in the figure. Alternatively, we can instead define a total
ordering relation on the set S which implies a canonical reduction mapping.

Depending on the kind of substructure it will be convenient to choose one
option over the other. Later we we will use the total order definition for sets
and graphs and the direct definition of the reduction mapping for labeled
sequences.

But before we explain the total order construction, let us formalize the
requirements to the reduction mapping in our context.

Definition 7 (Reduction Mapping) Given a substructure poset (S ,⊆), a map-
ping f : S \ {∅} → S is a reduction mapping if it satisfies

1. covering: ∀s ∈ S \ {∅} : f (s) @ s,

2. finiteness: ∀s ∈ S \ {∅} : ∃k ∈N, k > 0 : f k(s) = ∅.

Thus the reduction mapping is defined such that when it is applied repeatedly,
every element is eventually reduced to ∅.

Given f , the inverse of the reduction mapping is already well defined.
Explicitly, we define it as follows.

Definition 8 (Inverse Reduction Mapping) Given a substructure poset (S ,⊆)
and a reduction mapping f : S \ {∅} → S , the inverse reduction mapping
f−1 : S → 2S is

f−1(t) = {s ∈ S| f (s) = t}.
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We now describe how we can use a total order on S to construct f and
f−1 for substructure posets, and then describe the general reverse search
algorithm.

Constructing the Reduction Mapping from a Total Order

If we are given a total order �: S × S → {>,⊥}, we show how we can use
it to define a canonical reduction mapping. A total order on S satisfies the
following total order assumption.

Assumption 1 (Total Order Assumption) Given a substructure poset (S ,⊆) we
assume we are given a total order �: S × S → {>,⊥}. A total order satisfies for
all s, t, u ∈ S ,

1. s � t ∧ t � s⇒ s = t (antisymmetry),

2. s � t ∧ t � u⇒ s � u (transitivity),

3. s � t ∨ t � s holds (totality).

The total order assumption allows us to define a reduction mapping which
maps structures from S to successively “simpler” structures.

Definition 9 (Reduction Mapping derived from (S ,⊆) and �) Given a sub-
structure poset (S ,⊆) and a total order �: S × S → {>,⊥} satisfying the finite
preimage property

∀s ∈ S : |{t ∈ S : t ⊆ s}| < ∞,

we define a reduction mapping f : (S \ {∅})→ S as

f (s) = {t ∈ S : (t @ s and ∀u @ s : t � u)}.

The mapping f is well-defined. For the case s 6= ∅, the expression t @
s with ∀u @ s : t � u yields a unique element t ∈ S because � is a total order,
hence if there exists a t @ s, there exist a unique minimal one. But there always
exists a t @ s because ∅ ⊆ s for all s and ⊆ is a partial order. Furthermore,
assuming S is countable, by recursively applying f we eventually reach the ∅
element.

{1,2,3}

{1,3}

{2}

∅

{1,2}

{1}

{2,3}

{3}

Figure 9: Hasse diagram of the ⊆ re-
lation over the set S = 2Σ with Σ =
{1, 2, 3}.

We illustrate this construction for the case of sets. Assume a finite set of
base elements, Σ = {1, 2, 3}. Now set S = 2Σ to be the power set. The usual
subset relation ⊆ is a partial order and can be visualized in terms of a Hasse
diagram, as shown in Figure 9. We define a total order � as follows.

Example 1 (Total Order for Sets) Given a finite alphabet Σ with canonical total
order ≤: Σ× Σ → {>,⊥} and let S = 2Σ. Then we define �: S × S → {>,⊥}
to be a total order defined on sets as lexicographic order applied to the ordered
concatenation of elements from Σ. That is, for any s, t ∈ S , define s � t true if

(s1, s2, . . . , s|s|) � (t1, t2, . . . , t|t|),
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where (s1, s2, . . . , s|s|), and (t1, t2, . . . , t|t|), are the ordered elements of s and t,
respectively, and �: Σ∗ × Σ∗ → {>,⊥} is the lexicographic order defined as
(s1, s2, . . . , s|s|) � (t1, t2, . . . , t|t|) being true if

• ∃k, 1 ≤ k ≤ min{|s|, |t|} : ∀i < k : si = ti and sk ≤ tk, or

• |t| ≥ |s|, and ∀k, 1 ≤ k ≤ |s| : sk = tk.

For example, the structures shown in Figure 9 would be ordered according to
∅ � {1} � {1, 2} � {1, 2, 3} � {1, 3} � {2} � {2, 3} � {3}.

We now have all ingredients in order to apply the above definition to derive
a reduction mapping.

{1,2,3}

{1,3}

{2}

∅

{1,2}

{1}

{2,3}

{3}

Figure 10: Reduction mapping f : (S \
{∅}) → S induced by (S ,⊆) and the
total order �.

The reduction mapping is visualized in Figure 10. Each element s ∈ 2U

except for the empty set is mapped to a unique element t such that t @ s. As
discussed above this induces a tree rooted in ∅.

The reduction mapping f : (S \ {∅}) → S reduces an element such
that it eventually becomes the ∅ element. The inverse reduction mapping
f−1 : S → S expands an element t ∈ S to the set of possible extensions t @ s.

Inverse Reduction Mapping Derived From a Total Order

The inversion of the reduction mapping derived from the total order follows
from the total order itself. Because it is an important ingredient in the reverse
search scheme when using the total order construction, we define it explicitly.

Lemma 3 (Inverse Reduction Mapping given a Total Order) Given a substruc-
ture poset (S ,⊆) and a total order �: S × S → {>,⊥}, the inverse reduction
mapping

f−1(t) = {s ∈ S| f (s) = t}
can equivalently be defined as

f−1(t) = {s ∈ S|t @ s and ∀u @ s : t � u}.

Proof. From its definition the inverse of the reduction mapping needs to satisfy
the following two conditions.

1. ∀t ∈ S : ∀s ∈ f−1(t) : t = f (s), and

2. ∀s ∈ S \ {∅} : t = f (s)⇒ s ∈ f−1(t).

The above mapping satisfies both properties. To see the first point, fix t ∈ S
arbitrarily, choose any s ∈ f−1(t). We have for s that t @ s and ∀u @ s : t � u,
and therefore by definition t = f (s). To see the second point, choose s ∈
S \ {∅} and let t = f (s). Then we have again t @ s and ∀u @ s : t � u, so
s ∈ f−1(t). �

{1,2,3}

{1,3}

{2}

∅

{1,2}

{1}

{2,3}

{3}

Figure 11: Illustration of the inverse re-
duction mapping f−1 : S → 2S . Each el-
ement s ∈ S is mapped to a set of larger
elements satisfying s @ t. The inverse
mapping induces an enumeration tree
rooted in ∅. The elements within one
gray box are the output of the inverse
reduction mapping applied to their par-
ent.

The inverse mapping is visualized in Figure 11. It corresponds to reversing
the direction of all arcs shown in Figure 10.
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Algorithm 2 Enumerate All Property-Satisfying Elements in S
1: ReverseSearch((S ,⊆), f−1, s0, g)
2: Input:
3: (S ,⊆), substructure poset
4: f−1 : S → 2S , inverse reduction mapping
5: s0 ∈ S , root element for which g(s0) = >
6: g : S → {>,⊥}, property, anti-monotone with respect to ⊆
7: Output:
8: T ⊆ 2S , the set of all substructures s ∈ S for which g(s) holds

9: Algorithm:
10: output s0

11: for t ∈ {s ∈ f−1(s0)|g(s) = >} do
12: ReverseSearch((S ,⊆), f−1, t, g)
13: end for
14: return

Reverse Search Algorithm

The general reverse search algorithm is shown in Algorithm 2. When invoked
as ReverseSearch((S ,⊆), f−1, ∅, g), the algorithm enumerates all elements
from S that satisfy the given predicate g. To see the correctness of the
algorithm, note that recursing along f−1 generates each element in S exactly
once. Pruning subtrees at s when g(s) = ⊥ does not skip over elements for
which g would be true, because g is anti-monotone with respect to ⊆.

We now show how Algorithm 2 can be used to solve the frequent substruc-
ture mining problem. We also show how to find discriminative substructures
that solve the Boosting subproblem.

First, the Frequent Substructure Mining Problem (Problem 2). Given a
substructure poset (S ,⊆) and a set of structures X = {sn}n=1,...,N with sn ∈ S
we define g as

gfsm(s; X, σ) = (freq(s, X) ≥ σ). (20)

We see that gfsm is anti-monotone with respect to ⊆. Running Algorithm 2

as ReverseSearch((S ,⊆), f−1, ∅, gfsm) will thus enumerate exactly all σ-
frequent substructures.

Second, the discriminative substructure mining problem (Problem 1 for the
Substructure Boosting Weak Learner). Given a substructure poset (S ,⊆) and
a labeled training set X = {(sn, yn)}n=1,...,N with (sn, yn) ∈ S × {−1, 1}, and
given a weight vector λ ∈ RN , we define g as

gdsm(s; X, λ) = (µ(s; X, λ) ≥ σ(t)), (21)

where σ(t) is a monotonically increasing minimum required gain. For exam-
ple, if during the course of the algorithm a set of substructures {q1, q2, . . . , qk}
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has been produced as output, σ(t) could be defined as

σ(t) = max
i=1,...,k

{
N

∑
n=1

λnynh(xqi ; ωi)

}
.

In this case, the algorithm would prune subtrees at s for which the bound
µ(s; X, λ) states that it is impossible to exceed the gain of the best found
substructure so far. The algorithm is guaranteed to output the substructure
with the best gain.

In the next two chapters we will use the above algorithms in a concrete
fashion for classifying graphs and sequences. Using the above bound and
enumeration method during Boosting we can efficiently find discriminative
weak learners.

Online Generation of f−1, An Example

In the reverse search algorithm, the set {s ∈ f−1(t)|g(s) = >} of enlarged
substructures needs to be generated. In principle this can be achieved by
first generating f−1(t) and then filtering out all elements which do not satisfy
g(s) = >. However, when the set f−1(t) is large and the condition encoded
in g is stringent this can be inefficient. It is therefore better to directly generate
the filtered set.

{1,3}{1,2}

{1}

f−1(t) :

t :

Figure 12: Extension of t = {1} to
f−1(t) = {{1, 2}, {1, 3}}.

Direct generation requires an algorithm which can use the structure present
in g. We show how this can be achieved for the example of sets. Consider the
situation shown in Figure 12. We have

Σ = {1, 2, 3},
X = ({1}, {1, 2}, {1, 2, 3}, {3}),

t = {1},
f−1(t) = {{1, 2}, {1, 3}},

and let

g(s) = (freq(s; X) ≥ 2).

Thus, the set of interest is

{s ∈ f−1(t)|g(s) = >} = {{1, 2}, {1, 3}}.
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To generate f−1(t) from the definition and the total order �, we have

f−1(t) = {s ∈ S|t @ s and ∀u @ s : t � u}
= {s ∈ S|t @ s ∧ ∀u @ s :

[(∃k, 0 ≤ k ≤ |t| : ∀i < k : ti = ui ∧ tk ≤ uk)

∨ (|u| ≥ |t| ∧ ∀k, 0 ≤ k ≤ |t| : tk = uk)]}
= {s ∈ S|t @ s ∧ ∀u @ s :

∃k, 0 ≤ k ≤ |t| : ∀i < k : ti = ui ∧ tk ≤ uk}
= {t ∪ {e}|e ∈ (Σ \ t) ∧ ∀e′ ∈ (t ∪ {e}) : e′ ≤ e}
= {t ∪ {e}|e ∈ Σ and e > max

j∈t
j},

such that f−1(t) simply enlarges t by one element from the ground set Σ. The
additional element must be strictly larger than the largest element already in
t. In the figure, the elements 2 ∈ Σ and 3 ∈ Σ satisfy this. The condition g can
now be incorporated into the inverse reduction mapping as follows.

{s ∈ f−1(t)|g(s) = >}
= {s ∈ {t ∪ {e}|e ∈ Σ and e > max

j∈t
j}|g(s) = >}

= {t ∪ {e}|e ∈ Σ and e > max
j∈t

and freq(t ∪ {e}; X) ≥ 2}
= {t ∪ {e}|e ∈ Σ and e > max

j∈t
j and freq(t; X) ≥ 2 and

∑
n=1,...,N,

t⊆sn

I(e ∈ sn) ≥ 2}

= {t ∪ {e}|e ∈ Σ and e > max
j∈t

j and ∑
n=1,...,N,

t⊆sn

I(e ∈ sn) ≥ 2}

Now it is clear how to enlarge the structure t to produce the subset of f−1(t)
which satisfies g. We have to consider the structures in X for which t is already
frequent and for this set find all elements in Σ which are both larger than
the highest value in t and frequent. Depending on the data structure used,
it is possible to obtain only the frequent elements. This is not possible in the
original filter approach, where all sets in f−1(t) need to be first generated
explicitly.

Further Improvements

Although we focus here on the general framework for substructure-based
classification, we want to note that further improvements on Algorithm 2 are
possible. First, note that for the discriminative substructure mining problem
we are using a surrogate bound on the gain of a substructure, the true quantity
of interest being the gain. In case we explore parts of the enumeration tree
where there is no discriminative substructure we can only prune in case the
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bound is tight enough. Ideally, we would know the tightest possible bound,
the true gain-maximizing substructure in the respective substree.

This observation allows the first improvement: we first use an inexact
method such as a greedy depth-first traversal or a beam search on the enumer-
ation tree in order to obtain a good lower bound σ(0) on the achievable gain.
Thereafter an exact method can be run using the greedy solution to provide a
global lower bound on the gain.

The second idea to improve the algorithm is related: the traversal order can
be modified to reach a high-gain discriminative substructure early. This is
in contrast to the frequent substructure mining problem: there, the traversal
order is not important and all frequent substructures are of interest. Because
all frequent substructures are traversed exactly once we cannot gain anything
by choosing a different enumeration order.

This is different for discriminative mining, where it helps to discover
a high-gain substructure early in the enumeration as this allows efficient
pruning. This can be achieved by extending the above algorithm from simple
enumeration to keeping and updating a search frontier in promising directions.
In Nowozin et al.42 we successfully applied this idea by using A∗-enumeration42 Sebastian Nowozin, Gökhan Bakır,

and Koji Tsuda. Discriminative subse-
quence mining for action classification.
In ICCV 2007: Proceedings of the 2007
IEEE Computer Society International Con-
ference on Computer Vision, 2007

and iterative deepening A∗ enumeration43. Using a search frontier allows

43 Nils J. Nilsson. Artificial Intelligence:
A New Synthesis. Morgan Kaufmann
Publishers, San Francisco, 1998. ISBN
1558604677

one to extend different parts of the enumeration tree in parallel and once a
high-gain substructure is observed, a large part of the current search frontier
can be pruned. The scheme works well in practice because often the most
discriminative substructures turn out to be rather small. The search frontier
scheme typically searches through the small set first and thus obtains a good
bound early.

Conclusion

In this chapter we introduced substructures and defined an associated feature
space in which each possible substructure is represented by a binary feature.
The problem of applying Boosting in this feature space was then discussed and
a general algorithmic framework for identifying discriminative substructures
has been proposed.

In the next two chapters we apply the framework to two computer vision
tasks, class-level object recognition in still images and action recognition in
videos. The applications use graphs and sequences as substructures and the
concepts of the current chapter are further illustrated by them.



Graph-based Class-level
Object Recognition

The more we look for patterns, the more
likely we are to find them, particularly when
we don’t begin with a particular question.

Peter Austin

The substructure poset framework introduced in the previous chapter
allows feature induction in large, structured feature spaces. This chapter is
about applying the framework to images in order to decide the presence or
absence of objects of a particular class.

The key contributions of this chapter is a principled way of incorporating
higher order geometric relations between local parts into class-level object
recognition models. This is achieved by means of the substructure poset
framework. Furthermore, the proposed approach is assessed experimentally.

Introduction

Images of natural scenes contain a lot of structure. For one, there is the
fundamental structure contained in the statistics of the signal, such as the
characteristic distribution of image gradients in natural images. But also,
on the high semantic level there is a structure inherent in objects, textures,
geometry, context, and scene composition. This high-level structure is not a
result of the image formation process, but instead exists in the real world.

Class-level object recognition is the problem of detecting the existence and
possibly additional spatial information of objects in images, where the objects
to be recognized are not particular instances (“my bicycle”) but are members
of a class (“all bicycles”). Whereas the problem of recognizing particular
instances is largely solved in computer vision, recognizing objects on a class
level remains a difficult problem.

The larger part of the difficulty of class-level object recognition is due
to the variability of objects in the real world. My bicycle might look quite
different from another bicycle, and no dog looks like another. What is shared
by all instances of an object class is often less the visual appearance than ab-
stract attributes describing functional purpose, compositionality and geometry,
physical properties or generative history. For example, a bicycle is defined in
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WordNet44 as “a wheeled vehicle that has two wheels and is moved by foot44 http://wordnet.princeton.edu/

pedals” and a dog is defined in WordNet as “a member of the genus Canis
(probably descended from the common wolf) that has been domesticated by
man since prehistoric times; occurs in many breeds”. Both definitions do not
describe visual properties of the object but accurately describe the members
in these object classes. Therefore, for class-level object recognition the visual
properties observed in images can merely serve as a proxy to the true semantic
properties that define an object class.

Moreover, even for visually very similar objects there are differences in
visual appearance caused by changes in lighting, color, texture, size and shape
of objects and the scene.

Models for object recognition face these difficulties. It is fair to say
that while no best-practice model has emerged the typical model consists
of a fixed part incorporating domain knowledge and a machine learning
part adapting to different instances of the problem, such as different object
classes. For example, in the fixed part many models use image features which
incorporate knowledge about properties that remain invariant under various
lighting conditions. Another model part that often remains fixed is the model
structure, representing dependence assumptions and simplifications between
parts of the model. The machine learning part is often a parametrized function
representing either a distribution or classification function.

A consistent trend in models for class-level object recognition is the use
of object parts, reusable and transferable descriptions of parts of objects.
Similar parts appearing in multiple objects can be jointly learned and flexibly
combined with other parts to yield an overall object description. We will
discuss the advantages of part-based models in detail in a later section, but in
essence the use of part-based representations allows expressive but compact
models.

In the machine learning part of the model the modeling decisions made
determine a tradeoff between the feasibility of approximation, estimation and
optimization of the resulting model45. Approximation refers to the expres-45 Léon Bottou and Olivier Bousquet.

The tradeoffs of large scale learning. In
NIPS, 2007

siveness of the model, the ability to accurately represent the problem data.
Estimation is the ability to statistically estimate the parameters of the model
from a finite amount of observed training data. Finally, optimization is the
tractability of the resulting model: even if its possible to estimate the correct
model parameters, is it computationally tractable?

To give an example, a simple linear classification function on a small
set of simple image features will not yield a very expressive model but its
parameters can be estimated from few training instances and the optimization
is very efficient even for large data sets. In contrast, a deep convolutional
neural network covers a much larger set of classification functions but its
many parameters and model symmetry make it difficult to assess estimation
properties and the non-convexity of its training objective make optimization

http://wordnet.princeton.edu/
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difficult.

Outline. In the remaining part of this chapter we first motivate part-based
models for object recognition and then give an extensive literature survey.
Then we introduce graph-based object recognition using the substructure
poset framework of the previous chapter and describe in detail the algorithms
necessary to perform learning in a feature space defined by subgraph features.
The remaining part of the chapter is an extensive experimental evaluation on
the PASCAL VOC 2008 data set and describes how we transform images into
graph structures. We end the chapter with conclusions.

Related Work: Part-based Object Recognition

The idea that natural everyday objects can be visually decomposed into
meaningful parts is as old as the attempts to understand the human vision
system. Biederman46 gives a summary of the early psychology literature 46 Irving Biederman. Recognition by

components - a theory of human im-
age understanding. Psychological Review,
94(2):115–147, 1987

related to this idea.
Extensive experiments by Biederman and others suggest that object recogni-

tion in humans uses a mechanism that, i) does not require absolute or precise
quantitative information, ii) is invariant with respect to changes in orientation,
and iii) continues to function when the object is partially occluded or is a new
type within the object class, resembling other previously seen instances only
partially.

As of today humans are still vastly outperforming computers on almost
all visual recognition tasks. Therefore, besides the biological motivation for
understanding and modeling the human visual system, understanding the
human visual system might also shed light on fundamental principles that
could aid in designing computer vision systems.

The above three requirements motivate the design of statistical, part-
based models for recognizing objects in images as follows. First, the model
should be statistical because no component of the model is free from noise
and ambiguities; the input image is noisy, statistics in the form of image
features are noisy, and intermediate states or final decisions of the model are
never completely certain. Detecting objects, that is, reasoning about the input
data in order to make a decision about the presence of an object requires an
inference which takes into account uncertainty at all levels, the very definition
of a statistical model.

Second, the model should be part-based. While it is difficult to find a
satisfying definition of “part” we understand as part-based model a system
which explicitly or implicitly can take into accounts groups of image statistics
in a non-additive manner, i.e., the influence of a group of image statistics
depends non-linearly on the individual statistics within the group. Note that
under this broad definition essentially all successful general object recognition
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systems are part-based, as they include nonlinearities at the feature extraction
or classification stage.

The number of proposed statistical, part-based models in the computer
vision literature is large. In the remainder of this section we provide an
overview of the most important models, but first we digress briefly to discuss
the issues of label granularity and training of these models.

Label granularity refers to the level of detail of the available annotation
for the training data. Some training procedures for part-based models require
very careful annotation of a number of pre-specified parts of the objects shown
in the training images. For example, it must be prespecified that “a car in
sideview has two visible wheels” and the “wheel”-parts must be labeled by
the user. Other models require weaker labels only, such as a bounding box
around the object instances shown in the images. The weakest annotation
contains only the information that an object instance is shown somewhere in
the image. The weaker the annotation, the more is demanded from the model.
In essence, training the model might mean to simultaneously recognize the
location of the object, a set of suitable parts and their appearance for all images
in the training set. In the machine learning literature the problem of weak
labels has partially been discussed as the multiple instance learning problem.

The training procedure is essential in judging a model because an ex-
pressive model that cannot be trained in a tractable way is essentially useless.
This does not mean that efficiency should be the primary design goal but
that a model that does not scale to today’s datasets will impose unnecessary
limits on what it can learn in practice, even if it could do so in principle. For
this reason, many approaches deal with tractable approximations to a more
desirable model that is intractable.

Literature Survey

We survey and categorize the proposed models for part-based object recog-
nition. Table 1 summarizes the surveyed approaches into a set of properties,
defined as follows.

• explicit parts: the ability of the model to represent and identify parts
explicitly with a single portion of the image,

• multiple objects: the ability of the model to naturally handle multiple
objects of a given class within one image, without referring to sliding
window wrapper methods,

• prediction output: the final prediction output of the model, i.e., whether
only the presence of an object is indicated or a precise part localization is
delivered,
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• parts selected by learning: whether the identity of parts is established
during the training phase,

• scale invariance: whether the approach can handle multi scale detections
without referring to explicit scaling of the image,

• variable number of parts: whether the number of parts is variable during
training and detection,

• label granularity: what level of details is required for the labels during
training,

• geometry between parts: whether the approach incorporates geometry
between parts,

• pairwise relations: whether the approach encodes pairwise part-to-part
geometry information,

• higher-order-relations: whether the approach can encode higher-than-
pairwise information, for example a constellation of triples of parts,

• comparison with baseline: whether the publication compares the approach
against a baseline not within the model family.

This classification scheme is not exhaustive but covers the most relevant
aspects of the compared models.

Literature Survey: Constellation Models

Burl, Weber and Perona47 propose a joint probabilistic model integrating local 47 Michael C. Burl, Markus Weber, and
Pietro Perona. A probabilistic approach
to object recognition using local pho-
tometry and global geometry. In ECCV,
pages 628–641, 1998

part similarity with a global shape prior. The local appearance is modeled by
means of matched filters obtained from manual part-level annotations. The
shape prior is a Gaussian fitted to shape statistics obtained from an annotated
training set. The proposed joint criterion for recognition turns out to be hard
to optimize so the authors propose a set of heuristics. Experimental evaluation
is performend on the task of recognizing faces by means of facial parts.

Weber, Welling and Perona48 extend the model of Burl et al. by addressing 48 Markus Weber, Max Welling, and
Pietro Perona. Unsupervised learning of
models for recognition. In ECCV, 2000

the problem of weak annotation in a thorough probabilistic model. Given a
set of images known to contain either objects of a single unknown class or
background only, Weber proposes a model that can simultaneously learn the
object class as a combination of parts and their constellation. The unobserved
states of object presence and part selection are treated by means of expectation
maximization (EM), providing a local maximum of the likelihood of the
observed states, the image and its parts. Parts are modeled sparsely at interest
points. Each part is represented as normalized correlation filter responses
of a small set of filters produced by clustering training data patches. Shape
is modeled by assigning each part a 2D Gaussian distribution encoding the
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relative coordinates with respect to a reference part. Thus, although robust to
small changes, the shape representation does not encode pairwise relations.

Li, Fergus and Perona49 use a similar approach as Weber et al., but focus on49 Fei-Fei Li, Robert Fergus, and Pietro
Perona. A bayesian approach to unsu-
pervised one-shot learning of object cat-
egories. In ICCV, 2003

the problem of learning an object class when only very few labeled training
instances are available. To this end, Li et al. propose a generative graphical
model where object classes are represented by parametric probabilistic models
and a shared prior is represented as a distribution on the parameters of the
class models. The assumption that a joint prior can allow generalization
across object classes is demonstrated experimentally, however, as with the
constellation model of Weber et al., the model is limited to a small number
of local features (≈ 40) and an even smaller number of parts (≈ 5). The
work is particularly interesting for its principled use of Bayesian techniques to
faithfully represent uncertainty arising from the limited training data.

Fergus, Perona and Zisserman50 extend the constellation model of Burl et al.50 Robert Fergus, Pietro Perona, and An-
drew Zisserman. Object class recog-
nition by unsupervised scale-invariant
learning. In CVPR, pages 264–271, 2003

and Weber et al. in two ways. First, the appearance of a part is modeled as a
multivariate Gaussian distribution in an appearance space created by the first
ten principal components of small image patches. The distribution parameters
are hidden and learned using expectation maximization. Second, Fergus et
al. achieve scale-invariance learning by detecting candidate parts using a
scale-invariant interest point detector, extracting a fixed small number (≈ 30)
of interesting image regions. The model is shown to work well experimentally
on six object classes, including non-rigid classes.

Felzenszwalb and Huttenlocher51 directly extend the pictorial structures51 Pedro F. Felzenszwalb and Daniel P.
Huttenlocher. Pictorial structures for ob-
ject recognition. International Journal of
Computer Vision, 61(1):55–79, 2005

model of Fischler and Elschlager in three important directions. First, the
model of Fischler is made statistical by representing a distribution of all
possible part configurations, allowing analysis of the posterior of all possible
part configurations. Felzenszwalb and Huttenlocher carry out this analysis
by means of sampling in order to find multiple likely configurations as well
as finding multiple objects within one image. Second, facilitated by the
statistical view, Felzenszwalb shows that during parameter estimation by
means of maximum likelihood the parts model decouple and can be learned
separately. Moreover, when limited to tree structured part distributions,
the tree structure can be learned as well using a modified Chow-Liu tree
procedure52. Third, the authors identify an important class of restricted52 C. K. Chow and C. N. Liu. Approxi-

mating discrete probability distributions
with dependence trees. IEEE Transac-
tions on Information Theory, 14:462–467,
1968

deformation potentials for which the MAP estimation problem can be solved
in O(nh) time complexity for n parts and h possible individual part positions.
The original general algorithm of Fischler and Elschlager had a complexity of
O(nh2). The restricted potentials are of the form ψ(x, y) = (x− y)>D(x− y),
where D � 0 is diagonal and x, y denote the vectorial coordinates of two parts
sharing an edge. Felzenszwalb and Huttenlocher evaluate their system on
face detection and human pose estimation tasks, demonstrating the models’
robustness to noise. Moreover, the authors demonstrate that the model learns
intuitively plausible part layouts.

Crandall, Felzenszwalb and Huttenlocher53 propose a flexible family of

53 David J. Crandall, Pedro F. Felzen-
szwalb, and Daniel P. Huttenlocher. Spa-
tial priors for part-based recognition us-
ing statistical models. In CVPR, 2005
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constellation models called k-fans which have a graphical structure as shown
in Figure 13.
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1-fan 2-fan 3-fan

Figure 13: Crandall’s k-fan models of
increasing complexity. Conditioned on
the k reference parts (black), the remain-
ing parts (gray) become independent of
each other. (Reproduced from Crandall,
Felzenszwalb and Huttenlocher’s origi-
nal paper.)

A small number of reference parts are fully connected to each other, whereas
the remaining parts have their position determined relative to the reference
parts only. Thus, denoting by li the location of the i’th part and by lR the
set of locations of all reference parts, where R is the set of reference parts,
the joint probability p(L) of all parts L factorizes according to p(L) = p(lR) ·
∏i∈V\R p(li|lR). This special structure allows efficient inference for the case
when K is small. For an n-part model with k ≤ n reference parts and h possible
part locations in the image, Crandall et al. show how exact inference can be
performed in O(nhk+1) time complexity. Experimentally, the higher order
spatial constraints enforced by the model are shown to improve detection
performance on aeroplane and bicycle objects, using simple edge-map features.

Fischler and Elschlager54, almost forty years ago considered in a very gen- 54 Martin A. Fischler and Robert A.
Elschlager. The representation and
matching of pictorial structures. IEEE
Trans. Computer, 22(1):67–92, January
1973

eral setting the problem of recognizing objects in images, where a deformable
parts model and a scoring function define the quality of a located object.

Figure 14: Fischler and Elschlager’s
spring model (1973) for object recogni-
tion. Each part (eye, mouth, etc.) has
its own appearance model. A deforma-
tion model consisting of pairwise defor-
mation potentials (springs) require the
parts to have a consistent layout within
the scene. (Figure reproduced from Fis-
chler and Elschlager’s original paper.)

The scoring function considers both the matching of local appearance as
well as overall consistent geometry. The optimal configuration of parts which
minimizes the scoring function for a given image is found by means of a dy-
namic programming procedure, much alike the max-product message passing
procedure for undirected Markov networks. Fischler and Elschlager differenti-
ate between a tree-structured graph of springs and general graphs containing
cycles. For the latter, they propose a linear-time complexity heuristic, itera-
tively fixing one variable at a time. To appreciate this influential paper further,
some additional remarks are necessary.

First, the direct minimization of a scoring function in order to find a good
configuration, now a very popular technique in computer vision named energy
minimization, is broadly motivated and possible criticism anticipated when
Fischler states,

“. . . without a noise and distortion model, there is no theoretically valid way to
derive or predict the error performance of a selected procedure prior to its actual
application.”

And indeed up to today it appears difficult to explicitly state a noise and
distortion model suitable to high-level vision tasks such as object recognition.
Fischler and Elschlager realize that it is not necessary to do so explicitly.

Second, Fischler and Elschlager’s model is a precursor to the advanced
Markov random field (MRF) models which now permeate many subfields of
computer vision research. In fact, their model is exactly a MRF with pairwise
potentials coming from the deformation costs. Their inference procedure is
exactly max-product message-passing for tree-structured models.

Third, they provide a list of five criteria an object representation for the task
of object recognition should possess: completeness, compactness, transforma-
bility, incremental changeability, and simplicity of translation. By completeness,
the representation should allow the solution of all the tasks of interest. Com-
pactness requires the representation to be non-redundant. Transformability
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demands easy and efficient manipulation of the information encoded in the
representation. By incremental changeability Fischler and Elschlager require
small changes in the world to translate into small changes in the represen-
tation. By the last property, accuracy and simplicity of translation, it should
be simple to derive an accurate representation of a real world object. Start-
ing from these requirements, the authors criticize linguistic and symbolic
approaches as unable to accurately represent the real world in the context
of object recognition problems. This is a remarkable early comment as the
majority of the symbolic line of computer vision work happened afterwards
in the 70’s and early 80’s.

In summary, the paper of Fischler and Elschlager was ahead of its time and
influenced all later part-based recognition systems.

Literature Survey: CRF-based Approaches

Quattoni, Collins and Darrell55 use discriminative models in the form of55 Ariadna Quattoni, Michael Collins,
and Trevor Darrell. Conditional random
fields for object recognition. In NIPS,
2004

conditional random fields to learn to recognize objects from a given training
set. The objects are decomposed into parts, which are modeled as patches
around interest points. Each part is assigned a hidden variable and feature
vector. Interactions between parts are reduced to tree-structure form by means
of a minimum spanning tree approximation on top of the image coordinates
of pairwise parts, the assumption being that parts close to each other have
a stronger dependency. All model parameters are estimated by maximizing
the marginal likelihood of the observed binary label, the presence of an
object. Thus, the hidden variables are marginalized out. This operation can
be performed efficiently because the model is tree-structured. However, the
objective function is no longer concave thus only a local maximum is obtained.
The proposed model is evaluated on the task of detecting cars.

Winn and Shotton56 propose the “layout CRF” model to jointly detect56 John M. Winn and Jamie Shotton. The
layout consistent random field for rec-
ognizing and segmenting partially oc-
cluded objects. In CVPR, pages 37–44,
2006

and segment partially occluded objects from a known object class. The basic
idea of the layout CRF model is to enforce label consistency among a dense
set of parts which cover the object instance in a grid-like order. Each part
has its own discrete label and thus simple pairwise orientation preferences
between parts can be modeled as pairwise potential functions in a conditional
random field model. The dense positioning of parts over the object allows to
distinguish the border of the object from the interior. Therefore it is possible
to perform inference of occlusion patterns such as object-object occlusions and
object-background occlusions. The model is trained by cross validation on
the training set. Experimentally, for cars and faces, the model is shown to
accurately detect instances despite severe occlusions. Additionally it labels
the parts consistently with the training layout.

Hoiem, Rother and Winn57 extend the layout CRF proposed by Winn and57 Derek Hoiem, Carsten Rother, and
John M. Winn. 3D layoutCRF for multi-
view object class recognition and seg-
mentation. In CVPR, 2007

Shotton to handle multiple views by means of a rough 3D model of the object
class. Additionally, Hoiem explicitly models instance-level properties such
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as the color distribution of an object instance, leading to high-order potential
functions. Both the used image features and the joint inference procedure are
sophisticated. The test-time inference is no longer guaranteed optimal, an
effect of the incorporating the per-instance features. Experimentally Hoiem et
al. show excellent recognition and segmentation performance on cars from
multiple views. However, as with the layout CRF of Winn and Shotton the
model is only suited for rigid object classes.

Literature Survey: Viola-Jones Style Approaches

Schneiderman and Kanade58 consider the task of frontal and profile face 58 Henry Schneiderman and Takeo
Kanade. Probabilistic modeling of lo-
cal appearance and spatial relationships
for object recognition. In CVPR, pages
45–51, 1998

detection and propose to estimate the appearance probabilities for a set
of fixed size parts within a detection window. The appearance model of
each part uses quantized responses of projections onto the first twelve PCA
components. For each response a class-conditional probability is estimated
and additionally a spatial prior is estimated within the detection window for
all discrete responses which appear frequently enough in the training data.
The proposed method is evaluated on several face detection datasets and
shows better performance than the previous methods. However, compared
to the methods later proposed by Papageorgiou and Poggio and also Viola
and Jones the performance is severely limited due to the discretization and
the generative nature of the model.59 59 Although Schneiderman and Kanade

refer to their model as discriminative,
they explicitly model p(r|has object)
and p(r|has no object), where r is the
appearance description of a region
within the detection model.

Papageorgiou and Poggio60 first describe what is now a popular approach

60 Constantine Papageorgiou and
Tomaso Poggio. A trainable system for
object detection. International Journal of
Computer Vision, 38(1):15–33, 2000

to build object detection systems. For a given image and a fixed size bounding
box, Papageorgiou and Poggio determine a large, overcomplete set of nor-
malized multiscale Haar wavelet responses within the bounding box. Using
a large bounding box annotated training image set which includes a set of
background images, a binary classifier is trained on this feature representation.
Detection is performed by sliding a bounding box over the image, classifying
each feature vector produced from the image within the bounding box as
either positive (object) or negative (background). While the approach is still
severely limited — the training data must be precisely annotated, the features
are fixed and manually designed, and extensive sliding window evaluation is
necessary at test time — it is particularly interesting for its simplicity, high
accuracy for some object classes such as cars and pedestrians and its influence
on later object detection systems.

Viola and Jones61 describe in a series of papers an object detection system

61 Paul A. Viola and Michael Jones. Ro-
bust Real-Time face detection. In ICCV,
pages 747–747, 2001; Paul A. Viola and
Michael J. Jones. Robust real time ob-
ject detection. In Workshop on Statistical
and Computational Theories of Vision, 2001;
and Paul A. Viola and Michael J. Jones.
Robust real-time face detection. Inter-
national Journal of Computer Vision, 57(2):
137–154, 2004

much like the one of Papageorgiou and Poggio — sliding windows with fixed
Haar-wavelet features — but improve on the computational complexity in
three directions. First, Viola and Jones introduce integral images for fast compu-
tation of Haar-wavelet features. Second, instead of using a nonlinear SVM as
Papageorgiou and Poggio did, they use AdaBoost62, incrementally selecting 62 Yoav Freund and Robert E. Schapire.

A decision-theoretic generalization of
on-line learning and an application to
boosting. Journal of Computer and System
Sciences, 55(1):119–139, 1997

single discriminative wavelet features. This allows to use a much larger set of
features. Third, they introduce cascade classifiers for efficient early rejection of
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unlikely object hypotheses. Together, these three changes drastically reduce
the test-time complexity, allowing real-time full resolution object detection
systems. The Viola and Jones system has considerably influenced computer
vision research and since 2001 a large number of derived systems have been
proposed.

Felzenszwalb, McAllester and Ramanan63 propose an iterative algorithm63 Pedro F. Felzenszwalb, David A.
McAllester, and Deva Ramanan. A
discriminatively trained, multiscale, de-
formable part model. In CVPR, 2008

for training linear SVMs where part of the training sample vectors is latent,
that is, unknown at both training and test time. These latent parts represent
the appearance and positions of object parts and their value is defined by
choosing a single element from the set of all possible part positions. Any
feasible setting of the latent variables for a negative sample not containing
an object defines a negative training sample for the SVM classifier. Positive
samples are represented by a bounding box on the image plane. For each such
bounding box, we know that at least one object is contained within the box.
Felzenszwalb represents the positive instances by the latent variable setting
which achieves the highest possible classifier response. By iteratively refining
the classifier and latent variables for the positive instances, the classifier
learns the appearance and likely position of object parts. The appearance
is represented by histograms of oriented gradients (HoG) features64. At64 Navneet Dalal and Bill Triggs. His-

tograms of oriented gradients for hu-
man detection. In CVPR, pages 886–893,
2005

test time, detection is performed by means of sliding a detection window
across the image at multiple scales. The approach is extensively evaluated
on the PASCAL VOC 2007 object classification challenge and a preliminary
version of the described system won the 2007 VOC object detection challenge.
While motivated from first principles, many decisions in the system are
largely heuristic: the aspect ratio and size of the classification window, the
final sliding-window detection procedure, the initialization procedure, etc.
However, the overall latent variable modeling approach holds considerable
promise at improving object detection systems and this paper is likely to have
some influence on further research.

Literature Survey: Other Notable Approaches

Krempp, Geman and Amit65 focus on the problem of how parts should be65 Samuel Krempp, Donald Geman, and
Yali Amit. Sequential learning of
reusable parts for object detection. Tech-
nical report, 2002

learned and reused in the case of many object classes. Krempp suggests
a sequential learning procedure in which classes are added iteratively such
that when a new class is added the number of reused parts is maximized.
The sequential learning is realized by means of a greedy heuristic and the
evaluation is on the artificial task of recognizing mathematical symbols.

Agarwal, Awan and Roth66 describe a fixed size encoding which contains66 Shivani Agarwal, Aatif Awan, and
Dan Roth. Learning to detect objects
in images via a sparse, part-based repre-
sentation. IEEE Trans. Pattern Anal. Mach.
Intell, 26(11):1475–1490, 2004

information about salient parts and their pairwise spatial relations. The
parts are detected by extracting and vector quantizing small image patches
around interest points. Their pairwise relations encode relative distance and
angle information, quantized to a total of 20 discrete labels. For each fixed
sized window in the image a vectorial representation is created by binary
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encoding the presence of each part-type and part-relation, yielding a large
binary vector. Object localization is performed by first computing the classifier
output densely in successively downsized versions of the image. In this
densely evaluated scale-space an iterative non-maximal suppression scheme
is used to output found objects. Agarwal et al. evaluate the approach on a
newly introduced UIUC cars dataset on the task of detecting cars in side-view,
achieving precision-recall error rates of 23.5% and 60.4% for fixed scale and
multiscale test sets, respectively.67 The proposed approach is completely 67 Since then, the results have been im-

proved to 1.5% and 1.4%, respectively,
using a flat training technique, see

Christoph H. Lampert, Matthew B.
Blaschko, and Thomas Hofmann. Be-
yond sliding windows: Object localiza-
tion by efficient subwindow search. In
CVPR, 2008; and Christoph H. Lampert,
Matthew B. Blaschko, and Thomas Hof-
mann. Efficient subwindow search: A
branch and bound framework for object
localization. PAMI, 2009

heuristic and achieves low performance, but is representative of approaches
which first convert geometric relations into fixed-size vectorial representations.

Lazebnik, Schmid and Ponce68 propose a logistic regression model with

68 Svetlana Lazebnik, Cordelia Schmid,
and Jean Ponce. A maximum entropy
framework for part-based texture and
object recognition. In ICCV, 2005

features derived from “semi-local parts”. The semi-local parts encode a
set of local image features, thus modeling co-occurrence of these features.
Additionally a pairwise feature encoding the overlap of individual features
is used. Lazebnik et al. apply the model to both texture classification and
object classification tasks. For the task of texture classification they report
no significant improvement over a simple naive Bayes baseline model. For
object classification a slight improvement is reported. Overall the model is
particularly simple in that geometric parts simply become features, whereas
the classification function is still linear in these features.

We now introduce our substructure-based framework for object recognition.

Graph-based Object Recognition

The notion that objects are composed of parts related by geometry lends
itself ideally to a graph-based description of objects. The plentiful literature
examples of the previous section illustrates this. Graphs are structured repre-
sentations and as such we can try to apply our substructure poset framework.

The key issue when doing so is how the graph representation is created
from an image. For many other application domains there is a natural graph
representation of the objects of interest. For example, in chemical compound
classification the graph is simply the molecule itself, composed of atoms
and bonds of different types. Another example would be documents, which
are often already well structured into a hierarchical graph representation,
composed of chapters, sections, and paragraphs. In contrast, images do not
have such natural graph structure.69 We will come back to this issue later. 69 Although, one might argue that a 2D

image naturally is a planar grid graph
this is not a natural representation for
object recognition as any other measure-
ment layout would provide the same
information.

We first define graphs and subgraphs, then give specialized algorithms
for subgraph based classification in the substructure poset framework. The
specific details on how images are represented as such labeled graphs are
provided in a later section.
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Labeled Graph Structures

We apply the substructure poset framework introduced in the previous chapter
to the classification of undirected, connected and labeled graphs. For this, we
define a substructure poset (S ,⊆) as follows.

Definition 10 (Labeled Graph) A graph g = (V, E, ΣV , ΣE, `V , `E) consists of a
set V ⊂ N of vertices, a set of undirected edges E ⊆ V ×V, an alphabet of vertex
labels ΣV , an alphabet of edge labels ΣE, and labeling functions `V : V → ΣV ,
`E : E→ ΣE assigning each vertex and edge a label from the respective alphabet. The
graph must be simple and connected.

We denote by V(g), E(g), ΣV(g), ΣE(g) the respective tuple elements of g and
by `

g
V , `

g
E the respective labeling functions.

Definition 11 (Set of All Graphs S) Let S be the set of all graphs satisfying the
above definition.

Definition 12 (Subgraph-supergraph relation ⊆) The ⊆: S × S → {>,⊥}
relation is defined as g1 ⊆ g2 true iff ∃ injective γ : V(g1)→ V(g2) such that

• ∀v ∈ V(g1) : `
g1
V (v) = `

g2
V (γ(v)),

• ∀(v1, v2) ∈ E(g1) :
(γ(v1), γ(v2)) ∈ E(g2) ∧ `

g1
E ((v1, v2)) = `

g2
E (γ(v1), γ(v2)).

Then g1 is called a subgraph of g2 and g2 is called a supergraph of g1.
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Figure 15: g1 ⊆ g2 as there exist
two injective vertex mappings γ1, γ2 :
V(g1) → V(g2) with γ1 = {2 → 0, 1 →
1, 0 → 2} and γ2 = {2 → 0, 1 → 4, 0 →
2}, such that g1 is a subgraph of g2. The
different vertex labels from the alphabet
ΣV = {A, B, C} and edge labels from
the alphabet ΣE = {a, b, c, d} are drawn
in different colors for clarity.

Figure 15 shows an example of a subgraph-isomorphism. It turns out that
in general evaluating g1 ⊆ g2 is NP-complete. However, for small graphs and
sparse graphs appearing frequently in applications efficient algorithms have
been devised.

In the previous chapter we have seen that for efficient enumeration of the
substructure poset (S ,⊆) we can define a total order on S . This total order then
implicitly defines the reduction mapping and thus the enumeration tree. For
labeled graphs it is non-trivial to define a total order; this was first achieved
by Yan and Han in their gSpan algorithm70. They propose to map each graph70 Xifeng Yan and Jiawei Han. gspan:

Graph-based substructure pattern min-
ing. In ICDM, 2002

to a canonical label such that two graphs are isomorphic to each other if and
only if they have the same canonical label. The canonical label comes with a
natural total order. In the remainder of this section we describe the canonical
label as used in gSpan.

Depth First Search

For defining the total ordering, we first need the notion of a depth-first
traversal of a graph. Because our graphs are assumed to be connected and
undirected such that they form a single connected component, we can reach
all vertices of the graph by starting from an arbitrary vertex and moving along
edges.
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Algorithm 3 DFSLabel: Depth-First-Search Labeling of a Graph
1: τ = DFSLabel(g)
2: Input:
3: g ∈ S labeled graph
4: Output:
5: τ : V(g)→N vertex traversal order

6: Algorithm:
7: τ(v)← −1 for all v ∈ V(g) {Initialize: all vertices unvisited}
8: Choose a starting vertex v0 ∈ V(g)
9: τ(v0)← 0

10: τ ← DFS(g, v0, v0, τ)
11: return τ

Depth-first-search (DFS) starts from a vertex of the graph and systematically
lists all edges and vertices in the order of traversal. For a good introduction to
depth-first-search algorithms on graphs and their properties, see Sedgewick71. 71 Robert Sedgewick. Algorithms in C:

Part 5: Graph algorithms. Addison-Wesley,
3rd edition, 2002. ISBN 0-201-31663-3

The overall DFS algorithm is shown in Algorithm 3, the recursion in
Algorithm 4. The algorithm maintains an assignment τ : V(g) → Z over
vertices, which has τ(v) = −1 if v has not been visited yet and τ(v) ∈ N if
the vertex v has already been visited.

If v, w ∈ V, τ(v) 6= −1, τ(w) 6= −1, the ordering of τ(v),τ(w) corresponds
to the visiting order of the vertices. In the DFS algorithm, each time the
algorithm reaches a new vertex v (line 17) the vertex is assigned a new
index τ(v) and the procedure recurses (line 19). The edge set adjacent to
v is partitioned into B and F, the backward edge set and the forward edge
set, respectively. The backward edgeset leads to vertices w ∈ V(g) which
have been visited already (line 10), whereas the forward edgeset leads to new
unexplored vertices (line 14). Every edge seen is outputted (line 18 for forward
edges, line 12 for backward edges).

There are two degrees of freedom in the DFS traversal, the choice of starting
vertex v0 (Algorithm 3, line 8), and the total ordering κ : V(g) × V(g) →
{>,⊥} (Algorithm 4, line 16). Depending on the choice of v0 and κ, different
DFS traversals are produced.

Figures 16(b) to (d) illustrate three different DFS traversals for the labeled
graph shown in Figure 16(a).

DFS code α DFS code β DFS code γ

(0,1,X,a,Y) (0,1,Y,a,X) (0,1,X,a,X)
(1,2,Y,b,X) (1,2,X,a,X) (1,2,X,a,Y)
(2,0,X,a,X) (2,0,X,b,Y) (2,0,Y,b,X)
(2,3,X,c,Z) (2,3,X,c,Z) (2,3,Y,d,Z)
(3,1,Z,b,Y) (3,0,Z,b,Y) (2,4,Y,b,Z)
(1,4,Z,d,Y) (0,4,Y,d,Z) (4,0,Z,c,X)

Table 2: Three different DFS codes α, β
and γ for the graphs shown in Figure 16.
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Algorithm 4 DFS: Depth-First-Search Recursion
1: τ = DFS(g, v, p, τ)
2: Input:
3: g ∈ S labeled graph
4: v ∈ V(g) current vertex
5: p ∈ V(g) previous vertex
6: τ : V(g)→ Z vertex traversal order
7: Output:
8: τ : V(g)→N vertex traversal order
9: Algorithm:

10: B ← {w|(v, w) ∈ E(g), w 6= p, τ(w) ≥ 0} {Back-edges to already visited
vertices}

11: for w ∈ Sort(B, {(v, w) ∈ V(g)×V(g)|τ(v) ≤ τ(w)}) do
12: output “(τ(v), τ(w), `g

V(v), `g
E(v, w), `g

V(w))′′

13: end for
14: F ← {w|(v, w) ∈ E(g), τ(w) = −1} {Forward-edges to unvisited vertices}

15: {Traverse forward edges using total order κ}
16: for w ∈ Sort(F, κ) do
17: τ(w)← (maxw∈V τ(w)) + 1
18: output “(τ(v), τ(w), `g

V(v), `g
E(v, w), `g

V(w))′′

19: τ ← DFS(g, w, v, τ)
20: end for
21: return τ

Each DFS traversal generates a different sequence of output-calls. If the
output is concatenated in order, then each DFS traversal leads to a unique
code, shown in Table 2. The DFS traversal depends on v0 and κ, the total order
on the edges.

Definition 13 (DFS Code of a Graph) Given a graph g, the sequence

(a0, a1, . . . , a|V(g)|)

of elements ai ∈N×N×ΣV ×ΣE×ΣV is called DFS code of the graph g if there
exists an initial vertex v0 ∈ V(g), and a total order κ : E(g)× E(g) → {>,⊥}
such that Algorithm DFSLabel produces the sequence. Given a DFS code γ of the
graph g, denote by G(γ) ∈ S with g = G(γ) the original graph.

By selecting among all possible DFS traversals the one that produces the
minimum DFS code according to a total order � defined for DFS codes, we
can uniquely associate a canonical label to each graph g ∈ S .

Definition 14 (Canonical Label of a Graph) For a given labeled graph g let ψ(g)
be its canonical label, where ψ : S → (a0, a1, . . . , a|V(g)|), with ai ∈ N×N×
ΣV × ΣE × ΣV is the DFS code that is minimal over all valid DFS codes representing
g. It is minimal according to a total order � defined on DFS codes.
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(d) DFS traversal that generates
code γ in Table 2.

Figure 16: Different DFS codes for the
same labeled graph

The total order � is derived by lexicographically extending total orders
(≤N,≤ΣV ,≤ΣE) on N, ΣV and ΣE, respectively, to define � on the set N×
N× ΣV × ΣE × ΣV as the concatenation (≤N,≤N,≤ΣV ,≤ΣE ,≤ΣV ).

For example, if we assume ≤ΣV to be X ≤ΣV Y ≤ΣV Z, and ≤ΣE to be
a ≤ΣE b ≤ΣE c ≤ΣE d, then the three codes shown in Table 2 are ordered by
γ � α � β. In fact, γ is the minimal DFS code of g and thus its canonical label.
We therefore have γ = ψ(g) = ((0, 1, X, a, X), (1, 2, X, a, Y), (2, 0, Y, b, X),
(2, 3, Y, d, Z), (2, 4, Y, b, Z), (4, 0, Z, c, X)).

Regarding the choice of κ in Algorithm 4, if our goal is to produce only the
minimum DFS code, then the choice of κ can be restricted to those orders on
ΣV × ΣE × ΣV which respect the order (≤ΣV ,≤ΣE ,≤ΣV ). However, it can be
the case that two different edges in the original graph (vi, vj), (wk, wl) ∈ E(g)
are identical under this order, i.e., that we have

κ((vi, vj), (wk, wl)) =
[
(`g

V(vi), `g
E((vi, vj)), `g

V(vj)) =

(`g
V(wk), `g

E((wk, wl)), `g
V(wl))

]
.

In this case, both orders need to be tried and the minimum DFS code is chosen
a posteriori. In general, the number of orderings that may have to be tried
is exponential and this ambiguity makes finding the minimum DFS code
for a labeled graph a NP-complete problem72. Despite this negative result, 72 Xifeng Yan and Jiawei Han. gspan:

Graph-based substructure pattern min-
ing. In ICDM, 2002

real world graphs are usually sparse and have discriminative labels. Both
properties help to limit the number of DFS codes that need to be generated in
order to find the minimal one.

Generating f−1

In the previous chapter we have discussed how the substructure poset (S ,⊆)
and the total order � together define the reduction mapping f and, more
importantly, its inverse f−1. The reduction mapping allows efficient enumera-
tion of frequent and discriminative substructures. Recall the definition of f−1

as
f−1(t) = {s ∈ S|t @ s and ∀u @ s : t � u}.
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Generating the subset of f−1(t) for which a condition g holds was the cen-
tral subproblem of Algorithm 2, where we considered as conditions g the
frequency or discriminative value of a substructure. For the case of sets we
briefly described how the condition-satisfying subset of f−1(t) can be gen-
erated efficiently. For labeled graphs this is again possible by the following
theorem, due to Yan and Han73.73 Xifeng Yan and Jiawei Han. gspan:

Graph-based substructure pattern min-
ing. In ICDM, 2002

Theorem 3 (DFS Code Prefix Ordering (Yan and Han)) For a given graph t ∈
S with canonical label ψ(t), the extended set f−1(t) is exactly the set of subgraphs
enlarged by one edge over t whose canonical label contains ψ(t) as prefix, i.e.,

f−1(t) = {G(γ) | ψ(G(γ)) = γ = (ψ(t), a), a ∈N×N× ΣV × ΣE × ΣV}.

Proof. This is stated in different form in Theorem 4 of Yan and Han. �
The fact stated in the theorem can be used to build the set f−1(t) directly in

the DFS code representation by extending the canonical label ψ(t) of t towards
candidate graphs with DFS codes of the form (ψ(t), a). The extended graphs
represented by (ψ(t), a) need to satisfy the following two conditions.

1. (ψ(t), a) = ψ(G((ψ(t), a))), i.e., the DFS code needs to be the canonical
label of the graph G((ψ(t), a)), and

2. g(G((ψ(t), a))) = >, i.e., the (optional) condition needs to be satisfied.

Checking condition 1. involves testing the minimality of (ψ(t), a). Algorithm 3

can be adapted to this end, for details of what optimizations are possible in
the minimality check see the discussion in Section 5.1 of Yan and Han.

Condition 2. can be asserted by considering only extensions a ∈ N×N×
ΣV × ΣE × ΣV for which the condition will hold. For example, if g is the
minimum frequency condition (20), then iff a is a frequent edge in X with
respect to the current subgraph-isomorphisms into X, so will G((ψ(t), a)) be
frequent in X.

The above method of generating f−1(t) can be summarized as follows. First,
we only work directly in the minimal DFS code representation. Second, the
operation of extending a graph by an edge must preserve the current minimal
DFS code prefix; if it does not, the extended graph will be enumerated
elsewhere and is not in f−1(t). Third, the condition g can be naturally
accommodated as we always know the current subgraph-isomorphisms into
the graph database X.

The above definitions and algorithms suffice to apply the substruc-
ture poset framework to undirected labeled graphs. That is, using the Boosting
method from the previous chapter we can now learn a classification func-
tion on labeled graphs. In the next section we describe how images can be
represented as labeled graphs.
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Images as Graphs

We first describe how the structure of the graph is defined, then provide
details of how we introduce the discrete vertex and edge labels.

Graph Structure

We use a superpixel segmentation74 to define a low complexity partitioning of 74 Xiaofeng Ren and Jitendra Malik.
Learning a classification model for seg-
mentation. In ICCV, 2003

the image into a small number of superpixels. Each superpixel becomes a
node in a graph and the partition boundaries in the image plane define edges
between superpixels in that graph.

There are various popular methods to obtain superpixel segmentations for
a given image. The most popular methods are mean-shift segmentation75, 75 Dorin Comaniciu and Peter Meer.

Mean shift analysis and applications. In
ICCV, pages 1197–1203, 1999

spanning tree based segmentations76 and normalized cuts77. We use normal-

76 Pedro F. Felzenszwalb and Daniel P.
Huttenlocher. Efficient graph-based im-
age segmentation. International Journal
of Computer Vision, 59(2):167–181, 2004

77 Xiaofeng Ren and Jitendra Malik.
Learning a classification model for seg-
mentation. In ICCV, 2003; and Greg
Mori. Guiding model search using seg-
mentation. In ICCV, 2005

ized cuts because it produces a quite regular decomposition of the image into
roughly equal-sized partitions. For an example of superpixel representations,
see Figure 17.

K-way normalized cuts78 is a clustering objective on weighted undirected

78 Stella X. Yu and Jianbo Shi. Multiclass
spectral clustering. In ICCV, pages 313–
319, 2003

graphs. For a fixed number K of desired partitions the objective balances
the total within-cluster edge weights to the overall edge weights of all nodes
within the cluster. This leads to a K-partitioning of the graph. More formally,
let there be an image I with N pixels. We define a symmetric weight matrix
W ∈ RN×N

+ with non-negative weights between nearby pairs of pixels of
the image. These are produced by measuring similarity between the pixels,
for example similarity in color and texture of the immediate surrounding of
the pixel. Nearby pixels i and j that are very similar receive a large weight
wi,j = wj,i > 0, whereas pixels with different properties receive a weight close
to zero, i.e., wi,j ≈ 0. Let D = diag(W1N) be the diagonal matrix which has
on the diagonal the total sum of weights of each pixel. Then Di,i contains the
degree of a pixel, the total sum of weights of the edges connecting to the pixel.

Using this notation, the K-way normalized cuts objective can be stated as
the following mathematical program.

max
X

1
K

K

∑
`=1

X>` WX`

X>` DX`

(22)

sb.t. X1K = 1N , (23)

X ∈ {0, 1}N×K, (24)

where Xi,k = 1 denotes that pixel i is assigned to the k’th partition. The
above problem is NP-hard in general but a good approximate solution can
be obtained even for large problems (N > 106) by first solving a spectral
relaxation in the continuous domain and afterwards applying an iterative
rounding procedure. For details see Yu and Shi. The procedure provides a
partition label for each pixel in the image.
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The advantages of using superpixels stem from three directions. First,
superpixels restrict the hypothesis space by coarsening the image representa-
tion into meaningful groups. This leads to lower computational complexity
as the number of basic elements is reduced, say, from ≈ 106 pixels to ≈ 100
superpixels. Moreover, overfitting can be reduced, a benefit we will later come
back to in a chapter dealing with image segmentation. Second, the unsuper-
vised pixel grouping that superpixels provide allows pooling of image statistics
within meaningful regions. This can increase the robustness of features such
as histograms; for example, a color histogram within a superpixel region is a
more robust statistic than a color histogram in an arbitrary square box region
of the image. Third, superpixels relate to visually consistent parts of the image.
Thus, part-based representations can be constructed on top of superpixels.
For example, note how the body parts such as legs and hands are recovered
in the superpixel segmentations shown in Figure 17.

The use of superpixels has some disadvantages. First, the technique com-
presses the the image structure considerably, and thus possibly useful infor-
mation might get lost. For example, segmentation errors where one superpixel
crosses the object boundary are impossible to correct. Second, it is a purely
unsupervised preprocessing step producing an intermediate image represen-
tation. In principle, it would be preferable to incorporate the representation
only as additional information in an end-to-end learning system. And third,
although some progress has been made recently79, creating the superpixel79 Alastair P. Moore, Simon Prince,

Jonathan Warrell, Umar Mohammed,
and Graham Jones. Superpixel lat-
tices. In CVPR, 2008; and Bryan Catan-
zaro, Narayanan Sundaram, Bor-Yiing
Su, Yunsup Lee, Mark Murphy, and Kurt
Keutzer. Damascene: Highly parallel
image contour detection, March 2009.
URL http://www.gigascale.org/pubs/

1510.html

representation is computationally expensive and takes a few minutes per
image.

Given the superpixel segmentation in terms of X ∈ {0, 1}N×K, let
P(i) ∈ {1, 2, . . . , K} be a unique partition label assigned to each pixel i by
P(i) = argmaxk=1,...,KXi,k. We define an undirected connected simple graph
G = (V, E) with vertex set V = {1, 2, . . . , K} consisting of the superpixels.
The edge set is constructed such that if two superpixels are adjacent in the
image, there is an edge linking them. Formally, E ⊆ V × V with (k, l) ∈ E
iff ∃i ∈ {1, . . . , N} : P(i) = k and ∃j ∈ N (i) : P(j) = l, where N (i) is a
neighborhood set around pixel i. We use the 4-neighborhood.

Graph Labels

As described in the previous section, we use labeled graphs in which each
vertex and edge is assigned a discrete label from an alphabet. We now describe
how the labels are chosen for vertices and edges.

Vertex labels. We extract 30,000 SURF image features80 densely and ran-80 Herbert Bay, Tinne Tuytelaars, and Luc
J. Van Gool. SURF: Speeded up robust
features. In ECCV, pages 404–417, 2006

domly per image and additionally a few thousand using the SURF box-filter
interest point operator. SURF features are gradient histogram features, akin to
the popular SIFT features. From the training set, a random subset of features
is taken and k-means clustered to produce a codebook with 500 codewords.

http://www.gigascale.org/pubs/1510.html
http://www.gigascale.org/pubs/1510.html
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Figure 17: Examples of superpixel seg-
mentations for the PASCAL VOC 2008

images. The top row images are de-
composed into approximately 100 su-
perpixels, the bottom row shows the
same images decomposed into approx-
imately 300 superpixels. Note that the
very coarse granularity of 100 superpix-
els often suffices to accurately describe
the object boundaries. In some cases,
such as the person shown in the top left
image a finer partitioning into 300 super-
pixels improves the object boundaries
(second row, leftmost image).
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Each SURF feature is quantized to its nearest codeword vector, such that for
each image we have an average of 38,000 “XYC-tuples” of the form (x, y, c),
where (x, y) is the pixel position of the feature and c ∈ {1, . . . , 500} is the
codeword identifier. For each superpixel we create a histogram of codeword
assignments of the features whose center position (x, y) is covered by the
superpixel. We normalize the histogram to have a 1-norm of one. Finally,
for each superpixel we have obtained a normalized histogram vector in R500.
For the entire training set we collect all these histogram vectors and k-means
cluster them into codebooks of sizes 32, 64, 128, and 256 codewords. By
vector quantizing each histogram into the nearest codeword we obtain for
each codebook size one discrete label for each superpixel.

Edge labels. The edge labels are set according to one of the following
three schemes. In the first scheme (“constant”), all edgelabels are set to the
same constant. This provides only the connectivity information between
superpixels but no further information about properties of the edge. In the
second scheme (“edgewidth-k”), the size of the shared edge e between the
adjacent superpixels in the image is discretized into one of k labels according
to the formula dk we

max f∈E w f
e, where we is the width in pixels of the edge

e. This encoding provides not only connectivity information but also some
quantification of the amount of adjacency of the two superpixels. We use
values of k ∈ {4, 10}. In the third scheme (“angular-k”), we encode pairwise
geometry information by discretizing the orientation of a straight line between
the mean pixel coordinates of the adjacent superpixel regions. The encoding is
according to the formula dk γe

π e, where γe ∈ [0; π] is the undirected orientation
of the straight line between the mean image coordinates of the superpixel
regions. We again use k ∈ {4, 10} to define two possible quantization choices.
This edge labeling scheme encodes pairwise geometry relations such as “is
adjacent in vertical direction”. In total for the three schemes and the parameter
choices there are five possible edge labeling methods.

Using the above construction, by varying the vertex codebook sizes and
edge labeling parameters we have a family of 20 possible graph construction
schemes. In the experiments we will perform model selection to identify
which one is best for each class.

Experiments and Results

We now evaluate the proposed approach experimentally. For this we first
provide details about the benchmark data set we use. Then we describe the
baseline models we compare against. Finally we explain the experimental
setup and provide the experimental results. As both our proposed approach
and the baseline models use exactly the same image features we can assess
their true performance in a fair manner.

Throughout this section we seek to answer the following three questions.
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1. Is a discrete graph-based representation suitable for class-level object recog-
nition problems?

2. Can substructure based methods which have been used successfully in
other domains be applied on noisy vision data?

3. Does geometry help for high-level class-level object recognition?

PASCAL VOC 2008 data set

The PASCAL Visual Object Classes (VOC) Challenge81 is an annual computer 81 http://pascallin.ecs.soton.ac.

uk/challenges/VOC/vision challenge held since 2005. We describe the classification task of the
2008 challenge. The 2008 data set contains a large number of photographic
images obtained from flickr.com. Each image contains one or more objects
from a set of 20 popular object classes, such as bicycles, cars, cats and persons.
The overall image set is split into training, validation and testing data and
human ground truth annotation is made available only for the training and
validation data. A list of object classes as well as image count statistics in the
training and validation set are shown in Table 3.

Image set aeroplane bicycle bird boat bottle bus car cat chair cow

train 119 92 166 111 129 48 243 159 177 37

val 117 100 139 96 114 52 223 169 174 37

diningt. dog horse mbike person plant sheep sofa train tv

train 53 186 96 102 947 85 32 69 78 107

val 52 202 102 102 1055 95 32 65 73 108

Table 3: PASCAL VOC 2008 database im-
age count statistics for the classification
task. Shown are the number of images
with at least one positive object instance
of the respective class.

The provided annotations have three granularities. The coarsest annotation
is a simple per-image binary label for each object class which tells us whether
this image contains at least one object of the respective object class. A finer
annotation is provided in terms of bounding boxes for each object instance.
For each object instance appearing in an image the bounding box coordinates
in image space, the object class, a rough object orientation and the information
whether the object is occluded or truncated is provided. The finest annotation
is available only for some images and contains a per-pixel segmentation of the
entire image into object classes and object instances. In this chapter we will
only use the coarsest image-level annotation and will not use the bounding
box and segmentation labels. Later, in the structured output learning part
of this thesis we will separately make use of the VOC 2008 data set and its
segmentation labels.

Some example images for each object class with bounding boxes are shown
in Figure 18 to 22. The data set is known to be very difficult due to severe
variations in appearance. It thus better captures the difficulty of class-level

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
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object recognition than other popular data sets such as the Caltech 101 object
categories data set.

Figure 18: Examples of the PASCAL
VOC 2008 object classes, row-wise: aero-
plane, bicycle, bird and boat.

Experimental Setup

Each class in the VOC classification set is treated individually such that we
obtain 20 individual binary classification tasks. Because the test set labels
are unavailable, for the purpose of evaluation we train exclusively on the
train data and evaluate the model performance once on the val validation
set. In principle this reduces the overall performance compared to training
on the entire trainval set and evaluating on the test set, as is done in the
competition. However, we are interested in the relative model performance.

For the performance criterion we choose the area under the Receiver
Operating Characteristic curve (ROC AUC). The ROC curve plots the true
positive rate82 as a function of the false positive rate of a classifier, evaluated82 The true positive rate is also known as

sensitivity. on a holdout sample set. The true positive rate and false positive rate are
defined as

TPR(θ) =
TP(θ)
POS

, FPR(θ) =
FP(θ)
NEG

,

where POS and NEG is the total number of positive and negative samples in
the holdout set, respectively. The scalar θ ∈ R defines a classification threshold,
such that when f (x) ≥ θ, the sample x is classified positive and negative
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Figure 19: More object classes, row-wise:
bottle, bus, car and cat.

Figure 20: More object classes, row-wise:
chair, cow, diningtable and dog.



78 learning with structured data

Figure 21: More object classes, row-wise:
horse, motorbike, person and potted
plant.

Figure 22: More object classes, row-wise:
sheep, sofa, train and TV/monitor.
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otherwise. Then true positive count TP(θ) is the number of positive samples
from the holdout set which are actually classified as positive. Likewise,
the false positive count FP(θ) is the number of negative samples actually
classified as negative by the thresholded classifier. For all values of θ, we
have 0 ≤ TPR(θ) ≤ 1 and 0 ≤ FPR(θ) ≤ 1. By plotting the set of points
(FPR(θ), TPR(θ)) as θ varies, the ROC curve is obtained. A random classifier
would achieve an expected area under the ROC curve of 0.5, whereas a perfect
classifier would obtain 1.0. The ROC AUC measure is useful to evaluate the
model performance in our setting because it is invariant under class imbalance.
In the VOC data set some classes have far more negative samples than positive
ones.

We additionally provide also the mean average precision (MAP) measure
used in the official VOC challenge. The measure is a uniform average of
eleven points on the precision-recall curve and is described in detail in the
official VOC report83. However, the MAP measure is not invariant under class 83 Mark Everingham, Luc Van Gool,

Christopher K.I. Williams, John Winn,
and Andrew Zisserman. The PASCAL
Visual Object Classes Challenge
2008 Results. http://www.pascal-
network.org/challenges/VOC/voc2008/

imbalance and we therefore prefer the ROC AUC measure.

Model selection is performed on the train set only. The train set is
split once and at random in proportions 70% to 30%, where the larger set of
70% is used for training and the 30% set is used for estimating the holdout
performance of the trained model. For each model class and each possible
parameter setting a classifier is trained and its performance estimated. The
parameter setting that achieves the best performance is fixed and the classifier
is trained once on the entire train set. This one classifier per model class is
evaluated on the val set and its performance is reported.

Methods

In order to assess the true performance of our proposed graph-based model
and to the relative influence of modeling decision, we evaluate the following
four baseline models versus the proposed approach “graph”.

LR-unnorm. A linear logistic regression classifier on the original XYC
histograms, without normalization. The only free regularization parameter
C is model selected over the set {0.0001, 0.001, . . . , 1000, 10000}. For a given
training set {(xn, yn)}n=1,...,N and regularization parameter C > 0 training the
logistic regression classifier minimizes a regularized logistic loss as

min
w

1
2
‖w‖2

2 + C
N

∑
n=1

log(1 + exp(−ynw>xn)).

This model is the standard “bag-of-words” model.
LR-norm. The same as LR-unnorm but with additional one-norm normal-

ization on the histogram. The value of C is determined by model selection
from the same set as before.

LR-super-unnorm. Linear logistic regression classifier on the superpixel



80 learning with structured data

label histogram, the histogram of the discrete label assigned to each su-
perpixel by the graph construction scheme. The free parameters are the
codebook size for the superpixel quantization, which is selected from the set
{32, 64, 128, 256}, and the regularization parameter C, which is selected from
the set {0.0001, 0.001, . . . , 1000, 10000}. The total set of models from which the
best is selected by the model selection procedure is 4 · 180 = 720 models.

LR-super-norm. The same as LR-super-unnorm but with additional one-
norm normalization on the superpixel histogram. The parameters selected are
from the same set as for the LR-super-unnorm model.

graph. A totally corrective AdaBoost classifier learned in the space of all
subgraph weak learners, as explained in the structured input chapter. The
regularization parameter T is part of the model selection and taken from
the set {1, 0.25, 0.1, 0.05}. In each iteration the subgraph weak learners are
found using the the gSpan traversal order on the DFS code tree and the
final classifier consists of a set of graphs with associated signed weights.
A new image represented as graph is classified by checking for subgraph-
isomorphism of the discriminative graphs and adding all weights of matched
graphs.

Results

Tables 4 and 5 show the ROC AUC and mean average precision scores achieved
by the baseline models and the proposed method “graph”. We first state the
results of the baseline models, then make the comparison to the proposed
approach.

Within the baseline models the LR-norm has higher test performance
than the unnormalized version LR-unnorm. The superpixel label histogram
baselines (LR-super-unnorm and LR-super-norm) have roughly the same
performance as the bag of words models, with the exception of some classes
such as “bus”, “cat”, “mountain bike” and “train”, where the bag of words
model fares better. In other classes such as “bottle”, “car” and “sheep” the
superpixel models perform better.

The proposed graph-based approach does not offer a performance increase,
with the exception of the classes “chair” and “sofa”, where it outperforms the
baseline models. For some classes such as “cat”, “dinging table” and “moun-
tain bike” it achieves performance on the level of the superpixel baselines. For
other classes such as “boat”, “bottle”, “cow”, “dog”, “sheep” and “train” there
is a steep drop in performance compared to the superpixel baseline models.

Discussion

Part of the bad results of the graph based method can be explained by
the second discretization step needed to label the superpixels. This can
be recognized by observing that for some classes such as “cat”, “dining
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Approach aeroplane bicycle bird boat bottle bus car cat chair cow

LR-unnorm 0.9057 0.7129 0.7100 0.7988 0.6279 0.7863 0.6806 0.6780 0.6832 0.7378

LR-norm 0.9271 0.7471 0.7453 0.8689 0.6795 0.8362 0.7613 0.7544 0.6905 0.7398

LR-super-unnorm 0.9139 0.7110 0.7360 0.8517 0.6932 0.7865 0.7737 0.7065 0.7006 0.7289

LR-super-norm 0.9145 0.7129 0.7357 0.8542 0.6822 0.7900 0.7669 0.7092 0.6972 0.7260

graph 0.9000 0.7152 0.7118 0.8170 0.6478 0.7730 0.7532 0.6936 0.7429 0.6372

diningt. dog horse mbike person plant sheep sofa train tv

LR-unnorm 0.7611 0.6302 0.7756 0.7307 0.7045 0.5757 0.7279 0.7182 0.7539 0.8050

LR-norm 0.7754 0.6949 0.7658 0.7440 0.7323 0.6067 0.7376 0.7117 0.8158 0.8362
LR-super-unnorm 0.7363 0.6416 0.7486 0.6793 0.7200 0.5619 0.7575 0.6947 0.7445 0.8212

LR-super-norm 0.7379 0.6505 0.7316 0.6449 0.7161 0.5974 0.7742 0.7092 0.7633 0.8186

graph 0.6940 0.5973 0.7014 0.6518 0.6849 0.5766 0.7037 0.7505 0.6560 0.7964

Table 4: PASCAL VOC 2008 classifica-
tion ROC AUC results of the VOC val

set (2227 images). Model selection was
performed on the VOC train set (2113

images).

Approach aeroplane bicycle bird boat bottle bus car cat chair cow

LR-unnorm 0.4816 0.1345 0.2438 0.2345 0.0782 0.0917 0.1925 0.1807 0.1699 0.0569
LR-norm 0.5463 0.2009 0.3134 0.2839 0.0852 0.1178 0.2729 0.2564 0.1780 0.0390

LR-super-unnorm 0.5272 0.1328 0.2763 0.2615 0.0891 0.0777 0.2735 0.1551 0.2153 0.0401

LR-super-norm 0.5310 0.1213 0.2812 0.2659 0.0857 0.0833 0.2797 0.1595 0.1425 0.0403

graph 0.4371 0.1516 0.1952 0.2377 0.0794 0.1635 0.2551 0.1847 0.2654 0.0273

diningt. dog horse mbike person plant sheep sofa train tv

LR-unnorm 0.0577 0.1331 0.1477 0.1244 0.6825 0.0953 0.0504 0.0836 0.1891 0.2342

LR-norm 0.0710 0.2505 0.1391 0.1339 0.7078 0.1457 0.0538 0.0611 0.2275 0.2410

LR-super-unnorm 0.1463 0.1420 0.1282 0.0782 0.7039 0.0692 0.0561 0.0603 0.0941 0.2679

LR-super-norm 0.1468 0.1448 0.1239 0.0822 0.6981 0.0683 0.0601 0.0617 0.1104 0.2656

graph 0.0479 0.1305 0.1469 0.0817 0.6631 0.0594 0.0520 0.1176 0.0749 0.2165

Table 5: PASCAL VOC 2008 classifica-
tion mean average precision (MAP) re-
sults of the same models as shown in
Table 4.

table” and “mountain bike” the performance drop is about the same for all
superpixel based models (LR-super-unnorm, LR-super-norm, graph).

For a large part of the classes, the information loss due to the additional
discretization cannot be the reason for the inferior performance of the graph
approach. In particular, for the “boat”, “bottle”, “cow”, “dog”, “sheep” and
“train” classes the superpixel baselines fare quite well while the graph based
approach achieves only a lower AUC.

In fact, the feature space used in the LR-super-unnorm classifier is a small
subset of the features available to the graph classifier. Hence, we believe that
for these classes the decrease in performance by enlarging the feature space
is due to two reasons. First, it could be that for these classes there is little or
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no discriminative information contained in the edge attributes. Second, the
feature space is too large or the 1-norm regularization on the feature weights
is not well suited to avoid overfitting the training set.

For two classes, “chair” and “sofa” the performance of the graph-based
approach is visibly improved over all baseline methods. Because the used
test set is quite large (2227 images) we believe that the reported estimates are
indeed a reliable indicator of the model performance but we did not find an
immediate reason for the improved performance.

Conclusion

We now come back to the initial questions we posed.
Is a discrete graph-based representation suitable for class-level object recognition

problems? Discretization causes an information loss but it is hard to quantify
the amount of discriminative information that is lost. From the experiments it
seems the loss due to discretization is small. Our graph-based representation
that includes geometric information does not seem to provide an improve-
ment in class-level object recognition performance, with the exception of two
object classes. This lack of improvement in performance despite the intuitive
appeal of including pairwise information such as co-occurrence and geometry
seems consistent with the larger part of the literature that reported baseline
comparisons.

Can substructure based methods which have been used successfully in other do-
mains be applied on noisy vision data? In light of the obtained results the
substructure based method does not seem well suited in addressing the large
amount of variation, clutter and noise in the image features. This conclu-
sion might not hold for more artificial objects such as symbols which have a
clear structure and repeatable image features. We believe substructure based
methods are best suited for hard classification tasks in which the definition of
the graph structure is naturally obtained from domain knowledge, the basis
features have low noise level, but the discriminative information is contained
in higher order patterns. This is consistent with our observations on the
domain of chemical compound classification.8484 Hiroto Saigo, Sebastian Nowozin,

Tadashi Kadowaki, Taku Kudo, and Koji
Tsuda. gboost: A mathematical program-
ming approach to graph classification
and regression. Machine Learning, 75(1):
69–89, 2009; and Sebastian Nowozin and
Koji Tsuda. Frequent subgraph retrieval
in geometric graph databases. In ICDM,
12 2008

Does geometry help for high-level class-level object recognition? From our ex-
periments but also from the literature review we believe that at the current
weak performance levels of class-level object recognition systems it does not
seem to help to incorporate geometric information beyond what is implicitly
contained in standard image features.



Activity Recognition using
Discriminative Subsequence Mining

In the previous chapter we have considered the problem of classifying
static images as to whether they contain objects of a certain class or not. In
this chapter we take a step further and consider the problem of recognizing
human activities from video data. We will continue to apply our structured
input framework to derive classifiers for structured input data in a principled
way.

The contributions of this chapter are, i) a new sequential represen-
tation for video data which encodes the temporal ordering among locally
informative appearance patterns, and ii) a concretization of the substructure
poset concept to this sequential representation by a suitable definition of a
subsequence relation.

Human Activity Recognition

Human activity recognition and classification systems can provide useful
semantic information to solve higher-level tasks, for example to summarize or
index videos based on their semantic content. Robust activity classification
is also important for video-based surveillance systems, which should act
intelligently, such as alerting an operator of a possibly dangerous situation.

Building such a general activity recognition and classification system is a
challenging task, because of variations in the environment, objects and actions.
Variations in the environment can be caused by cluttered or moving background,
camera motion, occlusion, weather- and illumination changes. Variations in
the objects are due to differences in appearance, size or posture of the objects
or due to self-motion which is not itself part of the activity. Variations in
the action can make it difficult to recognize semantically equivalent actions
as such, for example imagine the many ways to jump over an obstacle or
different ways to throw a stick.

In current computer vision research, it is common to represent each data
instance (i.e., video or image) as a histogram of visual words, see for exam-
ple the recent PASCAL VOC2008 object classification challenge85. However, 85 Mark Everingham, Luc Van Gool,

Christopher K.I. Williams, John Winn,
and Andrew Zisserman. The PASCAL
Visual Object Classes Challenge
2008 Results. http://www.pascal-
network.org/challenges/VOC/voc2008/

due to the variations stated above, not all visual words are informative for
classification.
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Thus, feature selection is important both for robustness against variations
and for the interpretability of the learned classification rule. However, simply
removing visual words based on some statistics (e.g., correlation to the class la-
bel) might be harmful, because, if combined with other features, a visual word
can possibly become an important feature. In this light, finding the optimally
discriminative combination of features is a combinatorial optimization problem,
leading to an exponentially large feature space. The problem of high dimen-
sionality of such feature space can partially be overcome using kernel methods,
which allows one to learn a classification function implicitly. However, the
cost is that the resulting classification function is not interpretable.

The substructure Boosting framework could potentially address both
the issue of a rich enough feature space to achieve high recognition perfor-
mance while remaining interpretable.

In this chapter we apply the substructure Boosting framework to a sequence
representation of videos. A natural subsequence relationship induces a rich
feature space suitable for classifying sequences by recognizing discriminative
subsequences.

The sequence representation will be built from sparse spatio-temporal
“video words” encoding local appearance around interesting movements. The
use of these sparse spatio-temporal interest points is a recent trend in action
classification. However, most of the recent approaches have used a simple
histogram representation, discarding the temporal order among features.
Our assumption is that this ordering information can contain important
information about the action itself. For example, consider the sport disciplines
of hurdle race and long jump, where the global temporal order of motions
(running, jumping) is important to discriminate between the two.

Therefore, we propose a sequential representation which retains this tempo-
ral order. Using the substructure Boosting framework on top of this sequence
representation then amounts to simultaneously learning a classification func-
tion and performing feature selection in the space of all possible feature
sequences. The resulting classifier linearly combines a small number of in-
terpretable decision functions, each checking for the presence of a single
discriminative pattern.

The remaining part of this chapter is structured as follows. We first give
a survey of current approaches to action recognition in videos. Then we
formalize our notion of sequence in terms of the substructure poset framework
of the first chapter. The next section describes how a video with sparse spatio-
temporal interest points can be represented in our sequence format. We
continue by evaluating the classifier learned using substructure Boosting on
the KTH action recognition benchmark dataset against other state-of-the-art
approaches. Finally the results give rise to a discussion and we conclude by
discussing further research directions.
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Related Work

We now discuss two main groups of approaches popular in the literature,
part-based representations and holistic representations.

Part-based Representations

Part-based representations based on interest point detectors, combined with
robust descriptor methods have been used very successfully for object clas-
sification tasks, see for example the approaches submitted to the PASCAL
VOC2006 challenge86.

86 Mark Everingham, Andrew Zisser-
man, Chris Williams, and Luc Van Gool.
The pascal visual object classes chal-
lenge 2006 (VOC2006) results. Technical
report, 2006

Figure 23: Sparse interest points defined
on the video volume. Figure taken from
Dollár et al.

Recently, representations based on sparse local features have become pop-
ular also for human action classification. Laptev87 proposed to assign each

87 Ivan Laptev. On space-time interest
points. International Journal of Computer
Vision, 64(2-3):107–123, 2005

voxel in a spatio-temporal volume a saliency value and extract descriptors
from the neighborhood of local saliency maxima. Schüldt et al.88 used these

88 Christian Schüldt, Ivan Laptev, and
Barbara Caputo. Recognizing human
actions: A local SVM approach. In ICPR
(3), pages 32–36, 2004

features successfully for human action classification by discretizing them into
codewords and producing a histogram of the occurring words for each video.
The histograms are treated as fixed-length vectors to train a classification
function. A visualization of sparse interest points detected in a video volume
is shown in Figure 23.

Dollár et al.89 argue in principle for the same approach but suggest to use a

89 Piotr Dollár, Vincent Rabaud, Garrison
Cottrell, and Serge Belongie. Behavior
recognition via sparse spatio-temporal
features. In International Workshop on
Performance Evaluation of Tracking and
Surveillance, pages 65–72, 2005

denser sampling of the spatio-temporal volume by only requiring each interest
point to be a local maxima in the spatial directions instead of both spatial
and temporal dimensions. They justify this change by increased classification
performance on the same dataset.

Niebles et al.90 train an unsupervised probabilistic topic model on the same

90 Juan Carlos Niebles, Hongcheng
Wang, and Li Fei-Fei. Unsupervised
learning of human action categories us-
ing spatial-temporal words. In British
Machine Vision Conference, page III:1249,
2006

features as Dollár and obtain comparable classification performance. Another
approach is due to Ke at al.91, who use a forward feature selection procedure

91 Yan Ke, Rahul Sukthankar, and Mar-
tial Hebert. Efficient visual event detec-
tion using volumetric features. In ICCV,
pages 166–173, 2005

to train a classifier on volumetric features.

Holistic Representations

Figure 24: Motion History Image, where
motion causes a response which decays
temporally. Figure due to Bobick et al.

Holistic representations contrast part-based representations. Bobick et al.92

92 Aaron F. Bobick and James W. Davis.
The recognition of human movement
using temporal templates. IEEE Trans.
Pattern Anal. Mach. Intell, 23(3):257–267,
2001

proposed motion history images (MHI) as a meaningful way to encode short
spans of motion. For each frame of the input video the MHI is the gray scale
image which records the location of motion, where recent motion has high
intensity values and older motion produces lower intensities. An example of
a motion history image is shown in Figure 24.

For each frame of the input video, a MHI is produced from the motion in
the current frame and the MHI of the previous frame: the MHI of the previous
frame is multiplied by a scalar smaller than one and the new motion is added
on top of it. Thus, older motions are assigned lower values in the MHI. The
MHI representation can be matched efficiently using global statistics, such as



86 learning with structured data

moment features.
Weinland et al.93 extended the idea to motion history volumes by means of93 Daniel Weinland, Remi Ronfard, and

Edmond Boyer. Free viewpoint action
recognition using motion history vol-
umes. Computer Vision and Image Un-
derstanding, 104(2-3):249–257, 2006

multiple cameras. By using such controlled environment a high classification
accuracy and desirable invariances can be achieved. However, for most
practical cases, Weinland’s environment with five cameras around the scene is
too expensive or difficult to setup.

Efros et al.94 created stabilized spatio-temporal volumes for each object94 Alexei A. Efros, Alexander C. Berg,
Greg Mori, and Jitendra Malik. Recog-
nizing action at a distance. In ICCV,
pages 726–733, 2003

whose action is to be classified. For each volume a smoothed dense optical
flow field is extracted and used as descriptor. Their method is particularly well
suited for classifying the actions of distant objects where detailed information
is unavailable.

Yilmaz and Shah95 again use a spatio-temporal volume, but only project95 Alper Yilmaz and Mubarak Shah. Ac-
tions sketch: A novel action represen-
tation. In CVPR, pages 984–989. IEEE
Computer Society, 2005. ISBN 0-7695-
2372-2

the contour of each frame into the volume. Descriptors encoding direction,
speed and local shape of the resulting surface are generated by measuring
local differential geometrical properties.

Zelnik-Manor and Irani96 describe features derived from space-time gradi-96 Lihi Zelnik-Manor and Michal Irani.
Event-based analysis of video. In CVPR,
pages 123–130. IEEE Computer Society,
2001. ISBN 0-7695-1272-0

ents at multiple temporal scales. To compare two sequences of these features,
they use a sliding-window of fixed size and the distance between two such
windows is calculated as χ2-distance or Mahalanobis distance. Their method
works well to cluster a single long video sequence into similar actions, as well
as to recognize actions in real-time.

There is a large body of work which first recover the posture of the hu-
man actor by means of tracking and fitting a detailed model of the human
body. Action classification can then be performed by using the intrinsic model
parameters as features, providing great robustness and invariance. Represen-
tatively, let us cite the work of Yacoob and Black97, Ramanan and Forsyth98,97 Yaser Yacoob and Michael J. Black. Pa-

rameterized modeling and recognition
of activities. Computer Vision and Image
Understanding, 73(2):232–247, 1999

98 Deva Ramanan and David A. Forsyth.
Automatic annotation of everyday move-
ments. In Sebastian Thrun, Lawrence K.
Saul, and Bernhard Schölkopf, editors,
NIPS. MIT Press, 2003. ISBN 0-262-
20152-6

Agarwal and Triggs99 and for an unsupervised method, Song et al.100.

99 Ankur Agarwal and Bill Triggs. Learn-
ing to track 3D human motion from sil-
houettes. In ICML. ACM, 2004

100 Yang Song, Luis Goncalves, and
Pietro Perona. Unsupervised learning of
human motion. IEEE Trans. Pattern Anal.
Mach. Intell, 25(7):814–827, 2003

Comparing part-based and holistic representation, part-based rep-
resentations treat the video as a set of independent features, where each
feature is equally important, and by discarding the position information they
are robust against changes in both space and time dimensions. A practical
drawback of part-based representations is the variable size of the resulting
representations, which is often overcome by producing a histogram of fixed-
length. Naturally, part-based representations do not require tracking and are
often more resistant to clutter, as only few parts may be occluded.

Holistic representations derive a fixed-length description vector for each
object whose action is to be classified. Approaches using these representations
often require more preprocessing of the input data, such as object tracking,
registration, shape fitting or optical flow field calculation. Provided the
environment conditions can be controlled, these approaches perform very
well.

Each of the above methods has its particular strength but is also limited in
its application. In particular, the part-based methods discussed discard the
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temporal order of the parts, which contains useful information to disambiguate
actions. For example, consider the disciplines of hurdle race and long jump,
where the global temporal order of motions (running, jumping) is important
to discriminate between the two. Therefore, in this work we use a part-based
view but preserve information about the relative temporal order of spatio-
temporal words by proposing a classifier for a sequential representation.

In the next section we introduce labeled sequence structures as a specializa-
tion of the substructure poset framework introduced in the first chapter.

Labeled Sequence Structures

In order to apply our structured input framework, we first define the substruc-
ture poset, then a total order and the associated reduction mapping.

Definition 15 (Sequence) Given a ground alphabet set Σ, a sequence s ∈ (2Σ)∗,
s = (s1, s2, . . . , s`) is an ordered list of elements si, that are finite subsets of Σ, i.e.,
si ⊆ Σ. Let S be the set of all sequences and ∅ = () be the empty sequence. Let
` : S →N be the length of a sequence, i.e., the number of elements of the sequence.

s: ({a,b},{c},{a,b})
t: ({b},{a})
u: ({c},{c})
v: ({a},{a})
w: ({a,b},{a,c},{c},{a,b,c})
y: ({d},{a,d},{a,c})

Figure 25: Example sequences: each se-
quence is composed of elements, each
of which is a subset of the alphabet
Σ = {a, b, c, d}.

Some example sequences are shown in Figure 25.

Definition 16 (Subsequence) We define a partial order ⊆: S × S → {>,⊥}
such that for any s, t ∈ S we have s ⊆ t iff

∃(i1, . . . , i`(s)) with ip > iq for all p > q,

ik ≤ `(t) ∀k, such that ∀k = 1, . . . , `(s) : sk ⊆ tik .
w

y

t

∅

s

v

u

Figure 26: Hasse diagram of the subse-
quence relation poset structure for the
example sequences shown in Figure 25.
For example, t ⊆ s ⊆ w.

Note that the subsequence relation is defined such that a sequence matches
into a longer sequence if the individual elements of the shorter sequence can
be assigned in order to elements of the longer sequence, such that they are
subsets. The assignment can create arbitrary long gaps; only the order is
required.

Figure 26 shows examples of the subsequence relation for the sequences
shown in Figure 25. For example, we have v ⊆ s by matching the two {a}
elements of v to the first and third element of s, respectively.

The above definitions form a substructure poset.

Lemma 4 (Sequence Poset) (S ,⊆) is a substructure poset.

Proof. We have ∅ = () ⊆ s for all s ∈ S . The relation ⊆ is i) antisymmetric; for
this take s, t ∈ S and assume s ⊆ t, t ⊆ s. From this, we must have `(s) ≤ `(t)
and `(t) ≤ `(s) and thus `(s) = `(t). Due to index monotonicity we have
for all i = 1, . . . , `(s) that si ⊆ ti and ti ⊆ si, therefore si = ti and s = t.
The relation is ii) transitive; take s, t, u ∈ S and let s ⊆ t with (i1, . . . , i`(s))
and t ⊆ u with (j1, . . . , j`(t)). Then we also have s ⊆ u with (ji1 , ji2 , . . . , ji`(s)

).
The relation is iii) reflexive; for all s ∈ S we have s ⊆ s with (1, 2, . . . , `(s))
mapping. Thus (S ,⊆) is a substructure poset. �
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The substructure poset guarantees a high-capacity substructure-induced
feature space. However, for applying the substructure Boosting framework
we need to be able to enumerate S efficiently. To this end, if we choose option
(B) of Figure 8 and directly define a reduction mapping f then the implied
inverse reduction mapping allows efficient enumeration.

Definition 17 (Reduction Mapping for Sequences) Given (S ,⊆) defined on
a ground alphabet Σ, and given a total order ≤: Σ × Σ → {>,⊥}, we define
f : S \ {∅} → S as

f (s) =

{
(s1, s2, . . . , s`(s)−1) if s`(s) = ∅,
(s1, s2, . . . , s`(s) \ {e ∈ s`(s)|e′ ≤ e, ∀e′ ∈ s`(s)}) otherwise.

In Table 6 we illustrate iterative application of the reduction mapping to
the sequences shown in Figure 25. The reduction mapping is straightforward
to understand: remove the highest item in the last element. If there is no item
in the last element, remove the element.

s t u v w y

({a, b}, {a, c}, {c}, {a, b, c})
({a, b}, {a, c}, {c}, {a, b})
({a, b}, {a, c}, {c}, {a})
({a, b}, {a, c}, {c}, ∅)

({a, b}, {c}, {a, b}) ({a, b}, {a, c}, {c}) ({d}, {a, d}, {a, c})
({a, b}, {c}, {a}) ({a, b}, {a, c}, ∅) ({d}, {a, d}, {a})
({a, b}, {c}, ∅) ({a, b}, {a, c}) ({d}, {a, d}, ∅)
({a, b}, {c}) ({a, b}, {a}) ({d}, {a, d})
({a, b}, ∅) ({b}, {a}) ({c}, {c}) ({a}, {a}) ({a, b}, ∅) ({d}, {a})
({a, b}) ({b}, ∅) ({c}, ∅) ({a}, ∅) ({a, b}) ({d}, ∅)
({a}) ({b}) ({c}) ({a}) ({a}) ({d})
(∅) (∅) (∅) (∅) (∅) (∅)
∅ ∅ ∅ ∅ ∅ ∅

Table 6: Example reductions for the se-
quences shown in Figure 25.

Lemma 5 (Inverse Reduction Mapping for Sequences) Given (S ,⊆) with
ground alphabet Σ, the inverse f−1 : S → 2S of f is given as

f−1(s) = {t ∈ S \ {∅}| f (t) = s}
= {(s1, s2, . . . , s`(s), ∅)} ∪
{(s1, s2, . . . , s`(s) ∪ {e ∈ Σ \ s`(s)|e′ ≤ e, ∀e′ ∈ s`(s)}}.

Proof. Follows in a straightforward way from Definition 17. �
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Unlike in the previous chapter, where we considered the case of labeled
graphs, the inverse reduction mapping for sequences can be evaluated effi-
ciently. Therefore Algorithm 2 has output polynomial time complexity.

In the following section we explain how videos can be naturally represented
as labeled sequences.

Sequence Representation of Videos

As a basis of our sequence representation, we use the spatio-temporal detector
of Dollár which has shown good experimental performance in Niebles et al.101

101 Juan Carlos Niebles, Hongcheng
Wang, and Li Fei-Fei. Unsupervised
learning of human action categories us-
ing spatial-temporal words. In British
Machine Vision Conference, page III:1249,
2006and Dollár et al.102 for human action classification.
102 Piotr Dollár, Vincent Rabaud, Garri-
son Cottrell, and Serge Belongie. Be-
havior recognition via sparse spatio-
temporal features. In International Work-
shop on Performance Evaluation of Tracking
and Surveillance, pages 65–72, 2005

In the Dollár detector, a response function R = (I ∗ g ∗ hev)2 + (I ∗ g ∗ hod)2

is calculated at each spatio-temporal voxel (x, y, t) in the video volume I. In
the spatial directions, a 2D Gaussian kernel g with bandwidth σ is used, while
temporally, a quadrature pair of 1D Gabor filters

hev(t; τ, ω) = − cos(2πtω)e−t2/τ2

and
hod(t; τ, ω) = − sin(2πtω)e−t2/τ2

is used. The Gabor filters respond strongest on temporal intensity changes
that vary at the frequency ω, which has to be set in advance. Maxima of the
three dimensional function R define a sparse set of points in the video volume.
These maxima are the so-called interest points.

For each interest point found, we have the spatio-temporal coordinates
(x, y, t) as well as the descriptor, the concatenated vector of voxel values in the
neighborhood of the point. Typically, we have volumes of size 13 · 13 · 19 voxels,
so the descriptor is a 3211-dimensional vector. To reduce the dimensionality,
principal components analysis is used to keep only the projections of the
descriptor onto the 25 components of highest variance.

The reduced descriptors in R25 are clustered using k-means clustering to
produce a codebook of prototypes. Using the codebook, a video is represented
as a set of words of the form (x, y, t, w), where (x, y) are the coordinates in
the video frame t and w is the codebook index.

Finally, the words are sorted ascendingly by their time components t and
then grouped into temporal bins as shown in Figure 27, where the first frame a
feature occurred is denoted start, the last frame is denoted end. Two parameters
determine how the features are mapped into the temporal bins, i) the number
of temporal bins B, and ii) the temporal overlap τ, with 0 ≤ τ < 1. The
length of each temporal bin is simply the overall number of frames (end-start),
divided by B/(1 + τ), such that a large value of τ denotes a larger overlap.
The bins are distributed equidistant over the range of found features. Since
the bins are overlapping, it is possible that a word is assigned to more than
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two bins. Although for the experiments we will keep B fixed over all videos,
our representation and algorithms do not require this and we could have a
variable number of sequence elements.

Figure 27: Temporal binning scheme: A
number of overlapping temporal bins
are distributed equidistantly over the
video frames. Here B = 7, τ = 0.5.

timestart end

temporal bin size

temporal overlap

Now each video is encoded as a labeled sequence of sets of integers, such
that it fits our definition of sequence (Definition 15).

Classifier

Action recognition is a multiclass classification problem in general, but first
we focus on the binary classification problem. Let us denote the training
data as {(xn, yn)}`n=1, where xn is the sequence corresponding to a video and
yn ∈ {−1, 1} is a class label. We use the TCBoost algorithm (Algorithm 1) to
construct the classification function as a linear combination of weak hypothesis
functions. Our hypothesis functions are the substructure Boosting weak
learners, defined earlier (Definition 5).

Therefore we have the parameter domain of the weak learners as Ω =
S × {−1, 1} and a final learned classification function of the form

F(s; α) = ∑
(t,d)∈Ω

αt,dh(s; (t, d)),

with

h(s; (t, d)) =

{
d if t ⊆ s,
−d otherwise.

Learning therefore consists of producing a parameter vector α ∈ RΩ. After
learning we can classify a new sequence u by evaluating F(u; α).

To learn α in the experiments we will use TCBoost with the original Hinge
loss formulation of LPBoost, corresponding to the limit of the generalized
linear programming Boosting formulation (12) for p→ 1.

Using TCBoost as structure classifier allows us to learn two-class decision
functions. To solve a multiclass learning problem we use a 1-vs-1 class decom-
position in the form of a decision directed acyclic graph (DDAG)103, producing103 John C. Platt, Nello Cristianini, and

John Shawe-Taylor. Large margin DAGs
for multiclass classification. In NIPS,
pages 547–553. The MIT Press, 1999

for k classes k(k−1)
2 1-vs-1 problems. While this is similar to the usual 1-vs-1

decomposition, the DDAG offers the additional advantage that we do not
have to resolve ties during test time. Instead, for decision DAGs, the DAG
structure is not unique. We use the fixed decomposition as described in Platt
et al.

We now evaluate the approach experimentally.
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Experiments and Results

To evaluate our substructure approach, we use the KTH human action clas-
sification data set of Schüldt et al.104, available online105. It consists of 25

104 Christian Schüldt, Ivan Laptev, and
Barbara Caputo. Recognizing human
actions: A local SVM approach. In ICPR
(3), pages 32–36, 2004

105 http://www.nada.kth.se/cvap/

actions/

individuals, each performing six activities (boxing, hand-clapping, hand-
waving, jogging, running and walking) under four different environment
conditions. Together, with one broken video file removed, the data set totals
599 video clips. We used the training, validation and testing splits as pro-
posed in Schüldt et al., such that the sets contain 191, 192 and 216 samples,
respectively.

Typical frames from the six actions in the KTH data set are shown in
Figure 28.

Figure 28: KTH Action Classification
dataset with six actions and a total of 599

video sequences. The actions are shown
in alphabetical order: boxing, hand-
clapping, handwaving, jogging, running,
walking.

The spatio-temporal features were extracted as described in the previ-
ous section using the toolbox106 provided by Piotr Dollár with the default 106 http://vision.ucsd.edu/~pdollar/

research/research.htmlsettings.107

107 Parameters to stfeatures func-
tion: σ = 2, τ = 3, thresh =
0.0002, overlap_r = 1.85, shr_spt =
2, tau_spt = 1 and we use ω = 1

2τ for
all experiments.

Model selection is performed on the training and validation sets followed
by a single training run on the combined training+validation set with the best
parameters of the validation phase. The final reported classification accuracy
is the one evaluated once on the test set. Codebooks of sizes 128, 192, 256,
384, 512, 768 and 1024 codewords are created from the training set descriptors.
In all experiments, the same features and codebooks are used to produce
sequences as well as the histograms, such that all benchmarked approaches
use exactly the same features.

For model selection, the number of bins is varied from B = 1 to B = 15; the
temporal overlap τ = 0.5 remains fixed. The LPBoost regularization parameter
ν is set to 0.01, 0.05, 0.1 and 0.25. All combinations of codebook sizes, B and ν

have been tested.
For the model selection of the baseline classifiers, the histograms are pre-

processed in one of the following two ways, i) the 1-norm of the histogram
is normalized, or ii) the histogram is “binarized”, that is all non-zero entries
of the histogram are set to one. This is a common preprocessing step for

http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/
http://vision.ucsd.edu/~pdollar/research/research.html
http://vision.ucsd.edu/~pdollar/research/research.html
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bag-of-words models in computer vision.
As SVM kernel we use the linear kernel, the RBF Gaussian kernel and the

χ2-histogram-kernel

K(h, h′) = exp

− 1
A

1
2 ∑
{n:hn+h′n>0}

(hn − h′n)2

hn + h′n

 .

For the RBF Gaussian and χ2-kernel the kernel width has been selected as
the mean Euclidean and mean χ2 distance between all training samples,
respectively. This is a common heuristic choice known to work well in practice.
As multiclass decomposition both 1-vs-rest and 1-vs-1 decompositions have
been tested.

In total, for the SVM baseline all combinations of the codebook sizes,
histogram preprocessing methods, multiclass decompositions and kernel
choices are part of the model selection procedure. Thus the model selection
for the SVM baseline is much more exhaustive than in previous works108.108 Piotr Dollár, Vincent Rabaud, Garri-

son Cottrell, and Serge Belongie. Be-
havior recognition via sparse spatio-
temporal features. In International Work-
shop on Performance Evaluation of Track-
ing and Surveillance, pages 65–72, 2005;
and Christian Schüldt, Ivan Laptev, and
Barbara Caputo. Recognizing human ac-
tions: A local SVM approach. In ICPR
(3), pages 32–36, 2004

Results

The classification results of our Subsequence Boosting approach, the results
of the baseline SVM classifiers and the results from the literature are shown
in Table 7. The literature results are from Niebles et al. 109, Dollár et al. 110,

109 Juan Carlos Niebles, Hongcheng
Wang, and Li Fei-Fei. Unsupervised
learning of human action categories us-
ing spatial-temporal words. In British
Machine Vision Conference, page III:1249,
2006

110 Piotr Dollár, Vincent Rabaud, Garri-
son Cottrell, and Serge Belongie. Be-
havior recognition via sparse spatio-
temporal features. In International Work-
shop on Performance Evaluation of Tracking
and Surveillance, pages 65–72, 2005

Schuldt et al. 111, and Ke et al. 112.

111 Christian Schüldt, Ivan Laptev, and
Barbara Caputo. Recognizing human
actions: A local SVM approach. In ICPR
(3), pages 32–36, 2004

112 Yan Ke, Rahul Sukthankar, and Mar-
tial Hebert. Efficient visual event detec-
tion using volumetric features. In ICCV,
pages 166–173, 2005

During the model selection process a codebook with 768 codewords turned
out to be consistently the best for all tested classifier types. Each of our 1-vs-1
class Subsequence Boosting classifiers selected around 20-70 active patterns,
where the tendency is fewer and shorter patterns for classes that are easy to
distinguish (e.g. boxing versus running), and more and longer patterns for
difficult-to-separate classes.

Figure 29 visualizes the sequence of a single selected feature of a trained
classifier. In Figure 30 we further illustrate how the subsequences typically
match into unseen test sequences. The confusion matrix for our Subsequence
Boosting classifier is shown in Figure 31.

Our features and preprocessing seem to be of high quality, given that the
baseline SVM method produces better results than reported in the literature.
In part, this is also due to more thorough model selection, as noted above.
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1. element, 2 items: {498, 601}

2. element, 2 items: {115, 277}

498

601

115

277

Figure 29: A discriminative pat-
tern. Here, the pattern sequence
is {498, 601}{115, 277} and was se-
lected in the jogging-vs-walking classi-
fier. Each row in the figure shows a code-
book vector as 19 frames of size 13x13

over time. The pattern was assigned a
negative ω-weight, such that the pres-
ence of this pattern will influence the
decision towards the walking class.

Sequence matches

1 2 3 4 5 6 7 8 9 10 11 12 13

boxing 1

boxing 2

waving 1

waving 2

Figure 30: Visualization of how the most
influential patterns match in four un-
seen test sequences in the boxing-vs-
handwaving classifier, for the case of
a 768-word codebook and 13 temporal
bins. Each of the four rows shows a
distinct test videos, where the first two
correspond to boxing, the latter two to
handwaving. We visualize the 32 pat-
tern sequences of the decision stumps
with the highest coefficient value α. Se-
quences voting for boxing (ω = 1) are
shown at the top of each row in red (•)
and sequences voting for handwaving
(ω = −1) are shown at the bottom of
each row in blue (•). All four test se-
quences are classified correctly.

Method KTH accuracy

Niebles et al., BMVC 2006, LOO, pLSA 81.50

Dollár et al., 2005, LOO, SVM RBF 80.66

Schuldt et al., ICPR 2004, splits, SVM match 71.71

Ke et al., ICCV 2005, splits, forward feat.-sel. 62.94

baseline SVM linear bin, 1-vs-1 83.33

baseline SVM RBF bin, 1-vs-1 85.19

baseline SVM χ2 bin, 1-vs-1 87.04

Subsequence Boosting, B = 12, splits 84.72

Table 7: Results for the KTH human ac-
tion classification data set. For all the
baseline SVM and Boosting results the
model selection has been performed on
the validation set, followed by a sin-
gle training run on the joined train-
ing+validation set. The multiclass ac-
curacy shown is the one measured on
the final test set. For the baseline SVM
results, the best classifier on the valida-
tion set was found with a codebook size
of 768 and a regularization parameter of
C = 10 for all kernels. The subsequence
boosting result is obtained with a code-
book size of 768, B = 12 and ν = 0.05.



94 learning with structured data

86 14 0 0 0 0

11 89 0 0 0 0

3 6 92 0 0 0

0 0 0 69 19 11

0 0 0 11 86 3

0 0 0 11 3 86

box clap wave jog run walk

box

clap

wave

jog

run

walk

Figure 31: Confusion matrix of the
Subsequence Boosting classifier on the
KTH test set. The classifier was pro-
duced with a 768 element codebook,
B = 12 and ν = 0.05. Confusions hap-
pen between the boxing, hand-clapping
and hand-waving classes, as well as be-
tween the jogging, running and walking
classes.

Discussion

We achieved state-of-the-art classification results using our proposed algorithm
and report competitive results when compared to other approached from the
literature.

Our algorithm has favorable properties, such as increased interpretability
of the resulting classification function, explicit feature selection, global optimal
convergence and fast testing times, but in the end we did not show a clear
and significant improvement of the classification accuracy over a histogram
approach with a SVM classifier and nonlinear kernel.

This is quite surprising and it is not obvious why this is the case. Possibly,
the KTH data set is favorable to histogram based classifiers because each
action is quite homogeneous and does not involve global changes or complex
behavior.

Also, as with the reported literature results, in our classifier the confusions
happen in two clusters, namely i) boxing, handclapping and handwaving,
and ii) jogging, running and walking. Each of these actions might be easily
confused on both a local temporal scale as well as a coarse temporal scale,
and we might very well do not gain much by including the temporal order of
features.

Conclusion

In this chapter we proposed a novel classifier for sequence representations,
suitable for action classification in videos. A goal of our work is to make
efficient pattern selection algorithms and the substructure based classification
framework accessible to the computer vision community. Experimentally we
achieved state-of-the-art performance, but our original motivation of improv-
ing accuracy by incorporating temporal relationships has not been fulfilled.

Given this result, we would like to apply our approach to classify higher
order action patterns in the future with the hope that for these actions the
temporal ordering plays a more important role. Unfortunately the lack of an
openly available action classification data set for such high level actions is
currently a problem113.113 All algorithms and experiments are

made available under the GNU General
Public License at http://www.kyb.mpg.

de/bs/people/nowozin/pboost/

http://www.kyb.mpg.de/bs/people/nowozin/pboost/
http://www.kyb.mpg.de/bs/people/nowozin/pboost/
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Structured Prediction

All models are wrong, but some are useful.

George Box

All models are wrong, and increasingly you
can succeed without them.

Peter Norvig

Introduction

This chapter is concerned with prediction tasks in which the target variable
y comes from a structured domain.114 Structured in this setting is a vague 114 An alternative name is structured out-

put learning.notion, but usually it is assumed that the target domain satisfies one or more
of the following criteria:

1. the set of possible output values y ∈ Y and its dimensionality depends on
the instance x, i.e., the target domain Y(x) is a function of the instance x,

2. not all of the representable target values are allowed, i.e., there exist
constraints on what values are feasible predictions,

3. there exists some formalizable “structure” on the output space, for example
a semi-metric distance function on the target domain.115 115 A semi-metric distance satisfies non-

negativity d(y, y′) ≥ 0, identity of indis-
cernibles d(y, y′) = 0 ⇔ y = y′, and
symmetry d(y, y′) = d(y′, y).

Typical machine learning problems like classification and regression do not
satisfy these criteria because the output space is small and fixed and does not
have a structure which is particularly problem-dependent. In this thesis we
limit ourselves to the case where the target variable comes from a finite but
possibly very large set. Many problems related to structured prediction such
as inference and learning then become combinatorial optimization problems.

The purpose of this chapter is to provide a partial literature overview of
structured prediction methods with a focus on techniques popularly used in
computer vision. It does not contain novel research results.

When dealing with a structured domain, it is natural to represent
beliefs as to what value is the correct prediction as a probability distribution
over the elements of the underlying feasible set. However, because this set
is large116 concise representation of this distribution becomes an issue. Such 116 Imagine as an example an image la-

beling task where each pixel has one of
two states. The number of possible la-
belings grows as O(2n) in the number n
of pixels.

a representation need not only be compact, but it should allow efficient
manipulation and computation for a number of desirable tasks.
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Graphical Models

Probabilistic Graphical Models
117 are models addressing these issues.117 Steffen L. Lauritzen. Graphical Models.

Clarendon Press, Oxford, 1996. ISBN 0-
19-852219-3; and Christopher M. Bishop.
Pattern Recognition and Machine Learning.
Springer, 2006

They allow efficient representation as well as manipulation and computation
of interesting quantities related to the specific distribution or family of distri-
butions which they represent. We will use them in this and the subsequent
chapter.

Graphical models come in two flavors. Directed graphical models, also known
as Bayesian networks and undirected graphical models, also known as Markov
networks or Markov random fields (MRF). Both represent a family of joint
distributions over the target domain. They differ in their factorization and
conditional independence relations, which specify the way the distribution can
be decomposed into smaller parts and constrain the relationship between these
parts. Because we will eventually apply an undirected graphical model to
solve computer vision problems, we restrict ourselves to undirected graphical
models only, which are more popular and better suited for computer vision
applications.118118 Some researchers disagree for practi-

cal purposes, see e.g.

Justin Domke, Alap Karapurkar, and
Yiannis Aloimonos. Who killed the di-
rected model? In CVPR. IEEE Computer
Society, 2008

Undirected graphical models, also known as Markov networks, specify
a family of probability distributions by means of an undirected, simple graph
G = (V, E). The graph encodes a set of conditional independence assump-
tions about all distributions in the family; by making use of this conditional
independence the distribution can be efficiently represented and efficient
algorithms can be derived.

In this thesis we will denote random variables by uppercase letters, their
values by the corresponding lowercase ones. For example, if X is a random
variable taking values on a finite set X , then x ∈ X is a specific value and
p(X = x) = p(x) is the probability.

For discrete random variables X,Y,Z conditional independence of X and
Y given Z, written as X ⊥⊥ Y|Z, simply states that the conditional joint
probability of X and Y factorizes into the separate conditional probabilities of
X and Y, i.e., we have for all x, y, z that

P(X = x, Y = y|Z = z) = P(X = x|Z = z)P(Y = y|Z = z).

To make clear the independence assumptions encoded by the graph we now
define two properties known as Markov properties. For this, assume a given
set of random variables defined over the nodes, (Xi)i∈V taking values in a
probability space (Xi)i∈V . The joint space is denoted by X , i.e., we have
X = X1 × X2 × · · · × X|V| and the vector of random variables X ∈ X is
denoted by X = (X1, . . . , X|V|). Let us further denote by XA the subset of
random variables indexed by A ⊆ V, and by xA the subset of elements of a
vector x ∈ X restricted to A. Likewise, if A = {i} we simply write Xi and xi.

The following two properties are defined by means of the given graph G.
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119 119 There exists another Markov property
called the local Markov property, see the
Lauritzen book on graphical models.1. Pairwise Markov Property: we have ∀i, j ∈ V : i 6= j ∧ (i, j) /∈ E: i ⊥⊥

j |V \ {i, j}.
2. Global Markov Property: we have for all disjoint sets I ⊂ V, J ⊂ V, S ⊂ V

with S being a vertex-separator set of I, J in G that I ⊥⊥ J |S.

The global Markov property implies the pairwise Markov property by taking
I = {i}, J = {j} and S = V \ {i, j}.

It is natural to ask how, given a graph G, a probability distribution satisfying
the above two properties with respect to G can be specified. It turns out that all
distributions which can be represented by a factorization respecting the graph
structure automatically satisfy the global Markov property. Such factorization
is of the form

p(X = x) = p(x) =
1
Z ∏

A⊆V
A complete

ψA(xA), (25)

where a subset A of the vertex set is said to be complete if A × A = EA,
such that for each pair (i, j) ∈ A× A we have (i, j) ∈ E. Further, we have
non-negative factors ψA : XA → R, also known as potential functions120 and a 120 Some authors, e.g. Wainwright, use

the word potential function for functions
in the exponential.

normalization constant referred to as partition function,

Z = ∑
x∈X

∏
A⊆V

A complete

ψA(xA).

When a probability distribution can be described by (25) it is said to factorize
according to G. The factorization is not necessarily unique and during modeling
one often starts by specifying the factorization directly such that it best suits
the task at hand.

A factorization according to G implies the global Markov property with
respect to G which in turn implies the pairwise Markov property with respect
to G. For a proof of existence of this factorization and its relations to the
Markov properties see Proposition 3.8 in Lauritzen121.

121 Steffen L. Lauritzen. Graphical Models.
Clarendon Press, Oxford, 1996. ISBN
0-19-852219-3

The above argument is an implication: a distribution of the form (25)
satisfies the Markov properties with respect to G. For the other direction, if a
given distribution p(x) satisfies the pairwise Markov property with respect
to a given graph G and it has p(x) > 0 for all x ∈ X then the converse is also
true, i.e., it factorizes according to G. This result is known as the Hammersley-
Clifford theorem.122 Additionally, not only there exists a factorization of the

122 Although not the convention, some
authors limit their definition of “ran-
dom field” to distributions which satisfy
p(x) > 0 for all x ∈ X . See for example
section 3.1 in:

Gerhard Winkler. Image Analysis, Ran-
dom Fields, and Dynamic Monte Carlo
Methods: A Mathematical Introduction.
Springer, 1995

form (25), but moreover a limited form (25) restricted to maximal cliques123 is

123 A clique is a dense subgraph G′ =
(V′, E′) with V′ ⊆ V, V′ ×V′ = E′ ⊆ E.
A clique is maximal if there is no superset
B, with A ⊂ B ⊆ V which is also a
clique.

guaranteed to exist, i.e., a factorization which has ψA(xA) = 1 whenever the
subgraph induced by A is not a maximal clique. The distribution can therefore
be represented as

p(X = x) = p(x) =
1
Z ∏

C∈C
ψC(xC),
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where C is the set of all cliques in G. In general however, we will only assume
that there exists a x ∈ X such that p(x) > 0 and there can be some x ∈ X for
which for some factors we have ψA(xA) = 0. From now on we will use the
shorthand notation p(x) to denote p(X = x).

Markov Random Fields for ImagesYi

Xi

Figure 32: Typical MRF setup in com-
puter vision: a 3-by-3 pixel grid with
two random variables Xi , Yi for each
pixel i. The observation variable Xi
could be the measured image inten-
sity of the pixel, and the latent variable
Yi ∈ {0, 1} could represent that the pixel
is a foreground pixel.

When applying undirected graphical models to images, one typically asso-
ciates to each pixel i in the image two random variables: one observation
variable Xi and one variable Yi representing a latent state of interest. For
example, Xi ∈ {0, 1, . . . , 255} might represent the measured pixel intensity in
the image and Yi ∈ {0, 1} represents whether the pixel is part of a foreground
object. The graph structure of the random field is typically derived by a fixed
neighborhood relation. Figure 32 shows a Markov random field for nine pixels
where neighbors in the 4-neighborhood are connected.

The central modeling assumption made in this construction is that the
observation variables X are conditionally independent given the latent states Y.
This assumption can be understood visually in the graph shown in Figure 32

by means of the global Markov property: any pair of Xi, Xj is conditionally
independent on the set of latent variables Y.

In the factorized representation (25) we have not specified the functional
form of the factors ψA. For reasons which will become clear later it is conve-
nient to represent these factor functions as exponentials of the negative of an
energy function EA, i.e., to define each factor ψA in (25) as

ψA(xA) = exp {−EA(xA)} .

This representation is called Boltzmann distribution and the energy function
EA : XA → R can be arbitrarily defined. Low energies correspond to likely
configurations, and high energies to unlikely ones.

We now simplify the notation used in (25) by using energy functions.
In the above image example we have two sets of random variables, the
observations X and the latent states Y. Therefore (25) can be rewritten to
make clear the two sets of variables as

p(x, y) =
1
Z ∏

A⊆V
A complete

ψA(xAx , yAy) =
1
Z ∏

A⊆V
A complete

exp{−EA(xAx , yAy)}, (26)

where we denote by Ax ∪ Ay = A the disjoint sets of indices of random
variables, and by xAx and yAy the subsets of random variables themselves.
The partition function is

Z = ∑
(x,y)∈X×Y

∏
A⊆V

A complete

exp{−EA(xAx , yAy)}.
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Because a product of exponentials is equivalent to an exponential of sums of
the individual inner terms, we can define a joint energy function as

E(x, y) := ∑
A⊆V

A complete

EA(xAx , yAy), (27)

such that (26) becomes

p(x, y) =
1
Z

exp{−E(x, y)}, (28)

with Z = ∑(x,y)∈X×Y exp(−E(x, y)). Therefore, specifying the distribution
p(x, y) has been reduced to specifying the form and decomposition of the
energy function.

A typical energy function for the example shown in Figure 32 would
take into account the a priori probability of a pixel being a foreground pixel.
It would also model the pairwise relations between adjacent yi, yj as nearby
pixels are likely to be correlated in their property of being foreground, such
that yi = 1 would make it more likely that yj = 1 and vice versa. Another
part of the energy function would model the pairwise relation between the
observation xi and its latent state yi, that is, the energy would couple the
observed pixel intensity to the probability of being foreground. For example in
some applications pixels with high intensity are more likely to be foreground
pixels.

The decomposition into factors in (25) or equivalently into subsets A
in (27) can be most conveniently described with a so called factor graph124.

124 Frank R. Kschischang, Brendan J.
Frey, and Hans-Andrea Loeliger. Factor
graphs and the sum-product algorithm.
IEEE Transactions on Information The-
ory, 47(2):498–519, February 2001; and
Christopher M. Bishop. Pattern Recog-
nition and Machine Learning. Springer,
2006

Yi

Xi

ψ2
i

ψ1
i

ψ3
i,k Yk

Figure 33: Typical factor graph for our
MRF example. Two kind of pairwise po-
tentials couple Xi , Yi and Yi , Yk, respec-
tively. One unary potential per pixel sets
the prior probability distribution p(yi).

A factor graph is a bipartite125 graph consisting of a set of factor nodes and

125 A graph is bipartite if its vertex set
can be partitioned into two sets such
that there exist only edges between the
two sets. For a factor graph only edges
between factor nodes and variable nodes
are allowed.

variable nodes. Factor graphs make the form of the factorization specific. For
our example shown in Figure 32 one suitable factorization as a factor graph is
shown in Figure 33.

Each square-shaped factor node represents a factor depending only on its
adjacent variables. Conversely, each round node represents a random variable
and is connected only to factor nodes. In our example we would have three
kinds of factors,

1. ψ1
i : Yi → R, a so called unary potential for the a priori beliefs p(Yi),

2. ψ2
i : Xi ×Yi → R, the pairwise potential linking observation and latent state

of a pixel, and

3. ψ3
i,k : Yi×Yk → R, the pairwise potential related to the adjacent pixels’ latent

states.

In terms of expressing these factors as exponentials of energy functions (27),
we simply define ψ1

i (yi) := exp{−E1
i (yi)}, ψ2

i (xi, yi) := exp{−E2
i (xi, yi)}, and

ψ3
i,k(yi, yk) := exp{−E3

i,k(yi, yk)}.
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Inference

We will later make the exact functional form of the energies concrete. Assume
for now that we found a suitable energy function for the problem and are
given an observed image x ∈ X with the task to find a latent state y ∈
Y corresponding to x. This is one example of an inference task: given a
distribution and some observations, infer something about other random
variables.

In our setting we are given p(X = x, Y) in terms of an energy function and
the observations x, and want to say something about the unobserved variables
Y. We can do this by stating the conditional probability over y ∈ Y as

p(y|x) =
p(x, y)
p(x)

,

where p(x) is the same for all y, hence dropping it retains proportionality,
that is

p(y|x) ∝ p(x, y).

If we want to find the most probable y ∈ Y by maximizing p(y|x), we have

y∗ := argmax
y∈Y

p(y|x) = argmax
y∈Y

p(x, y)

= argmax
y∈Y

1
Z

exp{−E(x, y)} = argmax
y∈Y

exp{−E(x, y)}

= argmin
y∈Y

E(x, y).

The last step follows because exp : R → R+ is a monotonically increasing
function of its argument. From the derivation, the state y∗ with the minimum
energy E(x, y∗) is the most probable configuration given that we have observed
the image x.

Finding the most likely state, i.e., the state with the maximum a-posteriori
probability (MAP) is known as the MAP-MRF problem. Because this problem
will be important in what follows, we define it separately.

Problem 3 (MAP-MRF problem) Given a distribution p(x, y) over X ×Y of the
form

p(X = x, Y = y) =
1
Z

exp{−E(x, y)},
with an energy function E : X × Y → R, and given an observation x ∈ X , the
problem of finding

y∗ = argmax
y∈Y

p(x, y)

is called the MAP-MRF problem.

The MAP-MRF problem is NP-hard in general, but later in this chapter we
will describe methods to solve the problem approximately. If the graph has a
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special structure, such as being a chain or a tree, the problem can be solved
efficiently. For all typical models used in computer vision, this is unfortunately
not the case.

Conditional Random Fields

The MRF model (28) is said to be a generative model because it directly specifies
the joint distribution p(x, y). But during prediction time we are interested
only in p(y|x), a conditional distribution. Moreover, we always observe x and
therefore modeling p(x) is more a burden than a degree of freedom we can
use to our advantage; it is not needed for solving the MAP-MRF problem.

Conditional Random Fields (CRF), first proposed by Lafferty, McCal-
lum and Pereira126, directly model p(y|x). The CRF model is said to be a 126 John Lafferty, Andrew McCallum,

and Fernando Pereira. Conditional ran-
dom fields: Probabilistic models for seg-
menting and labeling sequence data. In
ICML, 2001

discriminative model because it does not include an explicit model of p(x). As
a particular MRF, CRFs are undirected graphical models.127

127 An excellent introduction into Con-
ditional Random Fields and the differ-
ences between generative and discrimi-
native models for structured prediction
can be found in:

Charles Sutton and Andrew McCal-
lum. An introduction to conditional ran-
dom fields for relational learning. In
Introduction to Statistical Relational Learn-
ing, chapter 4. 2007

In a CRF corresponding to our MRF for images, the conditional distribution
p(y|x, w) is given as

p(y|x, w) =
1

Z(x, w)
exp{−E(y; x, w)}, (29)

with partition function

Z(x, w) = ∑
y∈Y

exp{−E(y; x, w)}. (30)

The functional form of (29) resembles (28), the MRF joint probability. In
fact, the hypothesis space considered by the two models is the same. The
difference lies in the training of the two models. A CRF is trained by means
of the conditional likelihood, a point we will elaborate on in the next section.

Advantages of Discriminative Models

We now discuss the advantages of the discriminative approach. The Markov
random field models p(X, Y) and implicitly includes a model for p(X). The
conditional random field models p(Y|X = x) directly, without explicitly
specifying a model of p(X).

Intuitively the direct modeling of p(Y|X = x) appeals to the Vapnik prin-
ciple128: never solve a problem that is more general than what you actually 128 Vladimir N. Vapnik. Statistical Learn-

ing Theory. Wiley, New York, 1998need to solve.
In general, modeling of p(x) is indeed difficult because the feature functions

depending on x are often highly correlated across nodes. For example an image
feature suitable for image segmentation might contain information similar to
another node’s feature. We would like to use the features for both nodes but
they are clearly not independent. Other examples of dependent features can
be found in Sutton and McCallum129.

129 Charles Sutton and Andrew McCal-
lum. An introduction to conditional ran-
dom fields for relational learning. In
Introduction to Statistical Relational Learn-
ing, chapter 4. 2007



104 learning with structured data

For dealing with this dependency, we can either choose to ignore it and
thus work with a simple but wrong model, or we have to model p(x), leading
to intractable models. The independence assumption is encoded as missing
edges between X-nodes in Figure 32. Modeling dependency would mean
adding edges between these X-nodes.

Minka130 provides another point of view on generative versus discrim-130 Tom Minka. Discriminative models,
not discriminative training. Technical
Report MSR-TR-2005-144, Microsoft Re-
search (MSR), October 2005

inative models: he argues that there is no such thing as the “conditional
likelihood” but that by training a model using `c in (33), one implicitly trains
using the standard likelihood function of a changed model which decouples
p(y|x, w) and a new term p(x|w′). Because w′ ∈ RF is an additional set of
parameters unrelated to w, the degree of freedom of the model is enlarged.
The new likelihood function decouples w and w′, and by dropping the terms
related to w′ we obtain the “conditional likelihood”. Dropping the terms is
possible because p(x|w′) and thus w′ is never used in computations related
to p(y|x, w).

This idea has been advanced further by introducing an explicit coupling
between the generative p(x|w′) term and the discriminative term p(y|x, w)
using a joint prior p(W = w, W ′ = w′) in Lasserre et al.131. The resulting131 Julia A. Lasserre, Christopher M.

Bishop, and Thomas P. Minka. Princi-
pled hybrids of generative and discrim-
inative models. In CVPR, pages 87–94.
IEEE Computer Society, 2006

models are coined generative-discriminative hybrid models.
Throughout the machine learning community there is consensus that if only

p(y|x, w) is required and all training data is fully observed, then conditional
random fields outperform their generative MRF counterpart.

Learning Random Field Models

The potential functions ψ1
i , ψ2

i , and ψ3
i,k and their corresponding energies from

our example can be thought of as numerical tables associated to each factor
in Figure 33. Each entry in the table contains the real valued non-negative
potential for the corresponding states.

Because each pixel and neighborhood have the same interpretation, typi-
cally the potential functions — and therefore the tables — are replicated for
each pixel and pairwise edge, such that ψ1

i = ψ1
j and ψ2

i = ψ2
j for all i, j, as

well as ψ3
i,k = ψ3

j,l , for all pairs (i, k), (j, l). In effect, this means that only one
table has to be specified for each type of potential, independent of the image
size.

In some applications, such as dense stereo reconstruction, computation of
optical flow and panorama stitching, the manual design of the energy tables
is a successful strategy and leads to state-of-the-art performance132.132 Yuri Boykov and Vladimir Kol-

mogorov. An experimental comparison
of min-cut/max-flow algorithms for en-
ergy minimization in vision. PAMI, 26

(9):1124–1137, 2004

For high-level vision tasks such as object recognition and image segmen-
tation, however, this is not enough. There, it is often unclear how a simple
observation variable like pixel intensity relates to a high-level latent state, such
as “being a pixel belonging to an object of class car”. Then, the manual design
of energies becomes infeasible.
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To overcome this limitation, a suitable potential function can be learned
given fully observed training data. The basic idea to enable learning is this:
specifying a potential function fixes the distribution. However, by specifying
a class of possible potential functions, learning can be posed as the problem of
selecting the right potential function from this class.

From this point of view, learning a random field boils down to two decisions
to make, i) specifying the class of potential functions to use, and ii) having a
method to select a good one, given the training data. We now discuss these
two issues separately.

Specifying the Potential Function Class

A class of potential functions can be defined by parametrizing the energy
functions. The parametrized energy function133 is written as E(x, y; w) with 133 We denote this parameter by w

throughout this and the following chap-
ter.E(x, y; w) := ∑

A⊆V
A complete

EA(x, y; w), (31)

for some convenient factorization of the graph. In the example, each factor in
the factor graph of Figure 33 would be one term in the sum.

The most common method to parametrize the individual energy functions
is by means of an inner product between the weight vector w ∈ RF and a
feature function f . The feature function maps observations and latent states to
a vector in RF. In our example, consider ψ2

i , the pairwise potential between
observations and latent state. We define

ψ2
i (xi, yi) = exp{−E2

i (xi, yi; w)} = exp{−w> f 2
i (xi, yi)}.

This change frees us from having to define a fixed energy function. Instead,
we only define a feature function f 2

i : Xi × Yi → RF. The output of the
feature function implicitly defines the energy by means of the inner product
w> f 2

i (xi, yi) and thus the potential ψ2
i (xi, yi) depends on the free parameters

w. We write ψ2
i (xi, yi; w) from now on to make this dependency clear, and

also denote the joint distribution by p(x, y; w).
Typically in a computer vision MRF model only a few distinct types of

feature functions are used and these are replicated for all pixels, i.e., we would
have f 2

i := f 2 for all i. To design a good feature function we can incorporate
features known to be relevant to the application task. This is an easier task
than designing the complete energy function.

Another typical feature of parametrized MRF models is to associate a
separate weight vector with each type of potential function. To illustrate this,
for our example, we write the full energy as

E(x, y; w) = ∑
i

w>1 f 1(yi) + ∑
i

w>2 f 2(xi, yi) + ∑
(i,k)∈E

w>3 f 3(yi, yk),

such that each feature function has its own weight vector w1, w2 and w3, as
well as its own output dimension F1,F2, and F3, respectively.
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Maximum Likelihood Training

For training we assume a given set {(xn, yn)}n=1,...,N of N training instances
(xn, yn) ∈ X × Y with observed latent states y. The training instances are
assumed to be independent and identically distributed (iid).

The distribution specified by (31) describes a family of distributions where
each member of the family is indexed by one particular value of w ∈ RF.
Suppose there exists a true distribution q(x, y) and we would like to estimate
the parameters w in such a way that p(x, y; w) best resembles q(x, y).

The Kullback-Leibler divergence DKL(q‖p; w) is a natural measure of sim-
ilarity defined on distributions. For our case of discrete distributions it is
defined as follows.

DKL(q‖p; w) = ∑
(x,y)∈X×Y

q(x, y) log
q(x, y)

p(x, y; w)
.

Finding the vector w∗ ∈ RF which minimizes DKL(q‖p; w) can then be seen
to produce the best approximation to q.

Unfortunately, q(x, y) is not known. But because the training set is taken to
be an iid sample from q, it can be used to construct an empirical approximation
to q(x, y). We have

argmin
w∈RF

DKL(q‖p; w)

= argmin
w∈RF

∑
(x,y)∈X×Y

q(x, y) log
q(x, y)

p(x, y; w)

= argmin
w∈RF

 ∑
(x,y)∈X×Y

q(x, y) log q(x, y)

︸ ︷︷ ︸
constant

− ∑
(x,y)∈X×Y

q(x, y) log p(x, y; w)


= argmax

w∈RF
∑

(x,y)∈X×Y
q(x, y) log p(x, y; w)

≈ argmax
w∈RF

N

∑
n=1

log p(xn, yn; w) (32)

= argmax
w∈RF

N

∏
n=1

p(xn, yn; w).

The last expression is the maximum likelihood estimation problem, where
the true distribution q(x, y) is approximated as empirical expectation over the
training samples. From the above derivation the joint likelihood of a parameter
w can be written as

`(w) =
N

∏
n=1

p(xn, yn; w).

Finding the most likely parameter which generated the samples is called
maximum likelihood estimation and can be posed as optimization problem over
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RF by maximizing `(w):

w∗ = argmax
w∈RF

N

∏
n=1

p(xn, yn; w)

= argmax
w∈RF

N

∑
n=1

log p(xn, yn; w)

= argmax
w∈RF

N

∑
n=1

log
1

Z(w)
exp{−E(xn, yn; w)}

= argmin
w∈RF

N

∑
n=1

E(xn, yn; w)− N log Z(w).

Solving for w∗ is in general difficult because of the log Z(w) term: comput-
ing this partition function exactly is NP-hard134, but approximations to the 134 Gerhard Winkler. Image Analysis, Ran-

dom Fields, and Dynamic Monte Carlo
Methods: A Mathematical Introduction.
Springer, 1995

partition function exist135.

135 Martin J. Wainwright, Tommi
Jaakkola, and Alan S. Willsky. A new
class of upper bounds on the log
partition function. IEEE Transactions on
Information Theory, 51(7):2313–2335, 2005

For some special graphs such as chain graphs and trees it is possible to
compute the partition function because the summation over all states can be
carried out using dynamic programming algorithms136. The most popular

136 Christopher M. Bishop. Pattern Recog-
nition and Machine Learning. Springer,
2006

application of maximum-likelihood training for Markov random fields has
therefore traditionally been limited to these models, for example the Hidden
Markov Models (HMM)137.

137 Richard O. Duda, Peter E. Hart, and
David G. Stork. Pattern Classification, vol-
ume November. John Wily & Sons, Inc.,
New York, second edition, 2000. ISBN
0471056693

Conditional Training

For conditional random fields the training procedure is similar to the one
above, but the conditional likelihood is used in place of the likelihood function.
Given a fully observed, iid training set {(xn, yn)}n=1,...,N the conditional
likelihood is given as

`c(w) =
N

∏
n=1

p(yn|xn, w) (33)

When using a prior distribution p(w) over the parameters, we have the poste-
rior distribution p(w|{(xn, yn)}n=1,...,N) by Bayes rule and the iid assumption
given as

p(w|{(xn, yn)}n=1,...,N) = p(w)
p({(xn, yn)}n=1,...,N |w)

p({(xn, yn)}n=1,...,N)

= p(w)
N

∏
n=1

p(xn, yn|w)
p(xn, yn)

= p(w)
N

∏
n=1

p(yn|xn, w)
p(yn|xn)

.
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The optimal MAP estimate of the parameter vector w given a prior p(w) can
therefore be inferred by maximizing p(w|{(xn, yn)}n=1,...,N), obtaining

w∗ := argmax
w∈RF

(
N

∏
n=1

p(yn|xn, w)
p(yn|xn)

)
p(w)

= argmax
w∈RF

N

∑
n=1

log p(yn|xn, w) + log p(w)

= argmin
w∈RF

N

∑
n=1

E(yn; xn, w)−
N

∑
n=1

log Z(xn, w)− log p(w).

Like for the MRF training, different prior distributions p(w) lead to differ-
ent regularizing functions. The difficulty of computing the partition function
remains, but note that different from the maximum likelihood training of the
Markov random field, the partition function does depend on the observation
xn of each individual instance. Therefore (30) sums only over the latent states,
whereas for the MRF training the summation is over all states in X ×Y .

Regularization

Regularization can be used to avoid overfitting in case there are few train-
ing instances or many given features (F � N). The use of regularization
can be derived in a sound way by specifying a prior distribution over pos-
sible values of w. We assume a prior distribution p(w) and an iid training
set {(xn, yn)}n=1,...,N are given and use Bayes rule to derive the posterior
distribution over parameters as

p(W = w|X, Y) =
p({(xn, yn)}n=1,...,N |w)p(w)

p({(xn, yn)}n=1,...,N)

= ∏N
n=1 p(xn, yn|w)

∏N
n=1 p(xn, yn)

p(w)

∝

(
N

∏
n=1

p(xn, yn|w)

)
p(w).

A Bayesian statistician is interested in the full distribution
p(W|{(xn, yn)}n=1,...,N) and its properties. We are only interested in the
maximum a-posteriori estimate w∗ under our prior distribution p(W) and
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hence we explicitly optimize for w∗ as follows.

w∗ = argmax
w∈RF

(
N

∏
n=1

p(xn, yn|w)

)
p(w)

= argmax
w∈RF

N

∑
n=1

log p(xn, yn|w) + log p(w)

= argmax
w∈RF

N

∑
n=1

log
1

Z(w)
exp{−E(xn, yn; w)}+ log p(w)

= argmin
w∈RF

N

∑
n=1

E(xn, yn; w)− N log Z(w)− log p(w).

We are free to choose a prior distribution at will but a common prior
distribution is the multivariate Normal distribution N (0, σ2 I) such that

− log p(w) = log
F

∏
i=1

1
σ
√

2π
exp

{
− 1

2σ2 w2
i

}
=

1
2σ2 ‖w‖2

2 − F log
1

σ
√

2π︸ ︷︷ ︸
constant

and hence the function − log p(w) is strictly convex, making w∗ unique. Alter-
native popular priors include the multivariate Laplace distribution of the form

p(w; σ) =
1

(4σ2)F exp

{
− 1

2σ2

F

∑
i=1
|wi|

}
. (34)

Both the multivariate Normal and the multivariate Laplacian distribution
are members of the general family of the p-generalized Normal distributions138. 138 Irwin R. Goodman and Samuel Kotz.

Multivariate θ-generalized normal dis-
tributions. Journal of Multivariate Analy-
sis, 3(2):204–219, June 1973; and Fabian
Sinz, Sebastian Gerwinn, and Matthias
Bethge. Characterization of the p-
generalized normal distribution. Journal
of Multivariate Analysis, 100(5):817–820,
May 2009

When the prior (34) is used to regularize the maximum likehood estimation
problem it induces sparse weight vectors. For the regularization it can be more
conveniently expressed by means of one rate parameter λ > 0 with λ = 1

2σ2

such that

− log p(w; λ) = λ
F

∑
i=1
|wi|+

(
2
λ

)n

︸ ︷︷ ︸
constant

.

For the regularized maximum likelihood estimation problem the difficulty of
computing Z(w) remains.

In the next sections we will introduce alternative methods to infer a good
parameter w. One popular method is based on a generalization of Support
Vector Machine (SVM) learning to structured prediction tasks. The principal
advantage of the method is that it does not require the computation of the
partition function but only repeated solution of MAP-MRF problems.
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Alternative Training Procedures

Although the maximum (conditional) likelihood training discussed in the
previous section is arguably the most popular training procedure, for many
problems arising in computer vision it is intractable. The intractability arises
because for general graphs computing the partition function Z(x, w) involves
the summation over all possible labelings.

Because of this difficulty a number of approximations and alternative train-
ing procedures have been invented. We now discuss in detail two popular
methods well-suited to parameter learning, the structured support vector
machine and pseudolikelihood training. At the end of this section we addi-
tionally provide a brief survey of the literature on training procedures and
recent trends in computer vision.

Training using Structured Support Vector Machines

This section discusses a training method known as Structured Support Vector
Machine. To use structured SVM training to train CRFs has been a recent trend
in computer vision139.139 Matthew B. Blaschko and

Christoph H. Lampert. Learning
to localize objects with structured
output regression. In ECCV, 2008;
Yunpeng Li and Daniel Huttenlocher.
Learning for stereo vision using the
structured support vector machine.
In CVPR, 2008; and Martin Szummer,
Pushmeet Kohli, and Derek Hoiem.
Learning CRFs using graph cuts. In
ECCV, 2008

Taking a step back, what properties should any reasonable training proce-
dure have? First, it should produce a prediction function that generalizes well
to unseen instances. Second, it should try to produce correct predictions on
the training set.

The requirement to predict correctly on a given training instance (x, y∗)
can be formalized simply as the requirement to assign the correct prediction
y∗ a lower energy E(y∗; x, w) than any other prediction y ∈ Y , i.e., to satisfy

E(y∗; x, w) ≤ E(y; x, w), ∀y ∈ Y . (35)

While this condition is necessary and intuitive, it is not enough: E is a linear
function in w and therefore w = 0 will trivially satisfy (35). What is needed is a
strictly positive margin between the correct prediction and any other prediction.
This is illustrated in Figure 34.

E(y∗) E(y1)

E(y2)

E(y3)

margin

Figure 34: Desired energy configura-
tions: the energy E(y∗; x, w) of the true
label y∗ is strictly smaller than the ener-
gies of other states y1, y2, y3 ∈ Y .

The constraints (35) change to

E(y∗; x, w) + d ≤ E(y; x, w), ∀y ∈ Y , (36)

where d > 0 is a constant. Each training instance (xn, yn) demands one set of
constraints of the form (36).

Two issues remain. First, how should d be set in each constraint, and second,
how to guarantee there exists a w ∈ RF which satisfies all constraints (36).

For setting the desired margin d, let us consider two possible mispre-
dictions y1 and y2. Let us assume y1 is similar to the correct prediction y∗.
The notion of similarity depends on the task at hand. For image segmentation
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it could mean that the predicted segmentation y1 is mostly correct and differs
in only a few pixels from y∗. Further, let y2 be quite different from y∗, for
example an image segmentation which differs from y∗ in most pixels. If we
would have the choice of which prediction is acceptable, we would choose y1
over y2. Conversely, the margin d should be larger for the energies E(y∗; x, w)
and E(y2; x, w) than for E(y∗; x, w) and E(y1; x, w).

To incorporate this, we assume there is a natural semi-metric ∆ : Y × Y →
R defined which satisfies for all (y, y′) ∈ Y × Y the following properties;
symmetry ∆(y, y′) = ∆(y′, y), non-negativity ∆(y, y′) ≥ 0, and the identity
of indiscernibles ∆(y, y′) = 0 ⇔ y = y′. In our example above we would
have ∆(y∗, y2) > ∆(y∗, y1) > 0. For each constraint of the form (36) we set
d = ∆(y∗, y) and thus obtain for each training sample (xn, yn) constraints of
the form

E(yn; xn, w) + ∆(yn, y) ≤ E(yn; xn, w), ∀y ∈ Y . (37)

For the existence of w ∈ RF, there is in general no guarantee that the set
described by (37) is not empty. To ensure feasibility, we introduce for each
system (37) a slack variable ξn ≥ 0. For ξn large enough there will always
exists a feasible w in the new constraint system

E(yn; xn, w) + ∆(yn, y) ≤ E(y; xn, w) + ξn, ∀y ∈ Y ,

ξn ≥ 0.

The variables ξn are penalized in the objective such that w is sought to
violate (37) the least.

The use of slack variables avoids the extreme of infeasibility. Consider the
other extreme: there is a set of vectorsW ⊂ RF which all satisfy (37). In this
case, regularization by means of adding a strictly convex function in w is used
to choose a unique element from W . For linear models, the most popular
regularization function is the squared Euclidean norm ‖w‖2

2.

Putting the above points together, the problem of finding w can be
posed as mathematical optimization problem. The problem is known as
structured support vector machine and was formulated by Tsochantaridis et al.140. 140 Ioannis Tsochantaridis, Thorsten

Joachims, Thomas Hofmann, and
Yasemin Altun. Large margin methods
for structured and interdependent
output variables. JMLR, 6:1453–1484,
September 2005

Given iid training data {(xn, yn)}n=1,...,N with (xn, yn) ∈ X ×Y , we solve

min
w,ξ

‖w‖2 +
C
`

`

∑
n=1

ξn (38)

sb.t. E(yn; xn, w) + ∆(yn, y) ≤ E(y; xn, w) + ξn, ∀n, ∀y ∈ Y , (39)

ξn ≥ 0, n = 1, . . . , N.

Because the energies in (39) are linear functions in w and addi-
tionally the term ∆(yn, y) is constant, (39) is a set of linear inequalities. The
objective function (38) contains linear and quadratic terms.
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The problem is therefore a quadratic programming problem. The constant
C > 0 specifies the tradeoff between the regularization term and the loss term.
High values of C will produce a low training error but possibly generalize less,
whereas small values of C typically lead to good generalization performance
but lower training set performance.The term “program” is a historic arti-

fact: in the 1950s when mathematical
optimization was developed, the term
programming was used equivalent to the
term planning. The activity of mathe-
matical programming was to formulate
and solve planning problems mathemat-
ically.

The set (39) of linear inequalities describes an intersection of halfspaces.
If the set of linear inequalities is finite, the resulting intersection is a polyhe-
dron. In our case both N and |Y| are finite in (39), so the constraints indeed
describe a polyhedron. Despite being finite, |Y| might be very large, usually
exponentially large in the length of the input representation. For example, for
image segmentation with k pixels and binary states we would have |Y| = 2k.
Therefore, (39) cannot be explicitly optimized over.

Optimizing implicitly over a large set of inequalities such as (39)
is a classic technique in numerical optimization known as delayed constraint
generation.

To understand constraint generation, we first make the following observa-
tion: assume we could optimize (38) over the entire set (39). Then, the optimal
solution (w∗, ξ∗) is binding141 at only a subset of (39) and all constraints in141 For a point x an inequality a>x ≤ c is

said to be binding if a>x = c. in (39) which are not binding could be removed without changing the solution.
Moreover, for any optimal solution a subset of F + N binding linear inequali-
ties from (39) suffices. All additional binding inequalities are degenerate, that
is, they are linearly dependent on the set of F + N constraints. See Figure 35.d>1 x ≤ 1

d>2 x ≤ 1

d>3 x ≤ 1

x

Figure 35: Degeneracy: at x ∈ R2 any
2-subset of the 3 inequalities suffices to
define x.

Instead of dropping constraints after we obtain the optimal solution, in
delayed constraint generation we start with no constraints and solve (38) to
obtain a candidate solution. We then verify whether the candidate solution
violates any of the inequalities (39). If it does, the violated inequality is
explicitly generated and added to the problem and the problem is resolved.
If the candidate solution turns out not to violate any inequality, then by the
above reasoning the candidate solution is also the optimal solution. The
incrementally growing problem is the restricted master problem, the problem of
finding violated inequalities is the separation problem.

The overall procedure is summarized in Algorithm StructuredSVM.
The algorithm iterates between solving the restricted master problem and
generating violated constraints. The constraints found are used to tighten
the master problem which is then resolved. If no violated constraints can be
found, the procedure terminates. In each iteration, the maximum violation
magnitude can be used to as convergence criterion and usually in practice one
stops training once it is small enough. Because in our case |Y| is finite, the
algorithm is finitely convergent, a fact proved in Tsochantaridis et al.142.

142 Ioannis Tsochantaridis, Thorsten
Joachims, Thomas Hofmann, and
Yasemin Altun. Large margin methods
for structured and interdependent
output variables. JMLR, 6:1453–1484,
September 2005



part ii: structured prediction 113

Algorithm 5 Structured SVM Training
1: w = StructuredSVM(X, Y, C)
2: Input:
3: {(xn, yn)}n=1,...,N training set, (xn, yn) ∈ X ×Y
4: C > 0 regularization parameter
5: ε ≥ 0 convergence tolerance
6: Output:
7: w ∈ RF learned weight vector
8: Algorithm:
9: Dw,ξ ← RF ×RN

+ {Initially: no constraints}
10: loop

11: (w∗, ξ∗)←
 argmin

w,ξ
‖w‖2

2 + C ∑N
n=1 ξn

sb.t. (w, ξ) ∈ Dw,ξ

{Solve master}

12: maxviol← −∞
13: for n = 1, . . . , N do
14: (viol, yv)← (max, argmax)

y∈Y

[
E(yn; xn, w∗)− E(y; xn, w∗)

15: +∆(yn, y)− ξ∗n
]

{Solve separation problem}
16: if viol > 0 then
17: Dw,ξ ← Dw,ξ ∩ {w, ξ : E(yn; xn, w) + ∆(yn, yv) ≤
18: E(yv; xn, w) + ξn}
19: end if
20: maxviol← max{viol, maxviol}
21: end for
22: if maxviol > ε then
23: break
24: end if
25: end loop

Pseudolikelihood Training

One simple approach to parameter learning in Markov networks from fully-
observed training data is the pseudolikelihood, originally proposed and analyzed
by Besag143. 143 Julian Besag. Statistical analysis of

non-lattice data. The Statistician, 24(3):
179–195, 1975; and Julian Besag. Effi-
ciency of pseudolikelihood estimation
for simple Gaussian fields. Biometrica,
(64):616–618, 1977

The pseudolikelihood is based on the following idea: the joint probability
of the dependent variables, p(Y|x, w) can be approximated as a product of
individual conditional probabilities over each dependent variable Yi, where
the conditioning is on all the neighbors of the variable. This assumption is
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written as

p(y|x, w) ≈ p′(y|x, w) (40)

:= ∏
i∈V

p(yi|yV\{i}, x, w)

= ∏
i∈V

p(yi|yN (Yi), x, w), (41)

where yV\{i} is the set of all dependent random variables excluding i. Because
of the Markov properties it is enough to condition on the neighbors N (yi) of
yi, the so called Markov blanket of yi.

The pseudolikelihood `p : RF → R over the parameter space is defined
as follows. Given fully observed iid training data {(xn, yn)}n=1,...,N , with
(xn, yn) ∈ X ×Y , the pseudolikelihood is the product of conditional probabil-
ities of the form (40), i.e.,

`p(w) =
N

∏
n=1

p′(yn|xn, w) (42)

=
N

∏
n=1

∏
i∈Vn

p(yn,i|yn,N (Yn,i), x, w),

where we denoted by Yn,i the i’th random variable in the network correspond-
ing to the n’th training instance.

Yi

Yj2
Xi

Yj1Yj3

Yj4
Figure 36: Markov blanket of the center
variable Yi . The shown part of the net-
work includes all factors depending on
Yi .

The effect of this approximation can be understood in terms of the factor
graph. Take the central variable in Figure 33 and its Markov blanket consist-
ing of its neighbors N (Yi) = {Xi, Yj1 , Yj2 , Yj3 , Yj4}. The part of the network
corresponding to only this subset of variables is shown in Figure 36.

Conditioned on this set of neighbor variables, Yi is independent from all
other random variables. Pseudolikelihood assumes mutual independence of
all the conditional distributions, one at each variable. While this assumption
is not valid in general it might provide an acceptable approximation.

Yi

Figure 37: Remaining part of the fac-
tor graph after the pseudolikelihood as-
sumption is made. The other variables
the factors depend on are instantiated
using training data so that the factor ex-
pressions become unary functions of yi .

Graphically, the assumption corresponds to using the observed training
values for yj1 , yj2 , yj3 , yj4 and xi for the computation of of the pairwise factors
depending on Yi. By instantiating the training values, the factor graph is
transformed such that only unary factors remain, as shown in Figure 37.

After this transformation the conditional distribution involves only a partial
partition function Zi(xi, yj1 , yj2 , yj3 , yj4) summing over only the states of Yi, i.e.,
over yi ∈ Yi. This is the key insight that makes pseudolikelihood training
tractable and extremely efficient.

In general, the partial partition function at variable Yi is given as

Zi(xN (Yn,i), yN (Yn,i), w) = ∑
yi∈Yi

exp{−E(yi, xN (Yn,i), yN (Yn,i); w)},

for a combined energy function depending only on the set of variables which
are neighbors to yi. In our example, this would be the sum of energies of the
unary factors shown in Figure 37.
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Finding the parameter w∗ which optimizes the pseudolikelihood for a
given training set then becomes the following optimization problem:

w∗ = argmax
w∈RF

`p(w) (43)

= argmax
w∈RF

N

∏
n=1

∏
i∈Vn

p(yn,i|xn,N (Yn,i), yn,N (Yn,i), w)

= argmax
w∈RF

N

∑
n=1

∑
i∈Vn

[
− E(yn,i, xn,N (Yn,i), yn,N (Yn,i); w)

+ ∑
yn,i∈Yn,i

E(yn,i, xn,N (Yn,i), yn,N (Yn,i); w)
]
,

which is tractable because only a small number of terms appear. The max-
imizer w∗ is determined numerically by solving (43) using a continuous
unconstrained optimization software such as nonlinear conjugate gradient or
limited memory quasi-Newton methods such as L-BFGS. Also note that (43)
lends itself ideally to a parallel and stochastic implementation as it decouples
over samples and sites.

Estimating w∗ by maximizing the pseudolikelihood (43) is known to con-
verge to the true parameter in the limit of infinite data, if the true distribution
is contained in the model class. This is the case if all conditional distributions
in (41) are matched to the data exactly. This consistency result was proven by
Gidas144, Comets145 and generalized to Boltzmann machines by Hyvärinen146.

144 Basilis Gidas. Consistency of maxi-
mum likelihood and pseudo-likelihood
estimators for Gibbs distributions. In
Stochastic Differential Systems, Stochastic
Control Theory and Applications. Springer,
1988

145 Francis Comets. On consistency of a
class of estimators for exponential fam-
ilies of Markov random fields on the
lattice. The Annals of Statistics, 20(1):455–
468, 1992

146 Aapo Hyvärinen. Consistency of
pseudolikelihood estimation of fully vis-
ible boltzmann machines. Neural Com-
putation, 18(10):2283–2292, 2006

However, the assumption that the true distribution is contained in the model
class is usually not satisfied, and training data is always finite and usually
rare.

Nevertheless, pseudolikelihood estimation has been successfully applied
and empirical studies have confirmed its efficiency when the training data is
fully observed. See for example Parise and Welling147, and also Sutton and

147 Sridevi Parise and Max Welling.
Learning in Markov random fields: An
empirical study. In Joint Statistical Meet-
ing JSM2005, 2005

McCallum148. For an application of pseudolikelihood training on images, see

148 Charles A. Sutton and Andrew Mc-
Callum. Piecewise pseudolikelihood for
efficient training of conditional random
fields. In ICML, 2007

Vishwanathan et al.149 and the monograph by Winkler150.
149 SVN Vishwanathan, Nicol N. Schrau-
dolph, Mark W. Schmidt, and Kevin P.
Murphy. Accelerated training of con-
ditional random fields with stochastic
gradient methods. In ICML, 2006

150 Gerhard Winkler. Image Analysis, Ran-
dom Fields, and Dynamic Monte Carlo
Methods: A Mathematical Introduction.
Springer, 1995

Other Training Procedures

Because the parameter learning problem in large Markov networks is both
hard and important in practice, a large number of alternative methods for
parameter learning have been proposed.

For tractable models such as trees and chains, the Perceptron algorithm can
be adapted to yield online algorithms which iteratively make passes through
the training set, correcting the weight vector after each individual instance,
see Collins151. The Perceptron algorithm is a member of a larger class of

151 Michael Collins. Discriminative train-
ing methods for hidden Markov models:
Theory and experiments with percep-
tron algorithms, July 2002

stochastic gradient descent algorithms, used by Vishwanathan et al.152. 152 SVN Vishwanathan, Nicol N. Schrau-
dolph, Mark W. Schmidt, and Kevin P.
Murphy. Accelerated training of con-
ditional random fields with stochastic
gradient methods. In ICML, 2006

For general undirected graphs, the available methods can be divided into
four groups.
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First, approximate inference methods based on belief propagation. Belief
propagation, proposed by Pearl153, is an exact inference method for directed

153 Judea Pearl. Probabilistic Reasoning in
Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publish-
ers, San Mateo, California, 1988. ISBN
0934613737

and undirected graphical models that do not contain cycles. In most recent
works, the algorithm is now called sum-product and max-sum algorithm, for
computing marginals and and the MAP state, respectively.

Belief propagation is a dynamic programming algorithm able to compute
exact marginal probabilities, the maximum a posteriori probability and the
partition function. It has been generalized to be able to work for general
graphs by first forming an augmented tree-structured graph154. Unfortunately,

154 Steffen L. Lauritzen and David J.
Spiegelhalter. Local computations with
probabilities on graphical structures and
their application to expert systems. Jour-
nal of the Royal Statistical Society, B 50(2):
157–224, 1988 the augmented graph is of exponential size when the graph has a high tree-

width, that is, it contains sufficiently many cycles. This makes exact inference
intractable.

For this reason, Pearl suggested to use the belief propagation updates as
an approximation, even when the graph contains cycles and the updates
are therefore not exact. This is possible because the updates are still well
defined, although convergence cannot be guaranteed. Subsequently, Frey
and McKay155, followed by others156, showed that this loopy belief propagation

155 Brendan J. Frey and David J. C.
MacKay. A revolution: Belief propaga-
tion in graphs with cycles. In NIPS, 1997

156 Kevin Patrick Murphy, Yair Weiss,
and Michael I. Jordan. Loopy belief
propagation for approximate inference:
An empirical study. In UAI, pages 467–
475, July 1999

scheme works surprisingly well in practice.
Since then many authors have tried to explain this efficiency. Yedidia

et al.157 show that belief propagation is a special case of a larger class of

157 Jonathan S. Yedidia, William T. Free-
man, and Yair Weiss. Generalized be-
lief propagation. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp,
editors, NIPS, pages 689–695. MIT Press,
2000; and Jonathan S. Yedidia, William T.
Freeman, and Yair Weiss. Understand-
ing belief propagation and its general-
izations. Technical report, Mitsubishi
Electric Research Laboratories, 2001

approximations discussed as “free energies” of systems in statistical physics.
This view has subsequently lead to a number of improved algorithms. Despite
these improvements, loopy belief propagation remains the most popular used
inference algorithm due to its simplicity and speed.

Second, methods in which the partition function is bounded. Variational meth-
ods158 approximate the true distribution by a family of simpler distributions

158 Christopher M. Bishop. Pattern Recog-
nition and Machine Learning. Springer,
2006; and David MacKay. Infor-
mation Theory, Inference, and Learn-
ing Algorithms. September 2003.
URL http://www.inference.phy.cam.

ac.uk/mackay/itila/book.html

and iteratively search within this simplified family for the best approximation
of the true distribution. Naturally, these methods provide a lower bound on the
partition function and the parameter learning problem becomes a saddle-point
finding problem. For an application in computer vision, see Verbeek and
Triggs159.

159 Jakob J. Verbeek and Bill Triggs. Scene
segmentation with CRFs learned from
partially labeled images. In NIPS. MIT
Press, 2007

In contrast, methods bounding the partition function from above160 search
160 Martin J. Wainwright and Michael I.
Jordan. Graphical models, exponential
families, and variational inference. Foun-
dations and Trends in Machine Learning, 1

(1-2):1–305, 2008

over an enlarged outer approximation of the set of model distributions. Learn-
ing parameters then becomes a single maximization problem.

Third, approximation of the model class by a tractable model and exact learn-
ing on the tractable approximation. This is the main idea behind the piecewise
training method proposed by Sutton and McCallum161. A graphical model

161 Charles A. Sutton and Andrew Mc-
Callum. Piecewise training for undi-
rected models. In UAI, pages 568–575,
2005

is suitably decomposed into pieces, each of which is trained individually. A
piece may be as small as a single pairwise potential.

This strategy has recently been successfully used to train large computer
vision conditional random fields, see Shotton et al.162. Sutton and McCal-

162 Jamie Shotton, John Winn, Carsten
Rother, and Antonio Criminisi. Texton-
boost for image understanding: Multi-
class object recognition and segmenta-
tion by jointly modeling texture, layout,
and context. International Journal of Com-
puter Vision, 81(1), January 2007

lum163 further combined the idea of piecewise training with pseudolikelihood

163 Charles A. Sutton and Andrew Mc-
Callum. Piecewise pseudolikelihood for
efficient training of conditional random
fields. In ICML, 2007

http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html
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training.
Recently, more radical approximations have been proposed by Domke164 164 Justin Domke. Crossover random

fields. Technical report, University of
Maryland, 2009

and by Pletscher et al.165. Domke proposes to build a sequence of tractable

165 Patrick Pletscher, Cheng Soon Ong,
and Joachim M. Buhmann. Spanning
tree approximations for conditional ran-
dom fields. In AISTATS, 2009

conditional random field models, each conditioning on the previous layer.
Inference in this model is very efficient but during training the layers have
to be built greedily and possibly suboptimal. In each iteration, a layer is
constructed to optimize the “maximum posterior marginal” accuracy that decom-
poses linearly over the nodes of the model. Pletscher et al. also approximate
the intractable model but instead of using a sequence of models they use a
mixture of randomly sampled spanning trees of the graphical model. They
show that these mixtures perform well empirically but do not prove any
theoretical properties such as consistency of the estimator or convexity of the
training objective.

Fourth, sampling based methods which evaluate expectations of a function
weighted by the current model distribution. The sampling approximation
can be used to approximately evaluate both the partition function as well as
its derivative. For a general introduction to sampling based methods and
state-of-the-art Markov Chain Monte Carlo (MCMC) methods see Neal166 and

166 Radford. M. Neal. Probabilistic infer-
ence using Markov chain Monte Carlo
methods. Technical Report CRG-TR-93-
1, Department of Computer Science, Uni-
versity of Toronto, September 1993

Bishop167. By evaluating the approximate gradient of the partition function 167 Christopher M. Bishop. Pattern Recog-
nition and Machine Learning. Springer,
2006

one can obtain the maximum likelihood estimate of the model parameters
using a gradient descent procedure. Although beautiful in theory, sampling
can be slow in practice and tuning a sampling procedure to perform well on a
task can be difficult.

Recently, Hinton proposed contrastive divergence168 to overcome some of

168 Geoffrey E. Hinton. Training products
of experts by minimizing contrastive
divergence. Neural Computation, 14(8):
1771–1800, 2002; and Miguel Á. Carreira-
Perpiñán and Geoffrey E. Hinton. On
contrastive divergence learning. In AIS-
TATS, 2005

the disadvantages of naive sampling. Although too early to draw definite
conclusions, it has been used successfully in computer vision conditional
random fields by He et al.169. 169 Xuming He, Richard S. Zemel, and

Miguel Á. Carreira-Perpiñán. Multiscale
conditional random fields for image la-
beling. In CVPR, pages 695–702, 2004

Taking a step back, LeCun170 proposes “energy-based models” as a unified
170 Yann LeCun, Sumit Chopra, Raia
Hadsell, Marc A. Ranzato, and Fu Jie
Huang. A tutorial on energy-based
learning. In Predicting Structured Data.
MIT Press, 2006

framework for prediction, ranking, detection and density estimation. His
general model encompasses neural networks, random field models and many
other popular machine learning algorithms. This unified perspective is helpful
in order to categorize and analyze classes of algorithms and their shared
properties and will certainly influence future research in the direction of
structured learning.

Having discussed the parameter learning problem we now focus on the
problem to be solved at test time. There we want to solve the MAP-MRF
problem, that is, to infer the most likely assignment of the latent unobserved
states, given the observations.
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Maximum a Posteriori Problem

In the previous section we have discussed the problem of finding a good
model from a larger family when we are given fully observed training data.
In this section we discuss the application of the model found to partially
observed test samples: given an image x, we want to infer a likely state y.
For example, when the task is image segmentation, y would be a per-pixel
segmentation mask.

We discuss two methods particularly popular in the computer vision
community: graphcut-based methods and linear programming relaxations.
Whereas graphcut-based methods are popular for their outstanding efficiency,
the linear programming relaxation is particularly amenable to theoretical
analysis.

Graphcut MAP-MRF

The most popular method in computer vision to minimize the energy of the
MAP-MRF problem is the graphcut algorithm of Boykov et al.171.

171 Yuri Boykov, Olga Veksler, and Ramin
Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Trans. Pat-
tern Anal. Mach. Intell, 23(11):1222–1239,
2001

Figure 38: Illustration of the large scale
neighborhood search used in graph-cut
based optimization: each solution y has
a neighborhood N (y) associated to it.
The local search iteration improves from
yt to yt+1 by searching for the optimal
solution within N (yt). When yt and
yt+1 coincide then y∗ = yt is returned
as optimal within its neighborhood.

y0 y1

N (y0) N (y1)

y2

N (y2)

y3

y∗

N (y3)

N (y∗)

Y

The algorithm is illustrated in Figure 38. It is a local search algorithm,
iteratively improving a candidate solution until no further improvement is
possible. Two properties make the algorithm efficient. First, at each candidate
solution yt, the neighborhood N (yt) of solutions considered is of exponential
size. Second, the neighborhood is constructed in such a way that the solution
yt+1 ∈ N (yt) which decreases the objective function the most can be found
efficiently by solving a minimum cut problem on an auxiliary graph.

This construction, “exponential size neighborhood” + “efficient minimiza-
tion within the neighborhood” is a recent theme in combinatorial optimization,
known as very large scale neighborhood search (VLSN), see Ahuja et al.172. The

172 Ravindra K. Ahuja, Özlem Ergun,
James B. Orlin, and Abraham P. Punnen.
A survey of very large-scale neighbor-
hood search techniques. In Endre Boros
and Peter L. Hammer, editors, Proceed-
ings of the 1999 Workshop on Discrete Opti-
mization (DO-99), volume 123, 1-3 of Dis-
crete Applied Mathematics, pages 75–102,
Amsterdam, July 25–30 2002. Elsevier
Science B.V

difficulty is in finding a suitable definition of the neighborhood N : Y → 2Y ,
in which the neighborhood is both large and has a structure which can be
efficiently optimized over. Empirically, the VLSN algorithms all have the
desirable property that after only a few improvement steps a near-optimal
solution has been constructed.

The general graphcut based energy minimization algorithm is shown in
Algorithm GraphCutMAPMRF.
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Algorithm 6 Graphcut MAP-MRF

1: y∗ = GraphCutMAPMRF(y0)
2: Input:
3: y0 ∈ Y initial solution
4: Output:
5: y∗ ∈ Y optimal within N (y∗)
6: Algorithm:
7: t← 0
8: for t = 0, 1, . . . do
9: yt+1 ← argmin

y∈N (yt)
E(y) {Minimize within neighborhood}

10: if yt+1 = yt then
11: break {Local optima w.r.t. N (yt)}
12: end if
13: end for
14: y∗ ← yt

We now discuss the most important ingredient: the definition of N .
Boykov defines two parametrized neighborhoods, namely the “α-expansion”
neighborhood Nα : Y ×N → 2Y and the “α-β-swap” neighborhood Nα,β :
Y ×N×N → 2Y . We will discuss both neighborhoods separately, starting
with the simpler α-β-swap. First, let us define some notation.

Let Y = Y1 ×Y2 × · · · × Y|V| be the set of all feasible labelings, where Yi

is the set of all possible states at node i ∈ V. Let the energy be defined as sum
of unary and pairwise energies as follows.

E : Y → R

E(y) = ∑
i∈V

E(1)
i (yi) + ∑

(i,j)∈E
E(2)

i,j (yi, yj).

For many labeling tasks the pairwise energy function is the same for all edges,
but we do not require this. What we do require for both the α-expansion
and the α-β-swap neighborhoods is that the pairwise energy terms are a
semi-metric, satisfying for all (i, j) ∈ E, (yi, yj) ∈ Yi ×Yj the conditions

E(2)
i,j (yi, yj) = 0 ⇔ yi = yj, (44)

E(2)
i,j (yi, yj) = E(2)

i,j (yj, yi) ≥ 0. (45)

The first condition (44) is the identity of indiscernibles, the second condi-
tion (45) is symmetry. Moreover, the α-expansion further requires the pairwise
energies to be a true metric, i.e. to satisfy (44), (45) and for all (i, j) ∈ E, for all
(yi, yj) ∈ Yi ×Yj, for all yk ∈ Yi ∩ Yj that

E(2)
i,j (yi, yj) ≤ E(2)

i,j (yi, yk) + E(2)
i,j (yk, yj), (46)
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which is the well known triangle inequality. We now consider the definition of
the neighborhood.

The α-β-swap neighborhood is defined as follows.

Nα,β : Y ×N×N→ Y∗
Nα,β(y, α, β) := {z ∈ Y : zi = yi if yi /∈ {α, β}}. (47)

Therefore the neighborhood Nα,β(y, α, β) contains the solution y itself as well
as all variants in which the nodes labeled α or β are free to change their
label to either β or α, respectively. Finding the minimizer becomes a binary
labeling problem because the only two states of interest are α and β. We can
decompose the following minimization problem.

yt+1 = argmin
y∈Nα,β(yt ,α,β)

E(y) (48)

= argmin
y∈Nα,β(yt ,α,β)

∑
i∈V

E(1)
i (yi) + ∑

(i,j)∈E
E(2)

i,j (yi, yj)

= argmin
y∈Nα,β(yt ,α,β)

[
∑

i∈V,
yt

i /∈{α,β}

E(1)
i (yt

i)

︸ ︷︷ ︸
constant

+ ∑
i∈V,

yt
i∈{α,β}

E(1)
i (yi)

︸ ︷︷ ︸
unary

+ ∑
(i,j)∈E,

yt
i /∈{α,β},yt

j /∈{α,β}

E(2)
i,j (yt

i , yt
j)

︸ ︷︷ ︸
constant

+ ∑
(i,j)∈E,

yt
i∈{α,β},yt

j /∈{α,β}

E(2)
i,j (yi, yt

j)

︸ ︷︷ ︸
unary

+ ∑
(i,j)∈E,

yt
i /∈{α,β},yt

j∈{α,β}

E(2)
i,j (yt

i , yj)

︸ ︷︷ ︸
unary

+ ∑
(i,j)∈E,

yt
i∈{α,β},yt

j∈{α,β}

E(2)
i,j (yi, yj)

︸ ︷︷ ︸
pairwise

]
.

α

β

i j k. . .

tαi
tαj

tαk

ni,j

ni,j

tβi

tβj tβk

Figure 39: Directed edge-weighted aux-
iliary graph construction. The linear
min-cut in this graph corresponds to
the optimal energy configuration in
Nα,β(y, α, β).

When dropping the constant terms and combining the unary terms, prob-
lem (48) is simplified and can be solved by solving a network flow problem173

173 Dimitri P. Bertsekas. Network Opti-
mization. 1998

on a specially constructed auxiliary graph, with structure as shown in Fig-
ure 39.

The directed graph G′ = (V′, E′) with non-negative edge weights tα
i , tβ

i and
ni,j is constructed as follows.

V′ = {α, β} ∪ {i ∈ V : yi ∈ {α, β}},
E′ = {(α, i, tα

i ) : ∀i ∈ V : yi ∈ {α, β}} ∪
{(i, β, tβ

i ) : ∀i ∈ V : yi ∈ {α, β}} ∪
{(i, j, ni,j) : ∀(i, j), (j, i) ∈ E : yi, yj ∈ {α, β}}.
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The edge weights are calculated as follows.

ni,j = E(2)
i,j (α, β), (49)

tα
i = E(1)

i (α) + ∑
(i,j)∈E,

yj /∈{α,β}

E(2)
i,j (α, yj), (50)

tβ
i = E(1)

i (β) + ∑
(i,j)∈E,

yj /∈{α,β}

E(2)
i,j (β, yj). (51)

α

β

i j k. . .

C

Figure 40: A minimum α-β-cut C and its
directed edge cutset (shown dotted).

Finding a directed minimum α-β-cut, that is, a cut which separates α and
β in the graph G′, solves (48). To see how this is possible, consider the cut
shown in Figure 40. The value f (C) of a cut C is the sum of the directed edge
weights it cuts. For the example graph this would be

f (C) = tα
i + ni,j + tβ

j + tβ
k

= E(1)
i (α) + ∑

(i,s)∈E,
yt

s /∈{α,β}

E(2)
i,s (α, yt

s) + E(2)
i,j (α, β)

+ E(1)
j (β) + ∑

(i,s)∈E,
yt

s /∈{α,β}

E(2)
i,s (β, yt

s)

+ E(1)
k (β) + ∑

(k,s)∈E,
yt

s /∈{α,β}

E(2)
k,s (β, yt

s),

which corresponds exactly to (48) for yi = α,yj = β and yk = β. This holds in
general and Boykov174 showed that the optimal labeling can be constructed 174 Yuri Boykov, Olga Veksler, and Ramin

Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Trans. Pat-
tern Anal. Mach. Intell, 23(11):1222–1239,
2001

from the α-β-mincut C as

yi =

{
α if (α, i) ∈ C
β if (i, β) ∈ C .

Because exactly one of the edges must be cut for C to be an α-β-cut, the
min-cut exactly minimizes (48).

Solving the min-cut problem on the auxiliary graph G′ can be done effi-
ciently by using max-flow algorithms. For graphs such as the one shown in G′

where all nodes are connected to the source- and sink-node, specialized max-
flow algorithms with superior empirical performance have been developed, see
Boykov and Kolmogorov175. The best known algorithms for linear max-flow 175 Yuri Boykov and Vladimir Kol-

mogorov. An experimental comparison
of min-cut/max-flow algorithms for en-
ergy minimization in vision. PAMI, 26

(9):1124–1137, 2004

problems have a computational complexity of O(|V|3) and O(|V||E| log(|V|)),
see Bertsekas176.

176 Dimitri P. Bertsekas. Network Opti-
mization. 1998

The α-β-swap neighborhood depends on two label parameters α and β.
Each combination of α and β induces a different neighborhood. Thus, in
Algorithm GraphCutMAPMRF, all pairwise combinations in Y` =

⋃
i∈V Yi

are searched, i.e., in each loop iteration all neighborhoods Nα,β(yt,k, αk, βk) are
evaluated in some order k = 0, 1, . . . , K, where (αk, βk) ∈ {(α, β) ∈ Y` × Y` :
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α < β} and yt,0 ← yt and

yt,k+1 ← argmin
y∈Nα,β(yt,k ,αk ,βk)

E(y),

with the final solution set to yt+1 ← yt,K+1.
Because the min-cut problem is solvable efficiently only if all edge weights

are non-negative, it is now clear why E(2) has to be a semi-metric: this property
guarantees non-negativity of all edge weights in the auxiliary graph G′.

The α-expansion neighborhood is slightly different from the α-β-swap:
the α-β-swap neighborhood was defined by choosing two labels, α and β, and
allowing all nodes currently labeled α or β to change their state within the set
{α, β}.

The parametrized α-expansion neighborhood Nα(y, α) is similar in that
every node is allowed to remain in its current state or to change its state to α.
Finding the optimal solution within the neighborhood of the current solution
is again just a binary labeling problem. However, in order to work it requires
E(2)

i,j to satisfy the triangle inequality for all (i, j) ∈ E and is thus more limited,
compared to the α-β-swap.

Formally, the α-expansion neighborhood is defined as follows.

Nα : Y ×N→ Y∗,
Nα(y, α) := {z ∈ Y : ∀i ∈ V : zi ∈ {yi, α}}.

As for the α-β-swap neighborhood, Boykov et al.177 showed that the minimizer177 Yuri Boykov, Olga Veksler, and Ramin
Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Trans. Pat-
tern Anal. Mach. Intell, 23(11):1222–1239,
2001

withinNα(y, α) can be found by solving a network flow problem on a auxiliary
graph whose edge weights can be derived by decomposing the energy function
within the neighborhood.

yt+1 = argmin
y∈Nα(yt ,α)

E(y) (52)

= argmin
y∈Nα(yt ,α)

∑
i∈V

E(1)
i (yi) + ∑

(i,j)∈E
E(2)

i,j (yi, yj)

= argmin
y∈Nα(yt ,α)

[
∑

i∈V,
yi=α

E(1)
i (α) + ∑

i∈V,
yi 6=α

E(1)
i (yt

i)

+ ∑
(i,j)∈E,

yi=α,yj=α

E(2)
i,j (α, α) + ∑

(i,j)∈E,
yi=α,yj 6=α

E(2)
i,j (α, yt

j)

+ ∑
(i,j)∈E,

yi 6=α,yj=α

E(2)
i,j (yt

i , α) + ∑
(i,j)∈E,

yi 6=α,yj 6=α

E(2)
i,j (yt

i , yt
j)
]
.

The graph structure of the auxiliary graph depends on the current solution
yt and is illustrated in Figure 41.
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Figure 41: Alpha expansion graph con-
struction: all pixels i,j,k and l are em-
bedded into a graph and connected to a
source node “α” and a sink node “ᾱ”
(drawn in gray). For pairs of pixels
(i, j) ∈ E which are currently labeled
with different labels, yt

i 6= yt
j a new

node “ij” is introduced (drawn squared).
The minimum directed α-ᾱ cut on this
graph is the minimum energy solution
in Nα(yt, α).

Formally, given G = (V, E) and a current solution yt ∈ Y , the auxiliary
directed, edge-weighted graph G′ = (V′, E′) is constructed as follows.

V′ = {α, ᾱ} ∪V ∪ {ij : ∀(i, j) ∈ E : yt
i 6= yt

j},
E′ = {(α, i, tα

i ) : ∀i ∈ V} ∪ {(i, ᾱ, tᾱ
i ) : ∀i ∈ V}

∪ {(i, j, ni,j), (j, i, ni,j) : ∀(i, j) ∈ E : yt
i = yt

j}
∪ {(ij, ᾱ, tᾱ

ij) : ∀(i, j) ∈ E : yt
i 6= yt

j}
∪ {(i, ij, ni,ij), (ij, i, ni,ij), (j, ij, nj,ij), (ij, j, nj,ij) : ∀(i, j) ∈ E : yt

i 6= yt
j},

with non-negative edge weights calculated from the current solution yt as
follows.

tα
i = E(1)

i (α),

tᾱ
i =

{
∞ if yt

i = α,

E(1)
i (yt

i) otherwise
,

ni,j = E(2)
i,j (yt

i , α)
(
= E(2)

i,j (α, yt
j)
)

,

tᾱ
ij = E(2)

i,j (yt
i , yt

j),

ni,ij = E(2)
i,j (yt

i , α).

The min-cut on G′ corresponds to the minimum in (52) by constructing
yt+1 from the minimum weight edge cutset C of G′ as

yt+1
i =

{
α if (α, i) ∈ C
yt

i otherwise
,

for all i ∈ V. The analysis and proof can be found in Boykov et al.178.

178 Yuri Boykov, Olga Veksler, and Ramin
Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Trans. Pat-
tern Anal. Mach. Intell, 23(11):1222–1239,
2001

α

ᾱ

j kjk

C
C′

Figure 42: A cut C of the shown type
(drawn dashed) can never be a minimal
cut in G′. The cut C ′ (drawn dotted) al-
ways has an energy no greater than C,
due to the triangle inequality assump-
tion on E(2).

The requirement that E(2) must satisfy the triangle inequality is needed
to show that cuts like the one shown in Figure 42 cannot be minimal. If the
triangle inequality holds, then the cut cannot be minimal as cutting (jk, ᾱ)
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directly gives a lower energy:

E(C) = nj,jk + nk,jk + tᾱ
j + tᾱ

k

= E(2)
j,k (yt

j, α) + E(2)
j,k (yt

k, α) + tᾱ
j + tᾱ

k

≥ E(2)
j,k (yt

j, yt
k) + tᾱ

j + tᾱ
k

= tᾱ
jk + tᾱ

j + tᾱ
k

= E(C ′).

As already done for the α-β-swap, the parameter α in the α-expansion is
iterated over as follows. We set yt,0 ← yt, and iterate k = 0, 1, . . . , K, where
K = |⋃i∈V Yi| − 1, so we have

yt,k+1 ← argmin
y∈Nα(yt ,k)

E(y),

with the final result defining the next iterate as yt+1 ← yt,K+1.
In practice the α-expansion is often preferred over the α-β-swap because it

converges faster and Boykov established a worst case bound on the energy
with respect to the true optimal energy.179179 One advantage of the α-β-swap al-

gorithm is that it can be easily par-
allelized by processing disjoint pairs
(α1, β1), (α2, β2), α2, β2 /∈ {α1, β1} at the
same time.

The efficiency of graph-cut based energy minimization algo-
rithms has lead to a flurry of research into this direction. We give a brief
overview of the main results and research directions.

The class of energy functions which can be minimized using graphcuts
has first been characterized by Kolmogorov and Zabih180 and Freedman and180 Vladimir Kolmogorov and Ramin

Zabih. What energy functions can be
minimized via graph cuts? PAMI, 26(2):
147–159, 2004

Drineas181. Their main result characterize general energy functions involving

181 Daniel Freedman and Petros Drineas.
Energy minimization via graph cuts: Set-
tling what is possible. In CVPR, pages
939–946, 2005

interactions between two and three variables with binary states by stating
sufficient conditions such that the solution produced by α-expansion is the
true optimal solution: an energy is exact graphcut-solvable if it is regular. For
the case of pairwise energies and binary states the requirement is

E(2)
i,j (0, 0) + E(2)

i,j (1, 1) ≤ E(2)
i,j (0, 1) + E(2)

i,j (1, 0),

which can be understood as requiring that adjacent nodes must have a lower
energy if they are labeled with the same state than when they have different
states. For interactions involving three nodes, this holds if each projection
onto two variables satisfies the above condition.

Ishiwaka182 extended the above to the case of multilabel states, i.e., where

182 Hiroshi Ishikawa. Exact optimization
for Markov random fields with convex
priors. IEEE Trans. Pattern Anal. Mach.
Intell, 25(10):1333–1336, 2003

|Yi| > 2 for some i ∈ V. In general, to characterize solvable energies with
high-order interactions is ongoing research. Kohli et al.183 gave an example

183 Pushmeet Kohli, L’ubor Ladický, and
Philip H. S. Torr. Robust higher order
potentials for enforcing label consistency.
In CVPR, 2008

of an energy term with simple structure, called the Pn generalized Potts
potential which can be optimized using graph cuts. See Ramalingam et al.184

184 Srikumar Ramalingam, Pushmeet
Kohli, Karteek Alahari, and Philip H. S.
Torr. Exact inference in multi-label CRFs
with higher order cliques. In CVPR, 2008

for an application of Pn to image segmentation.
For energies which do not satisfy regularity conditions, Kolmogorov and

Rother185 give a graphcut-based iterative algorithm using probing techniques

185 Vladimir Kolmogorov and Carsten
Rother. Minimizing nonsubmodular
functions with graph cuts-A review.
IEEE Trans. Pattern Anal. Mach. Intell, 29

(7):1274–1279, 2007



part ii: structured prediction 125

from combinatorial optimization, producing an approximate minimizer. In
case the nodes have only binary states, the algorithm enjoys a favorable partial
optimality property: all node states determined by the algorithm are either
certain or uncertain with the guarantee that there exists an optimal solution
which, when considering the certain nodes only, is identical to the solution
provided by the algorithm.

Another research direction has been to improve the efficiency of graphcut
based minimization algorithms. For planar graph structures common in
computer vision progress has been made by using efficient network flow
algorithms specific to planar graphs, see Schraudolph and Kamenetsky186 and

186 Nicol N. Schraudolph and Dmitry
Kamenetsky. Efficient exact inference
in planar ising models. In NIPS. MIT
Press, 2008

Schmidt et al.187. For general graphs with multilabel states, the most efficient

187 Frank R. Schmidt, Eno Töppe, and
Daniel Cremers. Efficient planar graph
cuts with applications in computer vi-
sion. In CVPR. IEEE Computer Society,
2009

current algorithms are due to Alahari et al.188 and Komodakis et al.189. Both

188 Karteek Alahari, Pushmeet Kohli, and
Philip H. S. Torr. Reduce, reuse & recy-
cle: Efficiently solving multi-label MRFs.
In CVPR. IEEE Computer Society, 2008

189 Nikos Komodakis, Georgios Tziritas,
and Nikos Paragios. Fast, approximately
optimal solutions for single and dy-
namic MRFs. In CVPR. IEEE Computer
Society, 2007

algorithms reuse computations from previous iterations.

Linear Programming Relaxation

We now discuss a method for solving the discrete MAP-MRF problem in
which the problem is modeled as linear integer programming problem. A
tractable relaxation can be obtained by replacing the integrality constraints
with simple interval constraints. The resulting linear program is then the
“linear programming relaxation” to the MAP-MRF problem.

The original linear programming formulation to the MAP-MRF problem is
due to Schlesinger190 in 1976. Recently it has been rediscovered191. It is used 190 M.I. Schlesinger. Sintaksicheskiy

analiz dvumernykh zritelnikh signalov
v usloviyakh pomekh (syntactic anal-
ysis of two-dimensional visual signals
in noisy conditions). Kibernetika, 4:113–
130, 1976. In Russian; and V.K. Koval
and M.I. Schlesinger. Dvumernoe pro-
grammirovanie v zadachakh analiza izo-
brazheniy (two-dimensional program-
ming in image analysis problems). Auto-
matics and Telemechanics, 8:149–168, 1976.
In Russian
191 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. MAP
estimation via agreement on (hy-
per)trees: Message-passing and linear-
programming approaches. IEEE Trans.
Information Theory, 51(11):3697–3717,
November 2005; Tomáš Werner. A lin-
ear programming approach to max-sum
problem: A review. Research report,
Center for Machine Perception, Czech
Technical University, December 2005;
and Chen Yanover, Talya Meltzer, and
Yair Weiss. Linear programming relax-
ations and belief propagation - an em-
pirical study. JMLR, 7:1887–1907, 2006

for solving for the MAP solution y∗ when the underlying graph G = (V, E)
consists of only unary and pairwise potentials. Then, the MAP-MRF integer
linear program formulation is exact.

Although the formulation is exact in case the variables are restricted to be
binary, we can relax the integer requirement to obtain a corresponding linear
program (LP) which can be solved in polynomial time. The solution of the
relaxed problem might not correspond to an exact MAP state.

The outline for deriving the relaxation is the following: we first
linearize the MAP objective in a new overcomplete parametrization and
then consider the additional properties that must be satisfied for the new
parameters in order to map to an original feasible configuration in Y .

The energy function we want to minimize is of the form

E(y; x, w) = ∑
i∈V

w>1 φ
(1)
i (yi, x)︸ ︷︷ ︸

(A)

+ ∑
(i,j)∈E

w>2 φ
(2)
i,j (yi, yj, x)

︸ ︷︷ ︸
(B)

. (53)

Both terms, (A) and (B) have a non-linear dependency on y. Because the set of
feasible labelings is finite we can introduce new variables in such a way that (A)
can be rewritten equivalently in linear form in the new parametrization. For
this, let us introduce for all i ∈ V, for all s ∈ Yi a binary variable µi(s) ∈ {0, 1}
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which indicates whether yi = s. By linearizing, that is, by instantiating the
variable yi for all its values in the non-linear expression, we rewrite (A) as

∑
i∈V

w>1 φ
(1)
i (yi, x) = ∑

i∈V
∑

s∈Yi

µi(s)
[
w>1 φ

(1)
i (s, x)

]
︸ ︷︷ ︸

constant

.

Whereas on the left hand side the dependency on yi is present, the right
hand side depends only on µi(s). In order to ensure correctness of the above
transformation we need to enforce that only one variable µi(s) is set to one over
all configurations s ∈ Yi of the node. We therefore restrict the configurations
using the following two constraints.

∑
s∈Yi

µi(s) = 1, ∀i ∈ V, (54)

µi(s) ∈ {0, 1}, ∀i ∈ V, ∀s ∈ Yi. (55)

Likewise, the pairwise term (B) can be linearized by instantiating pairwise
configurations and selecting exactly one of them. We introduce for all (i, j) ∈ E,
for all (s, t) ∈ Yi × Yj a binary variable µi,j(s, t) ∈ {0, 1} which indicates
whether yi = s and yj = t. We can now rewrite (B) as

∑
(i,j)∈E

w>2 φ
(2)
i,j (yi, yj, x) = ∑

(i,j)∈E
∑

(s,t)∈Yi×Yj

µi,j(s, t)
[
w>2 φ

(2)
i,j (s, t, x)

]
︸ ︷︷ ︸

constant

.

Again, the right hand side is a linear form in the new parametrization. In
order to ensure consistency between the pairwise and unary variables we
need to enforce by definition for all (i, j) ∈ E, for all (s, t) ∈ Yi ×Yj:

µi,j(s, t) = I(yi = s ∧ yj = t) = I(yi = s) · I(yj = t) = µi(s)µj(t), (56)

which implicitly includes the constraints

µi,j(s, t) ∈ {0, 1}, ∀(i, j) ∈ E : ∀(s, t) ∈ Yi ×Yj. (57)

Unfortunately constraint (56) is a non-linear equality constraint and thus does
not describe a convex set.192192 All equality constraints which de-

scribe convex sets must define an affine
subspace.

Fortunately, a clever transformation can linearize (56). By summing over
t ∈ Yj, we can obtain for all (i, j) ∈ E and for all s ∈ Yi the following set of
constraints.

∑
t∈Yj

µi,j(s, t) = ∑
t∈Yj

µi(s)µj(t)

⇔ ∑
t∈Yj

µi,j(s, t) = µi(s). (58)

The above transformation is exact: assume we are given a set of variables
µ such that (54), (55), (57) and (58) hold. Then (56) is also satisfied for all
(i, j) ∈ E, for all (s, t) ∈ Yi ×Yj.
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Proof. First, note that from (58) and (54) by summing over s ∈ Yi we obtain
that ∑(s,t)∈Yi×Yj

µi,j(s, t) = 1 holds for all (i, j) ∈ E. Then we have ∀(i, j) ∈ E:
∀(s, t) ∈ Yi ×Yj:

µi(s)µj(t) =

 ∑
v∈Yj

µi,j(s, v)

( ∑
u∈Yi

µi,j(u, t)

)

=

 ∑
v∈Yj\{t}

µi,j(s, v) + µi,j(s, t)

 ∑
u∈Yi\{s}

µi,j(u, t) + µi,j(s, t)


= ∑

(u,v)∈Yi\{s}×Yj\{t}
µi,j(u, t)µi,j(s, v)

︸ ︷︷ ︸
0

+ µi,j(s, t) ∑
u∈Yi\{s}

µi,j(u, t)︸ ︷︷ ︸
0

+ µi,j(s, t) ∑
v∈Yj\{t}

µi,j(s, v)

︸ ︷︷ ︸
0

+ µi,j(s, t)µi,j(s, t)︸ ︷︷ ︸
µi,j(s,t)

= µi,j(s, t),

so that (56) holds. �

Putting the pieces together, we now state the complete integer linear
program. In order to avoid confusion, in the following problem only µ are
variables, all remaining expressions are constants.

min
µ

∑
i∈V

∑
yi∈Yi

µi(yi)
(

w>1 φ
(1)
i (yi, x)

)
(59)

+ ∑
(i,j)
∈E

∑
(yi ,yj)
∈Yi×Yj

µi,j(yi, yj)
(

w>2 φ
(2)
i,j (yi, yj, x)

)

sb.t. ∑
yi∈Yi

µi(yi) = 1, i ∈ V, (60)

∑
yj∈Yj

µi,j(yi, yj) = µi(yi), (i, j) ∈ E, yi ∈ Yi, (61)

µi(yi) ∈ {0, 1}, i ∈ V, yi ∈ Yi, (62)

µi,j(yi, yj) ∈ {0, 1}, (i, j) ∈ E, (yi, yj) ∈ Yi ×Yj. (63)

As discussed above, the first set of equality constraints (60) enforce that each
node is assigned exactly one label. The second set of equality constraints (61)
enforce proper consistency between node and edge states.

Given a solution vector µ to the ILP (59) the labeling y∗ is obtained by
setting

yi ← argmaxyi∈Yi
µi(yi).
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The integer program (59) is exact but NP-hard. The corresponding linear
programming relaxation is obtained by relaxing (62) and (63) to the range [0, 1].
The resulting LP relaxation has been analyzed extensively 193.

193 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. MAP
estimation via agreement on (hy-
per)trees: Message-passing and linear-
programming approaches. IEEE Trans.
Information Theory, 51(11):3697–3717,
November 2005; and Tomáš Werner. A
linear programming approach to max-
sum problem: A review. Research report,
Center for Machine Perception, Czech
Technical University, December 2005

Although linear programming is among the best developed numerical
disciplines, the primal LP (59) is practically restricted to medium sized graphs
with a few tens of thousands of nodes and tens of node labels, because on the
order of O(|V|2(maxi∈V |Yi|)2) variables are used. This problem is illustrated
in Figure 43(b) which shows the 80 introduced variables for the simple four-
node four-state MRF shown in Figure 43(a). The scaling problem is further
discussed in Yanover et al.194.

194 Chen Yanover, Talya Meltzer, and Yair
Weiss. Linear programming relaxations
and belief propagation - an empirical
study. JMLR, 7:1887–1907, 2006

Figure 43: Size of the LP relaxation.

(a) A small four-node MRF, each node has
four states. (Only dependent variables are
shown.)

(b) Variables introduced by the new
parametrization: 4 · 4 = 16 node variables,
4 · 4 · 4 = 64 edge variables, for a total of
80 variables.

The above remark shows that the linear program (59) does not scale when
applied naively. Instead, the linear program has been used as a model to
derive efficient algorithms. By considering the dual of (59), Globerson and
Jaakkola195, Kumar and Torr196, and Sontag et al.197 derived message passing

195 Amir Globerson and Tommi Jaakkola.
Fixing max-product: Convergent mes-
sage passing algorithms for map lp-
relaxations. In NIPS, 2007

196 Mudigonda Pawan Kumar and Philip
Torr. Efficiently solving convex relax-
ations for MAP estimation. In ICML,
2008

197 David Sontag, Talya Meltzer, Amir
Globerson, Tommi Jaakkola, and Yair
Weiss. Tightening LP relaxations for
MAP using message passing. In UAI,
2008

algorithms directly from the linear program.
Komodakis et al.198 derived a simple convergent version of the tree-

198 Nikos Komodakis, Nikos Paragios,
and Georgios Tziritas. MRF optimiza-
tion via dual decomposition: Message-
passing revisited. In ICCV. IEEE, 2007

reweighted message passing (TRW) scheme of Wainwright et al.199 by de-

199 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. MAP
estimation via agreement on (hy-
per)trees: Message-passing and linear-
programming approaches. IEEE Trans.
Information Theory, 51(11):3697–3717,
November 2005

composing the linear program (59) into a set of tree-structured models and
introducing coupling constraints which are subsequently relaxed using La-
grangian relaxation. This Lagrangian decomposition technique is well known
in the optimization literature and one advantage of treating the MAP-MRF
problem in terms of its LP relaxation (59) is that it makes these techniques
applicable.

Improving the quality of the relaxation is another active research
area. The convex hull of the feasible integer solutions of (59) is known as the
marginal polytope M. By relaxing the integrality constraints in (59) one has
constructed an outer approximation to this set. This approximation is known
as local consistency polytope. By analysis of the marginal polytope, Sontag
and Jaakkola200 derive additional inequalities valid for the marginal polytope200 David Sontag and Tommi Jaakkola.

New outer bounds on the marginal poly-
tope. In NIPS, 2007
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which, when added to the linear program tighten the LP relaxation. They
derive the inequalities by identifying projections of the marginal polytope
with the cut polytope and applying known cycle inequalities to the projection.
By mapping the cycle inequalities back to the original space, valid inequalities
for the marginal polytopes are derived. The resulting tightened relaxation is
shown to be much tighter than the standard LP relaxation.201 201 Sontag and Jaakkola also consider the

problem of computing marginal prob-
abilities which can be posed as maxi-
mizing the entropy of the distribution
parametrized by µ over the marginal
polytope. Because the exact entropy
is also difficult to compute an upper
bound is used instead. Interestingly, the
results indicate that most of the remain-
ing inaccuracy in estimating marginals
comes from the entropy bound and the
approximation of the marginal polytope
is already sufficiently tight.

The tightness of the linear programming relaxation versus other relaxations
has been analyzed by Kumar et al.202. They showed that the LP relaxation

202 Mudigonda Pawan Kumar, Vladimir
Kolmogorov, and Philip Torr. An anal-
ysis of convex relaxations for MAP esti-
mation. In NIPS, 2008

dominates other known relaxations. Kohli et al.203 consider the issue of

203 Pushmeet Kohli, Alexander
Shekhovtsov, Carsten Rother, Vladimir
Kolmogorov, and Philip H. S. Torr. On
partial optimality in multi-label MRFs.
In ICML, volume 307, pages 480–487,
2008

deriving partial-optimal solutions for the MAP-MRF problem: a solution is
said to be partial-optimal if, for a subset of nodes, the labeled node states
are guaranteed to be the same in any optimal solution. These nodes can be
removed from the problem entirely and a reduced sized problem consisting
of only the unsure nodes has to be solved. Kohli et al. show that it is indeed
possible to obtain partial-optimality for the multi-label case by considering a
different relaxation based on roof duality. The tightness has also been analyzed
by Komodakis and Paragios204 and Werner205.

204 Nikos Komodakis and Nikos Para-
gios. Beyond loose LP-relaxations: Op-
timizing MRFs by repairing cycles. In
ECCV, 2008

205 Tomáš Werner. High-arity interac-
tions, polyhedral relaxations, and cut-
ting plane algorithm for soft constraint
optimisation (MAP-MRF). In CVPR,
2008

Problems involving high-order interactions are not directly solvable
using the linear programming relaxation (59). Werner extends the max-sum
diffusion algorithm to handle interactions involving more than two random
variables. When the interactions are efficiently computable the algorithm
yields a polynomial-time approximation to the MAP state.

In the next chapter we consider a particular type of global interaction which
ensures that the output labeling forms a connected component.





Image Segmentation under
Connectivity-Constraints

The previous chapter summarized the state of the art in structured prediction.
We have seen that one limitation of current graphical models is that they are
forced to consider “small” interactions such that the model can be decomposed
into tractable parts.

The key contribution of this chapter is a novel method to incorporate truly
global interactions into random field models. The approach is general and
extends the state of the art of random field models.

In particular, the interaction we consider is specified by a potential function
that is not only global, but is in itself computationally intractable.

The potential functions we consider are defined on all nodes in the graph,
denoted ψV(y; x, w). We consider a “connectedness potential”, which enforces
connectedness of the output labelings with respect to a graph. We derive our
algorithm in a principled way using results from polyhedral combinatorics.

Although in this chapter we only consider one global potential function,
the overall approach by which we incorporate the function is general and
applicable to other higher-order potential functions.

In the section that follows, we formalize the notion of connectedness by
analyzing the set of all connected MRF labelings: the connected subgraph
polytope. The discussion contains the main results on the structure of the
problem and proposes a tractable relaxation. Continuing the analysis, we
discuss in an extra section the properties of the approximate solution that our
relaxation provides. In a third section we show how the tractable relaxation
for connected subgraphs can be used to define global potential functions in
conditional random fields.

The remaining part of the chapter provide the experimental evaluation of
the proposed MRF/CRF with connectedness potentials on both a synthetic
data set and on the challenging PASCAL VOC 2008 segmentation data set; we
finish with an outlook on problems where our technique can be applied.

Connected Subgraph Polytope

The LP relaxation (59) has variables µi(yi) ∈ {0, 1} encoding if a node i has
label yi. In this section we derive a polyhedral set which can be intersected
with the feasible set of LP (59) such that for all remaining feasible solutions
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all nodes labeled with the same label form a connected subgraph. This set is
the connected subgraph polytope, the convex hull of all possible labeling that are
connected. We first define this set and then analyze its properties.

Definition 18 (Connected Subgraph Polytope) Given a simple, connected, undi-
rected graph G = (V, E), consider indicator variables yi ∈ {0, 1}, i ∈ V. Let
C = {y : G′ = (V′, E′) connected, with V′ = {i : yi = 1}, E′ = (V′ × V′) ∩ E}
denote the finite set of connected subgraphs of G. Then we call the convex hull
Z = conv(C) the connected subgraph polytope.

The convex hull of a finite set of points is the tightest possible convex relax-
ation of the set. Furthermore, for the case of minimizing a linear function over
the convex hull, it is known from classic linear programming theory206 that at206 Dimitris Bertsimas and John N. Tsit-

siklis. Introduction to Linear Optimization.
1997; and Alexander Schrijver. Theory
of Linear and Integer Programming. John
Wiley & Sons, New York, 1998

least one optimal solution exists at a vertex of the polytope. By construction,
this solution is then also in C and the relaxation is exact. Unfortunately,
optimizing over this polytope is NP-hard, as the following theorem shows.
The theorem is identical to Theorem 1 in207; we state it here for the reference207 Sara Vicente, Vladimir Kolmogorov,

and Carsten Rother. Graph cut based
image segmentation with connectivity
priors. In CVPR, 2008

to the earlier work of Karp208.

208 Richard M. Karp. Maximum-weight
connected subgraph problem, 2002.
http://www.cytoscape.org/ISMB2002/

Theorem 4 (Karp, 2002) It is NP-hard to optimize a linear function over Z =
conv(C).

The proof can be found in209, where the problem appears under the name209 Trey Ideker, Owen Ozier, Benno
Schwikowski, and Andrew F. Siegel. Dis-
covering regulatory and signalling cir-
cuits in molecular interaction networks.
In ISMB, 2002; and Richard M. Karp.
Maximum-weight connected subgraph
problem, 2002. http://www.cytoscape.

org/ISMB2002/

“Maximum-Weight Connected Subgraph Problem”.
Therefore, if we plan to intersect conv(C) with the feasible set of (59), we are

planning to optimize a linear function over this polytope. Unfortunately, from
Theorem 4 it follows that optimizing a linear function over conv(C) is NP-
hard, and it is unlikely that conv(C) has a “simple” description, a description
in terms of linear inequalities which is polynomial-time separable210. To210 Alexander Schrijver. Theory of Linear

and Integer Programming. John Wiley &
Sons, New York, 1998

overcome this difficulty we will derive a tight relaxation to conv(C) which is
still polynomially solvable.

Z

d>1 y ≤ 1

d>2 y ≤ 1
d>3 y ≤ 1

Figure 44: Three valid inequalities, only
one of which is facet-defining for the
polytope Z.

To do this, we focus on the properties of C and its convex hull Z. We
first show that Z has full dimension, i.e., does not live in a proper subspace.
Second, we show that yi ≥ 0 and yi ≤ 1 are facet-defining inequalities for all
graphs. Figure 44 shows what this means: d>1 y ≤ 1 and d>2 y ≤ 1 are both
valid, but only d>3 y ≤ 1 is facet-defining211.

211 Laurence A. Wolsey. Integer Program-
ming. John Wiley & Sons, New York,
1998

Lemma 6 dim(Z) = |V|.

Lemma 7 For all i ∈ V, the inequalities yi ≥ 0 and yi ≤ 1 are facet-defining for Z.

The proofs can be found in the appendix.

Definition 19 (Vertex-Separator Set) Given a simple, connected, undirected graph
G = (V, E), for any pair of vertices i, j ∈ V, i 6= j, (i, j) /∈ E, the set S ⊆ V \ {i, j}
is said to be a vertex-separator set with respect to {i, j} if the removal of S from G
disconnects i and j.

http://www.cytoscape.org/ISMB2002/
http://www.cytoscape.org/ISMB2002/
http://www.cytoscape.org/ISMB2002/
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If the removal of S from G disconnects i and j, then there exists no path
between i and j in G′ = (V \ S, E \ (S× S)). As an additional definition, a
set S̄ is said to be an essential vertex-separator set if it is a vertex-separator set
with respect to {i, j} and any strict subset T ⊂ S̄ is not. Let S(i, j) = {S ⊂
V : S is a vertex-separator set with respect to {i, j}} denote the collection of
all vertex-separator sets, and S̄(i, j) ⊂ S(i, j) be the subset of essential vertex-
separator sets.

Theorem 5 C, the set of all connected subgraphs, can be described exactly by the
following constraint set.

yi + yj − ∑
k∈S

yk ≤ 1, ∀(i, j) /∈ E : ∀S ∈ S(i, j), (64)

yi ∈ {0, 1}, i = 1, . . . , |V|. (65)

The proof can be found in the appendix.
Theorem 5 has a simple intuitive interpretation, shown in Figure 45. If two

vertices i and j are selected (yi = yj = 1, shown in black), then any set S of
vertices separating them must contain at least one selected vertex. Otherwise
i and j cannot be connected because any path from i to j must pass through at
least one vertex in S.

i j

S

. . . . . . . . .. . .

Figure 45: Vertex i and j and one vertex
separator set S ∈ S̄(i, j).

Having characterized the set of all connected subgraphs exactly by means
of (64) and (65) it is natural to look at the linear relaxation, replacing (65)
by yi ∈ [0; 1], ∀i. Such a relaxation yields a polytope P ⊇ Z = conv(C) ⊃ C,
which can be a tight (good) or loose (bad) approximation to conv(C). The
quality of the approximation improves if facets of the polytope P are true facets
of conv(C). The following theorem states that in our relaxation a large subset
of the constraints (64) — exactly those associated to essential vertex-separator
sets — are indeed facets of conv(C).

Theorem 6 The following linear inequalities are facet-defining for Z = conv(C).

yi + yj − ∑
k∈S

yk ≤ 1, ∀(i, j) /∈ E : ∀S ∈ S̄(i, j). (66)

The proof can be found in the appendix.
Let us summarize our progress so far. We have described the set of con-

nected subgraphs and the associated connected subgraph polytope. Further-
more we have shown that a relaxation of the connected subgraph polytope
is locally exact in that the set of linear inequalities (66) are true facets of
conv(C). However, in general the number of linear inequalities (66) used in
our relaxation is exponential in |V|.

We now show that optimization over the set defined by (66) is still tractable
because finding violated inequalities — the so called separation problem — can
be solved efficiently using max-flow algorithms.

Theorem 7 (Polynomial-time separation) For a given point y ∈ [0; 1]|V| to find
the most violated inequality (66) or prove that no violated inequality exists requires
only time polynomial in |V|.
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Proof. We give a constructive separation algorithm based on solving a
linear max-flow problem on an auxiliary directed graph. For a given point
y ∈ [0; 1]|V|, consider all (i, j) ∈ V ×V with i 6= j, (i, j) /∈ E and yi > 0, yj > 0.
For any such (i, j) consider the statement

yi + yj − ∑
k∈S

yk − 1 ≤ 0, ∀S ∈ S̄(i, j).

Note that in the above statement, the individual variables y are not necessarily
binary. We can rewrite the set of inequalities above in equivalent variational
form,

max
S∈S̄(i,j)

(
yi + yj − ∑

k∈S
yk − 1

)
≤ 0. (67)

If we prove that (67) is satisfied, we know that no violated inequalities exists
for (i, j). If, however, a violation exists, then the essential vertex-separator set
producing the highest violation is given as

S∗(i, j) = argminS∈S̄(i,j) ∑
k∈S

yk. (68)

In order to find this separator set, we transform G into a directed
graph G′ with edge capacities. In the directed graph each original edge is
split into two directed edges with infinite capacity. Additionally each vertex k
in the original graph is duplicated and an edge of finite capacity equal to yk is
introduced between the two copies.

Formally, we construct G′ = (V′, E′), E′ ⊆ V′ × V′ ×R as follows. Let
V′ = V ∪ {k′ : k ∈ V \ {i, j}}. Further let E′ = {(i, k, ∞) : k ∈ V, (i, k) ∈
E} ∪ {(k′, j, ∞) : k ∈ V, (j, k) ∈ E} ∪ {(s′, t, ∞), (t′, s, ∞) : (s, t) ∈ E \ ({i, j} ×
{i, j})} ∪ {(k, k′, yk) : k ∈ V \ {i, j}}. The construction is illustrated for an
example graph in Figures 46 and 47.

i j

a b

c
Figure 46: Example graph G. There are
three vertex-separator sets in S(i, j) =
{{a, c}, {b, c}, {a, b, c}}, of which only
{a, c} and {b, c} are essential.

∞

∞

∞

∞

∞

∞ ji

ya yb

yc

Figure 47: Directed auxiliary graph
G′ for finding the minimum essential
vertex-separator set in G among all sets
in S̄(i, j).

Finding an (i, j)-cut of finite capacity in G′ is equivalent to finding an
essential (i, j) vertex separator set in G. This can be seen by recognizing that
the only edges that can be cut — hence saturated in a max-flow problem —
are the edges (k, k′) with finite capacity, which correspond to vertices in the
original graph. Solving the max-flow problem in the auxiliary directed graph
solves (68). After finding S∗(i, j), we simply check whether (67) is satisfied.

Solving a linear maximum network flow problem of this type is very
efficient212. The best algorithms known have a computational complexity of212 Yuri Boykov and Vladimir Kol-

mogorov. An experimental comparison
of min-cut/max-flow algorithms for en-
ergy minimization in vision. PAMI, 26

(9):1124–1137, 2004

O(|V|3) and O(|V||E| log(|V|)). We need to solve one max-flow problem per
(i, j) pair with yi > 0, yj > 0, so the overall separation problem of checking
feasibility with respect to (66) can be solved in time O(|V|5). �

In practice we do not have to check all (i, j) node pairs. Instead, we
decompose the graph into connected components such that for all vertices in
a connected component there exists an all-1-path to each other vertex in the
component. These connected components can be found in practically linear
time using a disjoint set union-rank data structure213. Only one representative213 Thomas H. Cormen, Charles E. Leis-

erson, and Ronald L. Rivest. Introduction
to Algorithms. 1990
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node is chosen at random from each component and the separation is carried
out only for the representative vertices. This procedure is exact.

The above procedure works and has guaranteed polynomial-time complex-
ity. It requires the solution of O(|V|2) max-flow problems in order to obtain
the minimum cut over all pairs of vertices.

Solution Integrality

The integrality of the solution in the intersection of two polytopes
is of particular interest. Here, both the polytope defined by the MRF LP
relaxation and our relaxation of the connected subgraph polytope are not
exact: a relaxation is a superset of the true feasible set. This property allows
tractable optimization of otherwise NP-hard problems. If the optimal solution
over the relaxed feasible set is integral, that is, the solution is 0, 1-valued, then
the relaxation is locally exact and the solution is globally optimal also over
the true feasible set.

On the other hand, if the solution has fractional elements 0 < v < 1, then
the solution is outside the true feasible set and the achieved objective of the
relaxation provides a lower bound on the true optimal objective. In this case,
a popular method to deal with fractional solutions is to use rounding to
construct a feasible solution from said fractional solution.

Our construction to enforce high-order potentials by intersecting a polytope
with the MRF LP relaxation is exact if restricted to the set of integral solutions.
But in order to obtain a tractable optimization problem, we do not enforce
integrality but solve the relaxed LP instead. Then our approach provides only
the solution to the relaxation, which may have fractional elements.

Because we started with two relaxations it seems natural that when inter-
secting their feasible sets we also obtain a relaxation. In general, however,
even if we had started with the exact marginal polytope with only integral
vertices, and another integral polytope, their intersection could have fractional
vertices and therefore only provide a relaxation214. We now elaborate further 214 Alexander Schrijver. Theory of Linear

and Integer Programming. John Wiley &
Sons, New York, 1998

on this important point by means of a simple example. For the following
discussion, the property we are interested in is the preservation of tightness
of the relaxation: if we have two polytopes describing tight relaxations and
we construct the intersection, do we still obtain a tight relaxation?

In general, the answer is no. By means of constructing a simple counter-
example, we show that even if both the marginal polytope relaxation and
the relaxation of the restricted feasible set in the node-label dimensions are
tight, the intersection of both polytopes need not be. That is, it can contain
new fractional vertices, even if both original polytopes contain only integral
{0, 1}-vertices.

To see this, consider the simple two node Markov random field shown as
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a graphical model in Figure 48. In the parametrization used by the linear
programming relaxation (59), there are eight variables, four for the node states
(µ1(y1), µ1(y2), µ2(y1), µ2(y2)) and four for the pairwise node states at the
edge (µ1,2(y1, y1), µ1,2(y1, y2), µ1,2(y2, y1), µ1,2(y2, y2)).

1 2

µ1,2(y1, y1)
µ1,2(y1, y2)
µ1,2(y2, y1)
µ1,2(y2, y2)

µ1(y1) µ2(y1)
µ2(y2)µ1(y2)

Figure 48: Simple two-node Markov
Random Field. The representation used
in the LP relaxation defines four vari-
ables for the node states, and four vari-
ables for the pairwise node states asso-
ciated to the edge.

The feasible set described by the constraints of the LP relaxation is given
by the following set of constraints.

M = {µ : µ1(y1) + µ1(y2) = 1, (69)

µ2(y1) + µ2(y2) = 1,

µ1,2(y1, y1) + µ1,2(y1, y2) = µ1(y1),

µ1,2(y2, y1) + µ1,2(y2, y2) = µ1(y2),

µ1,2(y1, y1) + µ1,2(y2, y1) = µ2(y1),

µ1,2(y1, y2) + µ1,2(y2, y2) = µ2(y2),

µ1(y1), µ1(y2), µ2(y1), µ2(y2) ≥ 0,

µ1,2(y1, y1), µ1,2(y1, y2), µ1,2(y2, y1), µ1,2(y2, y2) ≥ 0}.

The constraints above define the feasible set as a three-dimensional polytope
embedded in eight dimensions. We can visualize the polytope partially by
projecting it onto subspaces. For this, let us define the projection of a polytope.

Definition 20 (Projection of a Polytope) For a given polytope Q ⊆ (Rn ×Rp),
the projection of Q onto the subspace Rn, denoted projxQ is defined as

projxQ = {x ∈ Rn : (x, w) ∈ Q for some w ∈ Rp}.

Therefore, a point is in the projected set if there is at least one point in the
higher dimensional polytope which has identical coefficients in the projection
dimensions. For additional properties of projected polytopes, see215.

215 Egon Balas. Projection, lifting and
extended formulation in integer and
combinatorial optimization. Annals of
Operations Research, (140):125–161, 2005;
Laurence A. Wolsey. Integer Program-
ming. John Wiley & Sons, New York,
1998; and Alexander Schrijver. Theory
of Linear and Integer Programming. John
Wiley & Sons, New York, 1998

Figure 49(a) shows the projection projµ1(y1),µ2(y1),µ1,2(y1,y1)M of the feasible
set of the MRF shown in Figure 48. The full set of vertices of the polytope M
is given as follows.

{(µ1(y1), µ1(y2), µ2(y1), µ2(y2),

µ1,2(y1, y1), µ1,2(y1, y2), µ1,2(y2, y1), µ1,2(y2, y2))}
= {(1, 0, 1, 0, 1, 0, 0, 0), (1, 0, 0, 1, 0, 1, 0, 0),

(0, 1, 1, 0, 0, 0, 1, 0), (0, 1, 0, 1, 0, 0, 0, 1)}.

Therefore, all vertices are integral and for this particular MRF the LP relaxation
is tight. The feasible set defined by the LP relaxation is therefore identical to
the true set, the marginal polytope216.

216 Martin J. Wainwright, Tommi S.
Jaakkola, and Alan S. Willsky. MAP
estimation via agreement on (hy-
per)trees: Message-passing and linear-
programming approaches. IEEE Trans.
Information Theory, 51(11):3697–3717,
November 2005

Now suppose we want to restrict the labelings such that not both nodes
are labeled y1. Then, the only allowed combinations for (µ1(y1), µ2(y1)) are
from the set L = {(0, 0), (0, 1), (1, 0)}. The convex hull conv(L) is shown in
Figure 49(b). The facet-defining constraints of the convex hull are simply
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µ1(y1)

µ2(y1)

µ1,2(y1, y1)

(a) Projection of the marginal polytope M
onto the µ1(y1), µ2(y1) and µ1,2(y1, y1) di-
mensions, i.e., projµ1(y1),µ2(y1),µ1,2(y1 ,y1) M.

µ1(y1)

µ2(y1)

(b) Desired feasible set with respect
to µ1(y1), µ2(y1). The non-trivial
facet-defining inequality is µ1(y1) +
µ2(y1) ≤ 1.

µ1(y1)

µ2(y1)

µ1,2(y1, y1)

(c) Projected view of the extension to the
full space of the desired feasible set with
respect to µ1(y1), µ2(y1). Note that this
polytope has only integral vertices.

µ1(y1)

µ2(y1)

µ1,2(y1, y1)

(d) Projected view of the resulting
intersection with new fractional ver-
tex (µ1(y1), µ2(y1), µ1,2(y1, y1)) =
( 1

2 , 1
2 , 1

2 ).

Figure 49: Three dimensional projection
of the extended feasible set.

µ1(y1) ≥ 0, µ2(y1) ≥ 0 and µ1(y1) + µ2(y1) ≤ 1. We plan to add this new
constraints to the feasible set of the MRF, defined by (69). Because the first
two non-negativity constraints are already in the constraint set, we only have
to consider the new inequality µ1(y1) + µ2(y1) ≤ 1.

Adding a constraint in the subspace of µ1(y1) and µ2(y1) is the same as
first extending the set shown in Figure 49(b) to the full dimensional space and
then intersecting it with the marginal polytope. We show a three-dimensional
projection of the extended feasible set in Figure 49(c).

The intersection of polytopes shown in Figure 49(c) and Figure 49(a) is
shown in Figure 49(d). The new polytope contains only points which satisfy
µ1(y1) + µ2(y1) ≤ 1 and (69). The polytope has the following set of vertices.

{(µ1(y1), µ1(y2), µ2(y1), µ2(y2),

µ1,2(y1, y1), µ1,2(y1, y2), µ1,2(y2, y1), µ1,2(y2, y2))}
= {(1, 0, 0, 1, 0, 1, 0, 0), (0, 1, 1, 0, 0, 0, 1, 0),

(0, 1, 0, 1, 0, 0, 0, 1), (
1
2

,
1
2

,
1
2

,
1
2

,
1
2

, 0, 0,
1
2
)}.

Therefore, although both polytopes have only integral vertices, their in-
tersection has fractional ones. Note that the restriction of the intersection to
the set of integral vertices still remains the exact set we are interested in: the
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subset of vertices of the marginal polytope satisfying µ1(y1) + µ2(y1) ≤ 1.
In the above example, the simplified construction is qualitatively the same

as the intersection of the connected subgraph polytope with the LP MAP-MRF
relaxation local polytope217. Therefore, it is insightful in a number of ways.217 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. MAP
estimation via agreement on (hy-
per)trees: Message-passing and linear-
programming approaches. IEEE Trans.
Information Theory, 51(11):3697–3717,
November 2005

First, having tight relaxations for both the connected subgraph polytope
and the marginal polytope does not guarantee a tight relaxation for the convex
hull of the integral vertices of their intersection.

Second, restricted to the set of integral solutions, the construction is exact.
However, optimizing over only the integral solutions of the intersection is
intractable, whereas optimizing over the intersection of two polytopes remains
tractable if optimizing over the individual polytopes is tractable. To intersect
polytopes can therefore be thought of as tractable relaxation to the intersection
of their individual integral vertices: the new vertex set is a superset of the
intersection of the individual polytopes’ vertex sets.

In summary, intersecting polytopes weakens the overall relaxation. But in
order to put this result into perspective, note the following three points.

First, we never had a tight relaxation to start with. For general pairwise
potentials optimizing over the exact marginal polytope is NP-hard218, so218 Martin J. Wainwright, Tommi S.

Jaakkola, and Alan S. Willsky. MAP
estimation via agreement on (hy-
per)trees: Message-passing and linear-
programming approaches. IEEE Trans.
Information Theory, 51(11):3697–3717,
November 2005

the LP relaxation is used. Optimizing over the exact subgraph polytope is
NP-hard, so a relaxation is used. In order to remain tractable, both sets are
relaxations and individually have fractional vertices. Whether the additional
fractional vertices caused by intersection are an issue that has to be settled
empirically, as shown in Figure 51(f).

Second, in general, finding inequalities which cut off fractional vertices of
the intersection of two polytopes is hard, see Balas and also Wolsey219.

219 Egon Balas. Projection, lifting and ex-
tended formulation in integer and com-
binatorial optimization. Annals of Oper-
ations Research, (140):125–161, 2005; and
Laurence A. Wolsey. Integer Program-
ming. John Wiley & Sons, New York,
1998

Third, as observed by Finley and Joachims220, structured learning of param-

220 Thomas Finley and Thorsten
Joachims. Training structural SVMs
when exact inference is intractable. In
ICML, 2008

eters in linear relaxations can “learn to avoid fractional solutions”, as these
always have a strictly positive loss.

From Polytopes to Potentials

We now transform the connected subgraph polytope into a potential function
of a random field. Let µj(y) = [µ1(yj), . . . , µ|V|(yj)]> ∈ R|V| be the set of
variables in the LP relaxation (59) indicating assignment to class j over all
vertices. One way to enforce connectivity in the LP solution for the vertices
assigned to the j’th class is to define the following hard connectivity potential
function.

ψ
hard(j)
V (y) =

{
0 µj(y) ∈ Z
∞ otherwise

(70)

This potential function can be incorporated by adding the respective con-
straints (66) to the LP relaxation (59). Alternatively we can define a soft
connectivity potential by defining a feature function measuring the violation
of connectivity. We define ψ

soft(j)
V (y; w) = wsoft(j)φ

conn(j)(y) where φconn(j) ≥ 0
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Algorithm 7 MAP-MRF LP Cutting Plane Method
1: (y, B) = LPCuttingPlane(x, w)
2: Input:
3: Sample x ∈ X , weight vector w ∈ Rd

4: Output:
5: Approximate MAP-MRF labeling y∗ ∈ Y
6: Lower bound on MAP energy B ∈ R

7: Algorithm:
8: C ← Rdim(Y), B← −∞ {Initially: no cutting planes}
9: loop

10: y∗ ← argminy∈Y ,y∈C E(y; x, w)
11: c← most violating constraint (66) with c>µj(y∗) > 1
12: if no c>µj(y) > 1 can be found then
13: break
14: end if
15: C ← C ∩ {y : c>µj(y) ≤ 1}
16: end loop
17: B← E(y∗; x, w)

measures the violation of connectivity:

φconn(j)(y) =

{
0 µj ∈ Z

maxd∈D{d>µj(y)− 1} otherwise
,

where D is the set of coefficient vectors of the inequalities (66). We can
calculate maxd∈D{d>µj(y) − 1} efficiently by means of Theorem 7. This
potential function can be realized by introducing constraints into the LP
relaxation as for ψhard(j) but also adding one global non-negative slack variable
lower bounded by φconn(j) for all y ∈ Y and having an objective coefficient of
wsoft(j).

LP MAP-MRF with ψV

Algorithm 1 iteratively solves the MAP-MRF LP relaxation (59). After each
iteration (70) is checked and if the labeling is connected, the algorithm termi-
nates. In the case of an unconnected segmentation, a violated constraint is
found and added to the master LP (59).

We now validate our connectedness potential on two tasks, i) a MRF
denoising problem, and ii) object segmentation by learned CRFs.

Experiment: Denoising

We consider a standard denoising problem221. The 32x32 pixel pattern shown 221 Vladimir Kolmogorov and Ramin
Zabih. What energy functions can be
minimized via graph cuts? PAMI, 26(2):
147–159, 2004

in Figure 50(a) is corrupted with additive Gaussian noise, as shown in Fig-
ure 50(b). The pattern should be recovered by means of solving a binary MRF.
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Figure 50: Denoising experiment.
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(a) Pattern “X” to be recognized.

Noisy X pattern
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(b) Noisy node potential, σ = 0.9.

We use a 4-neighborhood graph defined on the pixels, and the node potentials
are derived from ground truth labeling as

ψi(“FG”) =

{
−1 +N (0, σ) if i is true foreground

0 otherwise

ψi(“BG”) =

{
−1 +N (0, σ) if i is true background

0 otherwise

The edge potentials are regular222 and chosen as Potts

222 Vladimir Kolmogorov and Ramin
Zabih. What energy functions can be
minimized via graph cuts? PAMI, 26(2):
147–159, 2004

ψi,j(yi, yj) = |N (0, k/
√

d)|I(yi 6= yj),

where d = 4 is the average degree of our vertices. The parameters are varied
over σ ∈ {0, 0.1, . . . , 1.0}, k ∈ {0, 0.5, . . . , 4} and each run is repeated 30 times.
For each of the 30 runs, the potentials are sampled once and we derive three
solutions, i) “MRF”, the solution to standard binary MRF, ii) “MRFcomp”, the
largest connected component of the MRF, iii) “CMRF”, a binary MRF with
additional hard-connectivity potential (70) on the foreground plane.

The results are shown in Figures 51(a) to (f). They show the connected MRF
averaged absolute error over the parameter plane and the relative errors to
the standard MRF and component heuristic.

The advantage of the connectedness constraint over a standard MRF can be
seen by looking at the relative errors in Figure 51(d). For almost all parameter
regimes the error of the MRF is higher (positive values in the plot). Also, from
Figure 51(e) it can be seen that the connectedness constraint outperforms the
largest-connected-component heuristic except when very weak edge potentials
are used (upper left corner). Typical examples are shown in Figure 52 and 53.

Regarding solution integrality, because we use relaxations for both the
marginal polytope (the LP relaxation), and the connected subgraph polytope
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(a) MRF labeling error.
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(b) MRFcomp labeling error.
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(c) Connected MRF labeling error.
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(d) Error difference MRF-CMRF.
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(f) Mean solution integrality of the MRF
with hard connectivity potential.

Figure 51: Denoising experiment results.
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Figure 52: MRF/MRFcomp/CMRF re-
sults, with energies E = −985.61, E =
−974.16, E = −984.21, and errors 36, 46,
28, respectively. The connectivity con-
straint solution CMRF is a substantial
improvement over the solutions of MRF
and MRFcomp.
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Figure 53: MRF/MRFcomp/CMRF re-
sults, with energies E = −980.13, E =
−974.03, E = −976.83, and errors 34,
34, 24, respectively. Note although the
CMRF solution becomes fractional, it is
a substantial improvement over the MRF
and MRFcomp results.

(the relaxation described by (66)), it is not a priori clear that the solution
obtained will be integral. Only if it is, we have a solution to the true, unrelaxed
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problem. If it is fractional, the solution is still optimal in the relaxation, but
outside the true feasible set.

In Figure 51(f) we show the integrality, i.e., the fraction of variables which
are integral.

We see that our approach is very effective: for medium noise and edge
interactions, the solution is always integral, whereas even when there is more
noise and edge interaction, very few variables — less than 0.5% for most
configurations — become fractional.

The problems defined by the marginal polytope and the connected sub-
graph polytope are both NP-hard. Hence, it is likely that no polynomial-time
approach can provide the guaranteed optimum. In theory, a logical step within
our approach would be to prove properties about the fractional solutions, for
example that they satisfy half-integrality or can be rounded with optimality
guarantee to obtain a polynomial-time approximation algorithm. In practice,
the approach already works very well.

Experiment: Learning Object Segmentation

Connectivity is a strong global prior for object segmentation. In this exper-
iment we use the connectivity assumption to segment out objects from the
background in the PASCAL VOC 2008 data set223. The data set is known to223 Mark Everingham, Luc Van Gool,

Christopher K.I. Williams, John Winn,
and Andrew Zisserman. The PASCAL
Visual Object Classes Challenge
2008 Results. http://www.pascal-
network.org/challenges/VOC/voc2008/

be particularly challenging as the images contain objects of 20 different classes
with a lot of variability in lighting, viewpoint, size and positioning of the
objects.

Figure 54: Number of objects of indi-
vidual classes per image in the PASCAL
VOC 2008 trainval data set for the object
detection task.
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We first look at a simple statistic of the training and validation set for the
detection task: How many objects of each individual class are present on an
image? Figure 54 shows the number of objects of individual classes per image
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in the PASCAL VOC 2008 trainval data set.
The statistics confirm that if an object is present on an image, in 70% of

the cases there is no other object of the same class on the image. For some
classes, like aeroplane, cat, and diningtable this is more often the case than
for classes like bottle, chair, person and sheep.

The experimental setup is as follows. In our setting, we let x = (V, E) be
the graph resulting from a superpixel segmentation224 of an image, where 224 Xiaofeng Ren and Jitendra Malik.

Learning a classification model for seg-
mentation. In ICCV, 2003

each i ∈ V is a superpixel. The superpixel segmentation is obtained us-
ing the method225 of Mori226, where we use ≈ 100 superpixels. Example 225 http://cs.sfu.ca/~mori/research/

superpixels/
226 Greg Mori. Guiding model search
using segmentation. In ICCV, 2005

segmentations are shown on the left side of Figures 55 to 59.

Using superpixels has three advantages, i) the information in each su-
perpixel is more discriminative because all image information in the region can
be used to describe it, ii) the complexity of the inference is drastically reduced
with only a negligible approximation error, and iii) the notion of connectivity
becomes more meaningful if larger, equal-sized parts are considered.

Each superpixel becomes a vertex in the graph. An edge joins two vertices
if the superpixels are adjacent in the image. Therefore connectivity in the
graph implies connectivity of the segmentation.

For each image, we extract per image an average of 38,000 SURF features227 227 Herbert Bay, Andreas Ess, Tinne
Tuytelaars, and Luc J. Van Gool.
Speeded-up robust features (SURF).
Computer Vision and Image Understanding,
110(3):346–359, 2008

at random positions in scale space as well as at interest operator responses
and assign each feature to the superpixel which contains the center pixel of
the feature. For each vertex, a bag-of-words histogram xi ∈ RH is created
by nearest-neighbor quantizing the features associated to the superpixel in a
codebook of 500 words (H = 500), created by k-means clustering228 on a large 228 Richard O. Duda, Peter E. Hart, and

David G. Stork. Pattern Classification, vol-
ume November. John Wily & Sons, Inc.,
New York, second edition, 2000. ISBN
0471056693

random sample of features from the training set.
We treat each of the twenty classes separately as a binary problem. That is,

for each image showing an object of the class, a class-vs-background labeling is
sought. Hence each vertex i in the graph has a label vector yi ∈ {0, 1} × {0, 1}.
We report the average intersection-union metric, defined as TP

TP+FP+FN ratio,
where TP, FP, FN are true positives, false positives and false negatives,
respectively, per pixel labeling for the object class229. Because the VOC2008

229 Mark Everingham, Luc Van Gool,
Christopher K.I. Williams, John Winn,
and Andrew Zisserman. The PASCAL
Visual Object Classes Challenge
2008 Results. http://www.pascal-
network.org/challenges/VOC/voc2008/

segmentation trainval set includes only 1023 images for which ground truth
is available, with some classes having as few as 44 positive images (only 19 for
train alone), we use a three-fold cross validation estimate on the trainval

set.
For all CRF variants we will describe later, we use the following feature

functions.

• Node features, φ
(1)
i (yi, x) = vec(xiy>i ).

Thus the output of φ
(1)
i (yi, x) is a (H, 2)-matrix of two weighted replications

of the node histogram xi. The matrix is stacked columnwise.

• Edge features φ
(2)
i,j (yi, yj, x) = vec∆(yiy>j ).

http://cs.sfu.ca/~mori/research/superpixels/
http://cs.sfu.ca/~mori/research/superpixels/
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This is the upper-triangular part including diagonal of the outer product
yiy>j . By making this feature available, the CRF can learn the weights for
the inter-class and intra-class Potts potentials separately.

We test three CRFs, i) a CRF with these feature functions, ii) the same CRF
with ψ

hard(class)
V , and iii) the same CRF with ψ

soft(class)
V .

Learning the parameters

For learning the parameters w of the model, we use the structured output sup-
port vector machine framework230, recently also used in computer vision231.230 Ioannis Tsochantaridis, Thorsten

Joachims, Thomas Hofmann, and
Yasemin Altun. Large margin methods
for structured and interdependent
output variables. JMLR, 6:1453–1484,
September 2005

231 Matthew B. Blaschko and
Christoph H. Lampert. Learning
to localize objects with structured
output regression. In ECCV, 2008;
Yunpeng Li and Daniel Huttenlocher.
Learning for stereo vision using the
structured support vector machine.
In CVPR, 2008; and Martin Szummer,
Pushmeet Kohli, and Derek Hoiem.
Learning CRFs using graph cuts. In
ECCV, 2008

As discussed in the previous chapter, it minimizes the following regularized
risk function.

min
w

‖w‖2 +
C
`

`

∑
n=1

max
y∈Y

(∆(yn, y) + E(yn; xn, w)− E(y; xn, w)) , (71)

where (xn, yn)n=1,...,` are the given training samples and ∆ : Y × Y → R+

is a compatibility function which has a high value if two segmentations are
different and a low value if they are very similar. More precisely, we define

∆(y1, y2) = ∑
i∈V

ri

∑j∈V rj

(
y1

i + y2
i − 2y1

i y2
i

)
,

where ri is the size in pixels of the region i in the superpixel segmentation.
Note that this definition is, i) symmetric, ∆(y1, y2) = ∆(y2, y1), ii) zero-based,
∆(y, y) = 0, and non-negative, iii) corresponds to the Hamming loss if all
elements are binary, and iv) decomposes linearly over the individual elements
if one of y1, y2 is constant.

Because of the last point it is easy to incorporate into the MRF inference
procedure by means of a bias on the node potentials232. We train with

232 Thomas Finley and Thorsten
Joachims. Training structural SVMs
when exact inference is intractable.
In ICML, 2008; and Martin Szummer,
Pushmeet Kohli, and Derek Hoiem.
Learning CRFs using graph cuts. In
ECCV, 2008

C ∈ {.00001, .0001, . . . , 10, 100} and report the highest achieved performance
of each model.

The objective (71) is convex, but non-differentiable. We use the Struc-
turedSVM algorithm discussed in the last chapter, iteratively solving a
quadratic program233.

233 Ioannis Tsochantaridis, Thorsten
Joachims, Thomas Hofmann, and
Yasemin Altun. Large margin methods
for structured and interdependent
output variables. JMLR, 6:1453–1484,
September 2005

For solving the separation problem one is given a current parameter vector
w. Then for each sample (xn, yn) one needs to determine whether there exists
a violated constraint of the form (39). To answer this question, for a given n,
we rewrite the set of constraints as

ξn ≥ ∆(yn, y) + E(yn; xn, w)− E(y; xn, w), y ∈ Y . (72)

By maximizing the right hand side of (72) over all possible y ∈ Y we can find
the most violating constraint. Therefore, we attempt to solve

max
y∈Y

(∆(yn, y) + E(yn; xn, w)− E(y; xn, w)) .
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Figure 55: Image/CRF/CRF+conn.
Case where connectedness helps: the lo-
cal evidence is scattered, enforcing con-
nectedness (right) helps.

The last term is constant and ∆(yn, y) can be incorporated into E(y; xn, w)
by adjusting the node potentials. Finding the most violated constraint has
been converted to a problem of the same form as the original MAP-inference
problem. Therefore Algorithm LPCuttingPlane can be used to find the
maximizer y∗n. It defines a new constraint and by iterating between generating
constraints and solving the QP we can obtain successively better parameter
vectors w.

Finley and Joachims234 have shown that if the inference in the learning 234 Thomas Finley and Thorsten
Joachims. Training structural SVMs
when exact inference is intractable. In
ICML, 2008

problem is hard, then approximately solving this hard problem can lead to
classification functions which do not generalize well. Instead, it is preferable
to solve exactly a relaxation to the original inference problem. This is precisely
what we are doing, because the intersection of (66) with the MAP-MRF LP
local polytope defines an exactly solvable relaxation.

Results

Table 8 shows for each class the averaged intersection-union scores of the three
different methods.

Method aerop. bicyc. bird boat bottle bus car cat chair cow

CRF 0.355 0.087 0.189 0.261 0.138 0.383 0.194 0.278 0.084 0.225

hard 0.380 0.091 0.202 0.275 0.115 0.391 0.185 0.311 0.121 0.236

soft 0.341 0.090 0.176 0.288 0.130 0.406 0.165 0.283 0.101 0.270

dtable dog horse mbike person plant sheep sofa train tv
CRF 0.279 0.245 0.232 0.239 0.188 0.088 0.298 0.214 0.419 0.158

hard 0.269 0.244 0.209 0.268 0.194 0.075 0.249 0.200 0.393 0.152

soft 0.294 0.220 0.194 0.273 0.184 0.074 0.277 0.209 0.419 0.151

Table 8: Results of the VOC2008 segmen-
tation experiment. Marked bold are the
cases where a method outperforms the
others.

For most classes the connected CRF models outperform the baseline CRF.
This is especially true for classes such as aeroplane and cat, whose images
usually contain only one large object. In contrast, classes such as bottle and
sheep often have more than one object in an image. This is a violation of our
connectedness assumption and in this case the CRF model outperforms the
connected ones. We also see that in some cases the extra flexibility of the soft
connectedness over the hard connectedness prior pays off: for the boat, bus,
cow and motorbike classes, the ability to weight the connectivity strength
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Figure 56: Image/CRF/CRF+conn. An-
other case where connectedness helps.

Figure 57: Image/CRF/CRF+conn. Con-
nectedness can remove clutter: local evi-
dence (edges on the runway) is overrid-
den.

Figure 58: Image/CRF/CRF+conn. An-
other case where an erroneous detection
is removed due to the connectivity con-
straint.

versus the other potentials is useful in improving over both the baseline CRF
and the hard connected CRF.

The typical behavior of the hard-connectedness CRF on test images is shown
in Figures 55 to 59 for the aeroplane class. In the first two segmentations,
connectedness helps by completing a discontinuous segmentation and by
removing clutter. Figure 59 shows a hopeless case: if the CRF segmentation is
that wrong, connectedness cannot help.



image segmentation under connectivity-constraints 147

Figure 59: Image/CRF/CRF+conn. Fail-
ure case: the CRF segmentation is bad
(middle) connectedness does not help
(right).

Figure 60: Image/CRF/CRF+conn. Fail-
ure case due to locally non-tight relax-
ation: there are two connected compo-
nents in the CRF+conn solution. This is
because the node variable associated to
the foreground layer which corresponds
to the connecting superpixel has a frac-
tional value 1

2 . For the binary visualiza-
tion image we round down fractional
values.

Conclusions and Outlook

We have shown how the limitation of only considering local interactions
in discrete random field models can be overcome in a principled way. We
considered a hard global potential encoding whether a labeling is connected
or not. We derived an efficient relaxation that can naturally be used with
MAP-MRF LP relaxations.

Experimentally, we demonstrated that a connectedness potential reduces the
segmentation error on both a synthetic denoising and real object segmentation
task.

Clearly, other meaningful global potential functions could be devised by
the method introduced in this paper. The principled use of polyhedral com-
binatorics opens a way to better model high-level vision tasks with random
field models. Another direction of future work is to see if the addition of
complicated primal constraints like (66) can be accommodated into recent
efficient dual LP MAP solvers 235.

235 Amir Globerson and Tommi Jaakkola.
Fixing max-product: Convergent mes-
sage passing algorithms for map lp-
relaxations. In NIPS, 2007; Nikos Ko-
modakis, Nikos Paragios, and Georgios
Tziritas. MRF optimization via dual de-
composition: Message-passing revisited.
In ICCV. IEEE, 2007; Mudigonda Pawan
Kumar and Philip Torr. Efficiently solv-
ing convex relaxations for MAP estima-
tion. In ICML, 2008; and David Sontag,
Talya Meltzer, Amir Globerson, Tommi
Jaakkola, and Yair Weiss. Tightening
LP relaxations for MAP using message
passing. In UAI, 2008

In a wider sense, most computer vision research into Markov random
field models has focused only on low-order interactions in sparsely connected
graphs. Although even for this setting the general case is already NP-hard,
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the conditional independence embodied in the Markov properties allowed the
development of tractable inference procedures.

But there is additional structure possible which does not fit well in this
standard setting: the global potential function we considered in this paper
does not have a factorizable structure. Still, efficient approximate inference
is possible by exploiting the combinatorial structure. In this work we have
achieved this by combining the LP MAP-MRF relaxation with a suitable
polytope derived from the global potential function. Whether there are more
efficient ways to achieve the same effect is an open question.

The software used in this chapter is made available as open-source at http:
//www.kyb.mpg.de/bs/people/nowozin/cmrf/.

http://www.kyb.mpg.de/bs/people/nowozin/cmrf/
http://www.kyb.mpg.de/bs/people/nowozin/cmrf/


Solution Stability in
Linear Programming Relaxations

Far better an approximate answer to the right
question, which is often vague, than an exact
answer to the wrong question, which can
always be made precise.

John Wilder Tukey

In the previous two chapters we have discussed inference and learning
problems. Two problems, the MAP-MRF problem and the optimization over
the connected subgraph polytope have led to hard combinatorial optimiza-
tion problems. For both problems we have used the technique of linear
programming relaxations to construct a tractable approximation to the true
problem.

In this chapter we take a broader view at combinatorial optimization prob-
lems and their linear programming relaxations. In particular, we are interested
in solution stability, that is, the behavior of the optimal solution when the input
data is perturbed. We believe this is an important direction for the part of
structured output learning research that abandoned probabilistic models in
order to gain tractable learning procedures. The original probabilistic mod-
els offered natural concepts to analyze the prediction in form of a posterior
distribution or statistics thereof, such as marginal probabilities, higher-order
moments or generated samples. In modern non-probabilistic structured pre-
diction models a posterior might no longer be available and other efficiently
computable properties of the prediction become relevant. The restricted concept
of per-instance solution stability in this chapter is a first step in this direction.

The main result brought forth in this chapter is a new method to quantify
the per-instance solution stability of a large class of combinatorial optimization
problems arising in machine learning. As a practical example we apply the
method to a family of clustering problems. Although not directly related
to computer vision, the insights gained from analyzing the stability of these
problems are of general form and thus applicable in many of the combinatorial
problems of interest to the computer vision community.

The proposed method is not only general but comes with rigorous theoreti-
cal guarantees. To this end we prove that when a relaxation is used to solve the
original optimization problem, then the solution stability calculated by our
method is conservative, that is, it never overestimates the solution stability of
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the true, unrelaxed problem.

General Problem

Several fundamental problems in machine learning can be expressed as the
combinatorial optimization task

z∗ := argmin
z∈B

w>z, (73)

where B ⊆ {0, 1}n is a specific set of indicator vectors of length n.
For example, when posed as integer linear program, the MAP-MRF infer-

ence problem discussed in the previous chapters naturally falls in this category.
Another example are clustering problems, which can be posed in the form
of (73) by means of binary variables indicating whether two samples are in
the same cluster.

The formulation (73) is general and powerful. However, depending on the
problem parameter w, an optimal solution z∗ might not be unique, or it might
be unstable, i.e., a small perturbation to w will make another z 6= z∗ optimal.

To ensure a reliable and principled use of (73) it is important to analyze
the stability of z∗, especially because the lack of stability can indicate serious
modeling problems.

In machine learning, the value of w usually depends on the data, and
possibly on a modeling parameter. Both these dependencies often introduce
uncertainty. Real data commonly originates from noisy measurements or is
assumed to be sampled from an underlying distribution. In these cases, data
values correspond to estimates that indicate a small range of numerical values
rather than fixed, certain numbers.

The data induces one w and thus one optimal solution, e.g., clustering, z∗1 .
If a slight perturbation to the data completely changes the solution to z∗2 , then
z∗1 must be treated with care. The preference of z∗1 over z∗2 could merely be
due to noise. To account for uncertainty in the data, one commonly strives for
stable solutions with respect to perturbations or re-sampling.

Modeling parameters are another source of uncertainty, for their “correct”
value is usually unknown, and thus estimated or heuristically set. A stability
analysis gives insight into how the parameter influences the solution on the
given instance of data. Here too stability can indicate reliability.

In addition, a stability analysis can reveal characteristics of the data itself,
as we illustrate in two examples. We can compute the path of all solutions
as the perturbation increases systematically. Depending on the perturbation,
this path may indicate structural information or help to analyze a modeling
parameter.

If the perturbation is set accordingly, the comparison of these solutions may
indicate structural information beyond a single solution z∗. Similarly, with
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an appropriate perturbation, the solution path helps to analyze a modeling
parameter.

The fact that a small perturbation changes the solution a lot suggests that
the data has more structure than shown by one solution. We can compute
the path of all solutions as the perturbation increases systematically. The
change of solutions indicates structure in the data, information beyond a
single solution z∗.

Another example where stability is important is when w originates from
a parametric model, such as transforming some measured data X by means
of a parametrized function w = f (X; τ), where τ are some parameters. In
this case, the solution z∗ obtained for a particular w and τ depends on τ in a
non-trivial way and analyzing the stability of z∗ can give insight into how it is
influenced by τ.

We present a new general method to quantify the solution stability of
Problem (73) and compute the solution path along a parametric perturbation.
In particular, we overcome the inability of existing approaches to handle a
basic characteristic of linear programming relaxations to (73), namely, that
only few constraints are known at a time. Owing to our formulation, two
close variants of the same algorithm will suffice to solve both the nominal
Problem (73) and the stability analysis.

A running example for (73) makes the general discussion concrete: the
Graph Partitioning Problem (GPP), which unifies a number of popular clus-
tering tasks. Our stability analysis for GPP hence yields a new method for a
more thoughtful analysis of these clusterings.

Graph Partitioning Problem and Relaxation

In many unsupervised learning problems, we only have information about
pairwise relations of objects, and not about features of individuals. Examples
include co-authorship and citations, or protein interactions. In this case,
exemplar- or centroid-based approaches are inapplicable, and we directly use
the graph of relations or similarities. Clustering corresponds to finding an
appropriate partitioning of this graph.

A natural formalization of clustering with only pairwise information is the
graph partitioning problem, defined as follows.

Problem 4 (Graph Partitioning Problem (GPP)) Given an undirected, connected,
simple graph G = (V, E), and edge weights w : E→ R, partition the vertex set into
nonempty subsets so that the total weight of the edges with end points in different
subsets is minimized.

Note that, in contrast to common graph cut problems such as min-cut or
normalized cut, GPP does not pre-specify the number of clusters. To describe
a partitioning of G, we will use indicator variables zi,j ∈ {0, 1} for each edge
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(i, j) ∈ E, where zi,j = 1 if i and j are in different partitions, and zi,j = 0
otherwise. Figure 61 shows an example. Let Z(G) = {z ∈ {0, 1}|E|| ∃π : V →
N : ∀(i, j) ∈ E : zi,j = Jπ(i) 6= π(j)K} be the set of all possible partitionings,
where J·K is the indicator function.

Figure 61: An example partitioning z.
Bold edges have zi,j = 1, while others
have zk,l = 0.

π(·) = 2

π(·) = 3

π(·) = 1

j

i

zi,j = 1zk,l = 0
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Using this notation, we can formalize GPP as a special case of (73) with
B = Z(G), minimizing a linear function:

min
z ∑

(i,j)∈E
w(i, j) zi,j (74)

sb.t. z ∈ Z(G).

Problem (74) encompasses a wide range of clustering problems if we set
the weights w accordingly. Table 9 summarizes the form of the coefficients
w for a number of popular clustering problems, and also for two biases: one
favoring clusters of equal sizes, and one penalizing large clusters.

The information contained in a single weight w(i, j) is often enough to
make local decisions about i and j being in the same cluster. Global agreement
of these local decisions is enforced by z being a valid partitioning. Exactly this
global constraint z ∈ Z(G) makes GPP difficult to solve.

In general, Problem (73) is an integer linear program (ILP) and NP-hard. A
common approach to solving (73) is to use a linear relaxation of the constraint
z ∈ B.

Linear Relaxations

In general, the point set B ⊆ {0, 1}n is finite but exponentially large in n and
usually intractable.

It is known from combinatorial optimization236 that relaxing the set B to236 Alexander Schrijver. Theory of Linear
and Integer Programming. John Wiley &
Sons, New York, 1998

its convex hull conv(B) will not change the minimizer z∗ of (73). The set
conv(B) is by construction a bounded polyhedron — a so-called polytope —
and at least one minimizer of a linear function over a polytope is a vertex.
Therefore, at least one optimal solution of the relaxation will be integral, that
means it is in B and thus an optimal solution of the exact problem. Thus the
objective of problem (73) can equivalently be solved over z ∈ conv(B). For
GPP, the convex hull conv(Z(G)) is the multicut polytope.
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The convex hull is defined in terms of vertices z ∈ {0, 1}n. We can
alternatively describe it in terms of intersecting halfspaces237, i.e., linear

237 Alexander Schrijver. Theory of Linear
and Integer Programming. John Wiley &
Sons, New York, 1998

inequalities. The minimal set of such inequalities to characterize the polytope
exactly is the set of all facet-defining inequalities. Knowing these inequalities,
we can derive a linear program equivalent to (74).

But often only a subset of the facet-defining inequalities is known, some
are difficult to check and all are too many to handle efficiently. Therefore,
one commonly replaces conv(B) by an approximation B̂ ⊇ conv(B) ⊃ B
represented by a tractable subset of the facet-defining inequalities.

We will use such relaxations to derive a method for quantifying the stability
of the optimal solution z∗ with respect to perturbations in w. In the next
section we first introduce our notion of stability analysis and then show how
to overcome the difficulties of existing approaches. In the subsequent section
we provide details about solving the formulated problems. We continue by
describing the general cutting-plane algorithm for both Problem (73) and
the stability analysis problem. Finally, in the following section we provide
algorithmic details for the graph partitioning problems by describing a relax-
ation of the multicut polytope that is tighter than previous approximations
for the problems in Table 9. Finally, the experiments section demonstrate the
applications and properties of our method.

Stability Analysis

We first detail our notion of stability and then develop our approach. The
method is based on local polyhedral approximations to the feasible set of
the combinatorial problem and efficiently identifies solution break points for
parametric perturbations of w.

We perturb the weight vector w ∈ Rn by a vector d ∈ Rn. The resulting
weights are then w′(θ) = w + θd for a perturbation level θ. Stability analysis
asks for the range of θ for which the optimal solution does not change, i.e.,
the stability range.

Definition 21 (Stability Range) Let the feasible set B ⊆ {0, 1}n, a weight vector
w ∈ Rn and the optimal solution z∗ := argminz∈B w>z be given. For a perturba-
tion vector d ∈ Rn and modified weights w′(θ) = w + θd, the stability range is
the interval [ρd,−, ρd,+] ∈ ({−∞, ∞} ∪R)2 of θ values for which z∗ is optimal for
the perturbed problem minz∈B w′(θ)>z.

The geometry of stability ranges in the polytope conv(B) is illustrated in
Figure 62.
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z∗

w

θd

z′
Figure 62: Geometry of Stability Analy-
sis in a Polytope

The polytope is lightly shaded and bounded by lines representing the
inequalities that define conv(B). We know that z∗ is optimal for w′(θ) =
w + θd for θ = 0. The point z∗ is a vertex of the polytope. Two of the
inequalities are binding (satisfied with “=”), indicated by two boundary lines
touching z∗. The negative normal vectors of the inequalities span a cone
(shaded dark). As long as w′(θ) lies in this cone, z∗ is optimal. If w′(θ) leaves
the cone, say for a large enough θ > 0, then we can improve over z∗ by sliding
along an edge of the polytope to another vertex z′ ∈ B whose associated cone
now contains the new vector w + θd. Formally, if w′(θ) is outside the cone,
then a descent direction at an obtuse angle to w will be in B. Moving z along
this direction improves the value w′(θ)>z.

We aim to find the value of θ where w′(θ) leaves the cone. If we know
all inequalities defining the polytope, then we have an explicit description
of the cone. Common approaches to compute stability ranges238 rely on this 238 Alexander Schrijver. Theory of Linear

and Integer Programming. John Wiley &
Sons, New York, 1998; and Benjamin
Jansen, J. J. de Jong, Cornelius Roos, and
Tamás Terlaky. Sensitivity analysis in
linear programming: Just be careful! Eu-
ropean Journal of Operational Research, 101:
15–28, 1997

knowledge and use the simplex basis matrix239. But the inequalities for the

239 Dimitris Bertsimas and John N. Tsit-
siklis. Introduction to Linear Optimization.
1997

multicut polytope (and conv(B) in general) are not explicitly known, since
the polytope is defined as the convex hull of a complicated set. Even for
relaxations B̂, the set of constraints is too large to be handled as a whole, and
just a few local constraints are known to the solver at a time. With such a
small subset, the normal cone is only partially known and the basis matrix
approach grossly underestimates the stability range, making it useless for
anything but trivial instances.

In an online setting, Kılınc-Karzan et el.240 use axis-aligned perturbations 240 Fatma Kılınc-Karzan, Alejandro
Toriello, Shabbir Ahmed, George
Nemhauser, and Martin Savelsbergh.
Approximating the stability region
for binary mixed-integer programs.
Technical report, Gatech, 2007

for the cost vector to obtain both an inner and outer polyhedral approximation
to the stability region, the region where changes to w remain without effect. In
contrast, we aim for an exact stability range for a given perturbation direction.

We will now present a method to compute stability ranges even without
explicit knowledge of all constraints at all times. Owing to the formulation,
two close variants of the same algorithm will suffice to solve both the original
problem and the stability analysis. We will also relate the stability range
obtained from relaxations to the stability range of the exact problem.

Linear Programming Stability Analysis using Separation Oracles

To avoid use of the basis matrix, we adopt a lesser known idea of Jansen et
al.241: at optimality, the primal and dual optimal values are equal. Hence, z∗ is 241 Benjamin Jansen, J. J. de Jong, Cor-

nelius Roos, and Tamás Terlaky. Sensi-
tivity analysis in linear programming:
Just be careful! European Journal of Oper-
ational Research, 101:15–28, 1997

optimal (and w′(θ) in the cone) as long as the optimal value of the perturbed
dual equals w′(θ)>z∗. Jansen et al. implement this idea in an LP derived from
the dual of the original problem. With our implicit constraints, a dual-based
approach is inapplicable. Therefore, we revert to the primal to construct a pair
of auxiliary linear programs that search within the cone of all possible constraints
defining conv(B) around z∗.

The resulting formulation is similar to the original Problem (73), so we can
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use a similar solution procedure to take into account all implicit constraints
— a point we elaborate in the next section. The following program yields the
stability range for a given optimal solution z∗ and perturbation direction d.

min
α∈R,
z∈Rn

w>z + αw>z∗ (75)

sb.t. (
1
α

z) ∈ conv(B), (76)

(d>z∗)α− d>z = t : γ, (77)

0 ≤ zi ≤ α, i = 1, . . . , n. (78)

where γ is the Lagrange multiplier of constraint (77). Constraint (76) is still
linear, because it corresponds to A( 1

α z) ≤ b, or Az− αb ≤ 0. From the variable
upper bound constraints (78) it follows that α ≥ 0. Moreover, as conv(B) is
bounded, α > 0.

The constant t ∈ {−1, 1} in (77) determines whether we search for the left
interval boundary ρd,− or right interval boundary ρd,+ of the stability range
[ρd,−; ρd,+]. At the optimum, the Lagrange multiplier γ of constraint (77)
equals the boundary ρd,− or ρd,+, depending on t.

Problem (75) is primal infeasible if and only if ρd,− = −∞ for the left
boundary (t = −1) or ρd,+ = ∞ for the right boundary (t = 1).

The stability range could also be found approximately by probing various
values of θ, similar to a line search in continuous optimization. In contrast, our
method finds the breakpoint exactly by solving one optimization per search
direction. It is guaranteed not to miss any breakpoints, a property that is hard
to ensure for an iterative point-wise testing procedure.

The hardness of (75), like that of the nominal problem (73), depends on
the tractability of conv(B). That means we are forced to replace conv(B)
by a tractable approximation B̂ to solve (75) efficiently. We will outline the
relaxation for GPP in the next section.

But if we use B̂, then the stability range only refers to the relaxation, i.e., for
θ /∈ [ρd,−, ρd,+], the optimal solution of the relaxation is guaranteed to change.
Theorem 8 relates this stability range of the relaxation to the stability range of
the exact problem.

Theorem 8 (Stability Inclusion) Let z∗ be the optimal solution of P1 for a given
B ⊆ {0, 1}n and weights w ∈ Rn. For a perturbation d ∈ Rn, let [ξd,−, ξd,+] be
the true stability range for θ on conv(B). If B̂ ⊇ conv(B) is a polyhedral relaxation
of B using only facet-defining inequalities and if z∗ is a vertex of B̂, then the stability
range [ρd,−, ρd,+] on B̂, i.e., for the relaxation minz∈B̂ w>z, is included in the true
range: [ρd,−, ρd,+] ⊆ [ξd,−, ξd,+].

Proof. Let SB be the set of all constraints defining conv(B) at z∗ and SB̂
the set of all facet-defining constraints for B̂ at z∗. As SB̂ contains only facet-
defining constraints, we have SB̂ ⊆ SB . As a result, the cone spanned by the
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negative constraint normals in SB contains the cone spanned by the negative
constraint normals in SB̂ , and thus [ρd,−, ρd,+] ⊆ [ξd,−, ξd,+] (recall Figure 62).
�

Theorem 8 and problem (75) suggest that with a tight enough relaxation
B̂, we can efficiently compute a good approximation of the stability range by
essentially the same algorithm that we apply to P1. Besides quantifying the
robustness of a solution with respect to parametric perturbations, stability
ranges help to recover an entire path of solutions, as we will show next.

Efficiently Tracing the Solution Path

As we increase the perturbation level θ, the optimal solution changes at certain
breakpoints, the boundary points of the current stability range. That means
we can trace the path of all optimal solutions along the weight path w + θd
for θ ∈ [−∞, ∞] by repeatedly jumping to the solution at the breakpoint and
computing the stability range to find the next breakpoint.

The interpretation of the path of solutions depends on the choice of weights
and the perturbation. For GPP, we will use weights derived from similarity
matrices and obtain all clustering solutions on a path defined by shifting
a linear bias term. This amounts to computing all clusterings between the
extremes “one big cluster” and “each sample is its own cluster”.

Implementation

In the previous sections, we formalized the nominal problem (73) and the
stability analysis (75). Now we describe how to actually solve them. We first
present a general algorithm and then specify details for GPP, mainly a suitable
relaxation of the multicut polytope.

Cutting Plane Algorithm

The cutting plane method242 shown in Algorithm 8 applies to both prob- 242 Laurence A. Wolsey. Integer Program-
ming. John Wiley & Sons, New York,
1998

lem (73) and problem (75). Cutting plane algorithms provide a polynomial-
time method to solve (appropriate) relaxations of ILPs.

The algorithm works with a small set of constraints that defines a loose
relaxation S to the feasible set B. It iteratively tightens S by means of violated
inequalities. In Line 11, we solve the current LP relaxation. Having identified a
minimizer z, we search for a violated inequality in the set of all constraints
(Line 12). If we find a violated inequality, we add it to the current constraint
set to reduce S (Line 16) and re-solve with the tightened relaxation. Otherwise,
z∗ = z is optimal with all constraints.

The search for a violated inequality is the separation oracle. It depends on the
particular set B of the combinatorial problem at hand and the description of
the relaxation B̂. The separation oracle is decisive for the runtime. If it runs in
polynomial time, then the entire algorithm runs in polynomial time243. Hence,

243 Laurence A. Wolsey. Integer Program-
ming. John Wiley & Sons, New York,
1998
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Algorithm 8 Cutting Plane Algorithm
1: (z∗, f , optimal) = CuttingPlane(B, w)
2: Input:
3: Set B ⊆ {0, 1}n, weights w ∈ Rn

4: Output:
5: Optimal solution z∗ ∈ [0, 1]n,
6: Lower bound on the objective f ∈ R,
7: Optimality flag optimal ∈ {true, false}.
8: Algorithm:
9: S← [0, 1]n {Initial feasible set}

10: loop
11: z← argminz∈S w>z {Solve LP relaxation}
12: Sviolated ← SeparateInequalities(B, z)
13: if no violated inequality found then
14: break
15: end if
16: S← S ∩ Sviolated {Cut z from feasible set}
17: end loop
18: optimal← (z ∈ {0, 1}n) {Integrality check}
19: ( f , z∗)← (w>z, z)

polynomial-time separability is an important criterion for the relaxation B̂.
The next section addresses such a relaxation for GPP.

Relaxations of the Multicut Polytope

Solving GPP over Z(G) or conv(Z(G)), the multicut polytope, is NP-hard244.

244 Michel Marie Deza and Monique Lau-
rent. Geometry of cuts and metrics, vol-
ume 15 of Algorithms and Combinatorics.
1997; and Sunil Chopra and M. R. Rao.
The partition problem. Math. Program,
59:87–115, 1993 To relax conv(Z(G)) for an efficient optimization, we need facet-defining

inequalities that describe an approximation to conv(Z(G)) and are separable
in polynomial time. In addition, the tighter the relaxation is, i.e., the more
inequalities we use, the more accurate the stability analysis becomes.

The multicut polytope conv(Z(G)) and variations have been researched
in the late eighties and early nineties245 and more recently246. We now

245 Martin Grötschel and Yoshiko Wak-
abayashi. A cutting plane algorithm
for a clustering problem. Math. Prog.,
45, 1989; Martin Grötschel and Yoshiko
Wakabayashi. Facets of the clique par-
titioning polytope. Math. Prog., 47:
367–387, 1990; Sunil Chopra and M. R.
Rao. The partition problem. Math.
Program, 59:87–115, 1993; Michel Marie
Deza, Martin Grötschel, and Monique
Laurent. Clique-web facets for multi-
cut polytopes. Mathematics of Opera-
tions Research, 17(4):981–1000, 1992; and
Michel Marie Deza and Monique Lau-
rent. Geometry of cuts and metrics, vol-
ume 15 of Algorithms and Combinatorics.
1997

246 Aykut Özsoy and Martine Labbé. Size
constrained graph partitioning polytope.
Technical Report 577, ULB, 2007

discuss two subsets of the set of facet-defining inequalities for the multicut
polytope that we use, cycle inequalities and odd-wheel inequalities. Both are
polynomial-time separable, so we can tell efficiently whether a point satisfies
all inequalities and if it does not, we can find a violated inequality.

Cycle inequalities are generalizations of the triangle inequality. Any
valid graph partitioning z satisfies a transitivity relation: there is no all-zero
path between any two adjacent vertices i, j that are in different subsets of
the partition, i.e., for which zi,j = 1. Formally, this property is described by
the cycle inequalities247 that are facet-defining for chord-free cycles ((i, j), p),

247 Sunil Chopra and M. R. Rao. The
partition problem. Math. Program, 59:
87–115, 1993
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p ∈ Path(i, j), where Path(i, j) is the set of paths between i and j.

zi,j ≤ ∑
(s,t)∈p

zs,t, (i, j) ∈ E, p ∈ Path(i, j). (79)

In complete graphs, all cycles longer than three edges contain chords. Hence,
for complete graphs we can simplify the cycle inequalities to a polynomial
number of triangle inequalities, as done in Grötschel and Wakabayashi248;

248 Martin Grötschel and Yoshiko Wak-
abayashi. A cutting plane algorithm for
a clustering problem. Math. Prog., 45,
1989

Chopra and Rao249; and Brandes et al.250 The separation procedure for (79)

249 Sunil Chopra and M. R. Rao. The
partition problem. Math. Program, 59:
87–115, 1993

250 Ulrik Brandes, Daniel Delling, Marco
Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner.
On modularity clustering. IEEE TKDE,
20(2):172–188, 2008

is a simple series of shortest path problems, one for each edge and has been
described by Chopra and Rao.

In the separation problem, for a given point z we can check whether all
inequalities are satisfied as follows. Consider the original graph G = (V, E)
with an edge weighting W ′z : E→ R+ defined by W ′z(e) = ze. For each edge
m ∈ E, consider the adjacent vertices (vi, vj) = adj(m). Clearly, the length of
the shortest path between vi and vj in G with weights W ′z is upper bounded by
zm. Iff there exists a shorter path p, this corresponds to a violated constraint
zm ≤ ∑zs∈p zs. If there is no shorter path for all m ∈ E, then all inequalities
are satisfied.

Previous LP relaxations for correlation and modularity clustering251 limit

251 Isabelle Warnesson. Applied linguis-
tics: Optimization of semantic relations
by data aggregation techniques. Applied
Stochastic Models and Data Analysis, 1:121–
141, 1985; D. Emanuel and A. Fiat. Corre-
lation clustering – minimizing disagree-
ments on arbitrary weighted graphs. In
Proceedings of the ESA, 2003; Thomas Fin-
ley and Thorsten Joachims. Supervised
clustering with support vector machines.
In ICML, pages 217–224, 2005; Erik D.
Demaine, Dotan Emanuel, Amos Fiat,
and Nicole Immorlica. Correlation clus-
tering in general weighted graphs. Theor.
Comput. Sci, 361(2-3):172–187, 2006; and
Ulrik Brandes, Daniel Delling, Marco
Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner.
On modularity clustering. IEEE TKDE,
20(2):172–188, 2008

their approximation of the multicut polytope to cycle inequalities only. We call
these equivalent relaxations LP-C relaxation. Our experiments will show that
the LP-C relaxation is not very tight, and additional odd-wheel inequalities252

252 Michel Marie Deza, Martin Grötschel,
and Monique Laurent. Clique-web
facets for multicut polytopes. Mathemat-
ics of Operations Research, 17(4):981–1000,
1992; and Sunil Chopra and M. R. Rao.
The partition problem. Math. Program,
59:87–115, 1993

improve the approximation.

Odd-Wheel inequalities are another class of known facet-defining in-
equalities for the multicut polytope. Let a q-wheel be a connected subgraph
S = (Vs, Es) with a central vertex j ∈ Vs and a cycle of the q vertices in
C = Vs \ {j}. For each i ∈ C there exists an edge (i, j) ∈ Es. An example
3-wheel is shown in Figure 63.

0 2

1

j

Figure 63: 3-wheel graph

For every q-wheel, a valid partitioning z satisfies the inequality

∑
(s,t)∈E(C)

zs,t − ∑
i∈C

zi,j ≤ b1
2

qc, (80)

where E(C) denotes the set of all edges in the outer cycle C. Deza et al.253

253 Michel Marie Deza, Martin Grötschel,
and Monique Laurent. Clique-web
facets for multicut polytopes. Mathemat-
ics of Operations Research, 17(4):981–1000,
1992

prove that the odd-wheel inequalities (80) are facet-defining for every odd q ≥
3. These inequalities are polynomially separable. The odd-wheel inequalities
are a special case of clique-web inequalities which are also facet-defining for the
multicut polytope. Because the general clique-web inequalities are NP-hard to
separate, we do not use them.

We now describe the separation procedure, as in Deza and Laurent254.

254 Michel Marie Deza and Monique Lau-
rent. Geometry of cuts and metrics, vol-
ume 15 of Algorithms and Combinatorics.
1997

Given a graph G = (V, E), a solution z satisfying all cycle inequalities (79),
the odd-wheel inequalities can be separated efficiently as follows:

1. For each vertex vj ∈ V, perform the following:
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(a) Let N(vj) ⊆ V be the set of adjacent neighbors to vj.

(b) Let EN(vj) = {(vs, vt) : vs ∈ N(vj), vt ∈ N(vj)} be the subset of E
which lies completely in N(vj).

(c) Form a new graph Gj = (N(vj), EN(vj)).

(d) For each edge in Gj, define a weight W j
s,t = 1

2 − zs,t + 1
2 (zvj ,s + zvj ,t).

As z satisfies the cycle inequalities, we have W j
s,t ≥ 0.

(e) Find an odd-cycle C = (V(C), E(C)) in Gj such that

∑
(s,t)∈E(C)

W j
s,t = ∑

(s,t)∈E(C)

(
1
2
− zs,t +

1
2
(zvj ,s + zvj ,t)

)

=
|C|
2
− ∑

(s,t)∈E(C)
zs,t + ∑

vi∈V(C)
zi,j

≤ 1
2

.

If and only if such odd-cycle exists, C corresponds to a violated odd-
wheel inequality in the original graph. If no odd-cycle satisfying the
above inequality exists, then no odd-wheel inequality with vj in the
center is violated.

Finding the minimum weight odd-cycle in Gj = (N(vj), EN(vj)) is poly-
nomially solvable as follows.

i. Construct a new graph G′j containing for each vi ∈ N(vj) two copies
v′i, v′′i . For each edge (vs, vt) ∈ EN(vj) add two edges (v′s, v′′t ) and

(v′′s , v′t) to the graph. Assign to both these edges the weight W j
s,t.

ii. For each vi ∈ N(vj), solve a shortest path problem in the new graph
between v′i and v′′i ). By construction, the path, if one exists, must be a
cycle as v′i and v′′i correspond to the same vertex in the original graph.
Further, the path must be of odd length as the newly constructed
graph is bipartite.

The odd-wheel inequalities are especially useful for graphs which contain
dense subgraphs. Consider the graph shown in Figure 64(a), where the
signed edge weights are shown. Using only the cycle inequalities leads to the
fractional relaxed solution shown in Figure 64(b). Upon addition of a 3-wheel
inequality, the solution becomes integral and optimal, and the relaxation
becomes tight, shown in Figure 64(c).

Although not used in our implementation, we want to point out that
another subset of clique-web inequalities, known as bicycle inequalities255 can255 Sunil Chopra and M. R. Rao. The

partition problem. Math. Program, 59:
87–115, 1993

be separated in polynomial time.

Together the inequalities (79) and (80) describe a tight polynomial-time
solvable relaxation to conv(Z(G)) that we will call LP-CO relaxation.
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(a) Example input graph with four ver-
tices and edge weights as shown.
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(b) Fractional solution with f (z∗) =
−1.55, obtained by the simple LP relax-
ation (without odd wheel inequalities).

0

1

2

3

1

1

1

0
1

1

(c) Integer solution with f (z∗) = −1.5, ob-
tained by adding the odd wheel inequality
z0,2 + z0,3 + z2,3 − z0,1 − z1,2 − z1,3 ≤ 1.

Figure 64: Example of tightening by the
odd-wheel inequality.

Sensitivity Analysis Details: Basis Matrix Approach and its Problems

In this section we discuss why the basis matrix approach cannot work well for
linear programming relaxations. To illustrate this, we compare the stability
ranges computed using the basis matrix approach with our exact approach on
a small example graph. The basis matrix approach is shown to be very weak,
even on this simple example.

Using the additional information provided by the simplex solver, namely
the basis matrix and the dual variables for active constraints, we can compute
partial stability ranges towards θ < 0, ρE

d,− : E→ R∪ {−∞, ∞} and towards
θ > 0, ρE

d,+ : E → R ∪ {−∞, ∞} for each W(e) individually. Each partial
stability range quantifies the allowed θ perturbations along a 1D subspace
associated with a single edge variable; that is, it gives us the θ interval for
which W(e) + θd(e) lies within the cone spanned by the active constraints.

The global stability range with respect to the known constraints is then
given as respective maxima and minima over all edge stabilities; that is, as
soon as one edge looses optimality, the entire solution does as well. We have
the global stability range

ρd,− = max
e∈E

ρE
d,−(e), ρd,+ = min

e∈E
ρE

d,+(e).

Lets see how the sensitivity functions ρd,− : E → R ∪ {−∞, ∞} and
ρd,+ : E → R ∪ {−∞, ∞} can be derived. (For an excellent introduction
into sensitivity analysis, see chapter 5 in Bertsimas and Tsitsiklis256.) 256 Dimitris Bertsimas and John N. Tsit-

siklis. Introduction to Linear Optimization.
1997

To be able to access basic results from linear programming, we first trans-
form our problem into the so called standard form minz w>z, sb.t. Az = b, z ≥
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0. Our problem can be written as

min
z

w>z

sb.t. Az ≤ b, (cycle and odd-wheel inequalities)

z ≤ 1,

z ≥ 0.

Equivalently, adding non-negative slack variables s and t, we write it as

min
z,s,t

w>z

sb.t. Az + s = b, (cycle and odd-wheel inequalities)

z + t = 1,

z ≥ 0,

s ≥ 0,

t ≥ 0.

For a given cost vector w, we can obtain an optimal solution z∗ to this
linear program. Associated with this optimal solution are dual variables and
an invertible basis matrix B and an index set of non-zero basic variables B.
Together these satisfy  z

s
t


B

= B−1

[
b
1

]
,

where [·]B selects the subvector of variables in B; all other variables are zero 257.257 Dimitris Bertsimas and John N. Tsit-
siklis. Introduction to Linear Optimization.
1997; and Alexander Schrijver. Theory
of Linear and Integer Programming. John
Wiley & Sons, New York, 1998

The linear programming optimality conditions for the standard form linear
program are

 w̄
c̄s

c̄t


>

=

 w
0
0


>

−

 w
0
0


>

B

B−1

[
A I 0
I 0 I

]
≥ 0>,

and the lefthand vector is denoted reduced cost. At an optimal solution, all
reduced costs are non-negative.

If for a given basis matrix B and a perturbation w′ = w + θd, the reduced
costs remain non-negative, the basis and hence the solution remains optimal.
However, as we will see below, the converse is not necessarily true: even
with negative reduced cost, the solution might not change. The optimality
condition with respect to the perturbed w′ vector is given as

 d̄
¯c′

s
¯c′

t


>

=

 w + θd
0
0


>

−

 w + θd
0
0


>

B

B−1

[
A I 0
I 0 I

]
≥ 0>,
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which can be transformed using the linearity to yield the condition

θ


 d

0
0


>

−

 d
0
0


>

B

B−1

[
A I 0
I 0 I

] = θ

 d̄
c̄′s
c̄′t


>

≥ −

 w̄
c̄s

c̄t


>

.

Further, as c̄′s = c̄s and c̄′t = c̄t, the basis remains optimal for w′ if θd̄ ≥ −w̄ is
fulfilled.258 Obviously, for θ = 0 this is the case, because our current solution 258 All modern simplex-based linear pro-

gramming solvers allow the calculation
of reduced costs for arbitrary cost vec-
tors, so d̄ is easily obtained.

is optimal for w.
For θ 6= 0, we consider for each m ∈ E and (d̄m, w̄m) and the following

cases

1. If w̄m 6= 0 and d̄m 6= 0, let am = − w̄m
d̄m

, then if am < 0 we have ρE
d,−(m) = am,

ρE
d,+(m) = ∞ and if am > 0 we have ρE

d,−(m) = −∞, ρE
d,+ = am.

2. If w̄m = 0 and d̄m 6= 0, there are multiple optimal solution for the current
cost and any perturbation θd might lose optimality for the current basis,
hence ρE

d,−(m) = ρE
d,+(m) = 0.

3. If w̄m 6= 0 and d̄m = 0, then with regard to the edge m, no perturbation θd
can change the reduced cost and ρE

d,−(m) = −∞, ρE
d,+(m) = ∞.

4. If w̄m = 0 and d̄m = 0, then similar to the previous case we have ρE
d,−(m) =

−∞, ρE
d,+(m) = ∞ and with regard to the edge m, the solution is stable for

all θ ∈ R.

Problems with the Basis Matrix Approach

Our linear program is solved by iteratively adding cutting planes. Therefore,
at the global optima the linear program consists only of a small subset of all
constraints. This is a problem for the basis matrix approach if around the
optimal solution we have degeneracy, as shown in Figure 65.

z∗

w

θd

Figure 65: Degeneracy causes problems
for the basis matrix approach to sensi-
tivity analysis: an additional constraint
which is unknown to the restricted prob-
lem enlarges the cone spanned by the
constraints at the optima (enlarged part
shown in dark).

Due to the two-dimensional drawing, the figure is somewhat misleading in
how degeneracy occurs: it is the rule rather than the exception. Even in case
only facet-defining inequalities are used, in high dimensions there typically
exists a large number of binding inequalities at the optimal solution. All these
inequalities are necessary to describe the polytope, yet only a small subset
is known to the linear programming solver. In Figure 65 one inequality is
redundant.

Because this additional constraint has never been generated it is not active
and therefore the basis matrix approach will underestimate the stable range.
If on the other hand the constraint would be active, then the enlarged cone
(dotted vertical line in Figure 65) would permit larger absolute values for
negative θ.
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Example: Stability Ranges

In the main paper we have briefly discussed per-edge sensitivities and stability
ranges. Here we give a small toy example, shown in Figure 66. The optimal
graph partitioning has three components, encircled in color in Figure 66.

We perform a stability range analysis using both the basis matrix method
and the exact auxiliary linear program method for all di = ei, the vector of all
zeros with a single one at element i, as described in the main paper. The result
is an interval for each edge, as shown in Figure 67 (basis matrix method) and
Figure 68 (exact auxiliary LP method). If a single edge weight is modified
by adding any number from within its respective stability range interval, the
current graph partitioning shown in Figure 66 is guaranteed to remain optimal.
However, the basis matrix method is too pessimistic compared to the exact
auxiliary LP method and most stability ranges estimated by the basis matrix
method (Figure 67) are strict subintervals of the true intervals (Figure 68).
For the true intervals, if any constant outside this interval is added to the
respective edge weight in the input graph, we are guaranteed the new optimal
solution will be different to the one shown in Figure 66.

Figure 66: Toy example input graph
with signed edge weights shown. The
optimal graph partitioning has an objec-
tive of −1.6 and produces the three sets
as shown.
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Figure 67: Per-edge weight sensitivities
at the optimal solution, estimated by the
basis matrix method.
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All cut edges have a stability range of the form [−∞, a] with a ≥ 0 and all
intra-cluster edges have stability ranges of the form [b, ∞] with b ≤ 0.
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Figure 68: Per-edge weight sensitivities
at the optimal solution, exact by the aux-
iliary linear programming method.

Experiments and Results

The first part of the experiments addresses properties of our algorithm and
relaxation. We compare our solution method to a popular heuristic and
demonstrate the gain of tightening the relaxation to LP-CO. This experiment
relates optimality and runtime to properties of the data. The second part
illustrates example applications: critical edges for modularity clustering and
an analysis of the solution path for similarity data.

Tightness and comparison to a heuristic

In the introduction section we have shown how to solve modularity clustering
via GPP. Here we examine solution qualities of our LP relaxation and the
Kernighan-Lin (KL) heuristic259. The KL heuristic is a very large-scale neigh-

259 Brian W. Kernighan and S. Lin. An
efficient heuristic procedure for parti-
tioning graphs. The Bell System Technical
Journal, pages 291–307, February 1970

borhood search method performing greedy steps to iteratively improve a given
partitioning. Due to the way the next step is found, the method can make large
changes to the current partitioning in each iteration and generally converges
fast. However, as with all local methods no guarantee on the solution obtained
can be given, in contrast with the LP relaxations, where integrality indicates
optimality.

We compare KL to two variants of relaxation: LP-C, which is limited
to cycle-inequalities, and the tightened LP-CO, which also includes odd-
wheel inequalities. Note that all previous LP relaxations of correlation and
modularity clustering260 correspond to LP-C.

260 Thomas Finley and Thorsten
Joachims. Supervised clustering with
support vector machines. In ICML,
pages 217–224, 2005; Ulrik Brandes,
Daniel Delling, Marco Gaertler, Robert
Görke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity
clustering. IEEE TKDE, 20(2):172–188,
2008; Erik D. Demaine, Dotan Emanuel,
Amos Fiat, and Nicole Immorlica.
Correlation clustering in general
weighted graphs. Theor. Comput. Sci,
361(2-3):172–187, 2006; D. Emanuel
and A. Fiat. Correlation clustering –
minimizing disagreements on arbitrary
weighted graphs. In Proceedings of the
ESA, 2003; and Isabelle Warnesson.
Applied linguistics: Optimization of
semantic relations by data aggregation
techniques. Applied Stochastic Models and
Data Analysis, 1:121–141, 1985

The solution produced by the KL heuristic is always feasible but possibly
suboptimal, and LP-C and LP-CO are weak and tight relaxations, respectively.
Hence the maximized modularity always satisfies KL ≤ OPT ≤ LP-CO ≤ LP-C,
where OPT is the true optimum.

We evaluate solutions on five networks described in Brandes et al.261; and
261 Ulrik Brandes, Daniel Delling, Marco
Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner.
On modularity clustering. IEEE TKDE,
20(2):172–188, 2008

Newman and Girvan262: dolphins, karate, polbooks, lesmis and att180 (62,

262 Mark E. J. Newman and Michelle Gir-
van. Finding and evaluating community
structure in networks. Physical Review E,
69(026113), 2004

34, 105, 77 and 180 nodes, respectively). These small-scale networks datasets
are available at http://www-personal.umich.edu/~mejn/netdata/.

Table 10 shows the achieved modularity and the runtime. For all data sets,
the LP-CO solutions are optimal (OPT=LP-CO) and all modularity scores

http://www-personal.umich.edu/~mejn/netdata/
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agree with the best modularity in the literature.263263 Except for the karate data set which
differs from the optimal modularity of
0.431 reported in . We contacted the
authors who discovered a corruption in
their data set and confirmed our value
of 0.4198.

Ulrik Brandes, Daniel Delling, Marco
Gaertler, Robert Görke, Martin Hoefer,
Zoran Nikoloski, and Dorothea Wagner.
On modularity clustering. IEEE TKDE,
20(2):172–188, 2008

The Kernighan-Lin heuristic is always the fastest method and its solutions
are close to optimal, as the upper bound provided by LP-C and LP-CO shows.
KL itself does not give hints about closeness to optimality. Because it is a
heuristic it cannot provide a guarantee on the solution quality and we are
only able to state that it is close to optimal because we do know an upper
bound on the solution value. The LP-C relaxation is in general very weak
and obtains the optimal solution only on the smallest data set (karate). All it
yields otherwise is an upper bound on the optimal modularity. So the effort
of a tighter approximation (LP-CO) does improve the quality of the solution
already on small examples.

Table 10: Modularity and runtimes on
standard small network datasets. Frac-
tional solutions are bracketed, optimal
solutions are in boldface.

Kernighan-Lin LP-C LP-CO

obj time obj time obj time

dolphins 0.5268 0.4s (0.5315) 4.2s 0.5285 9.1s
karate 0.4198 0.1s 0.4198 0.2s 0.4198 0.2s
polbooks 0.5226 7.0s (0.5276) 147.4s 0.5272 148.5s
lesmis 0.5491 1.5s (0.5609) 6.9s 0.5600 11.7s
att180 0.6559 14.5s (0.6633) 302.3s 0.6595 1119.6s

LP-CO Scaling Behavior

After investigating the gain of the tighter relaxation, we now examine the
scaling behavior of LP-CO with respect to edge density, problem difficulty
and noise.

We sample a total of 100 vertices and uniformly assign one out of three “la-
tent” class labels to each vertex. For a given edge density d ∈ {0.1, 0.15, . . . , 1.0}
we sample a set E of 100·99

2 d non-duplicate edges from the complete graph.
To each edge e ∈ E we assign with probability n ∈ {0, 0.05, . . . , 0.5} a “noisy”
weight uniformly at random from the interval [−1, 1]. To all other edges
we assign a “true” weight from either [−1, 0] if the latent class label of the
adjacent vertices are different, or from [0, 1] if the latent class labels are equal.
For each pair (d, n) we create ten graphs with the above properties and solve
GPP on each instance.

Figures 69(a) to (c) show where integrality was achieved, the average
runtime and Rand index to the underlying labels. The index is 1 if the
partitioning is identical to the latent classes. The expected Rand index of a
random partitioning264 is 2

3 .264 William M. Rand. Objective criteria
for the evaluation of clustering methods.
American Statistical Association Journal, 66

(336):846–850, 1971

The figures suggest two relations between properties of the data and the
algorithm. First, integrality of the LP-CO solution (gray region in Figure 69(a))
mostly coincides with the optimal solution being close to the “latent” labels,
i.e., cases where the Rand index in Figure 69(b) is 1. Second, the runtime
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depends more on the noise level than on edge density. We do not illustrate
corresponding results for the weaker LP-C relaxation. It generates 12% fewer
integral solutions and smaller corresponding Rand indices, but runs faster
when there is lots of noise.
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Figure 69: Experimental results for the
synthetic data.

Example applications of stability

We now apply stability analysis to investigate the properties of clustering
solutions in two applications.

‘‘Critical edges’’ in modularity clustering. Modularity clustering is a
popular tool to analyze networks. But which edges are critical for the partition
at hand, i.e., their removal will change the optimal solution?

To test whether an edge e is critical, we compute the stability range for
the perturbation d = wM(V, E \ {e})− wM(V, E), where wM computes the
modularity edge weights from the original undirected, unweighted graph.
For θ = 1, the GPP weights will correspond to E \ {e}, so e is critical if and
only if 1 /∈ [ρd,−, ρd,+]. Figure 70 illustrates the critical edges on top of the
partitioning of the karate network, an example for a social network.
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Figure 70: Critical edges in Zarachy’s
karate club network with four groups.
A removal of any critical edge (drawn
thick/red) would change the current
(best) partitioning. All other edges can
be removed individually without chang-
ing the solution.

The solution path can reveal more information about a data set than
one partition alone. Our data, courtesy of Frank Jäkel, contains pairwise
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A
B

C

Figure 72: Stable solution (A) for
[−0.315,−0.259] (15 clusters), (B) for
[−0.228,−0.189] (11 clusters), (C) for
[−0.112,−0.087] (7 clusters). Grouped
leaves are in the same cluster. similarities of 26 types of leaves in the form of human confusion rates. To

investigate groups of leaves induced by those similarities, we solve GPP on a
similarity graph with edge weights equal to the symmetrized confusion rates.
This corresponds to weighted correlation clustering, where negative weights
indicate dissimilarity.

We make low similarities negative by adding a threshold θ < 0 from each
edge (d = 1). It is not obvious how to set θ; a higher θ will result in few
clusters. Hence, we trace the solution path for θ = 0 to the point when each
node is a cluster.
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Figure 71: Clustering solution path for
the leaves dataset. The stems show the
difference of adjacent clusterings.

Figure 71 illustrates how the stability ranges of the solutions vary along the
path. Figure 72 shows some stable solutions.

At change points of the path, the optimal solution often changes only little,
as indicated by the Rand index265. This means that many solutions are very

265 William M. Rand. Objective criteria
for the evaluation of clustering methods.
American Statistical Association Journal, 66

(336):846–850, 1971

similar and might represent the same underlying clustering. Indeed, the path
reveals structural characteristics of the data: low-density areas in the graph
will be cut first, whereas some leaves remain together throughout almost the
entire path and form dense sub-communities.

Thus, stable solutions at different levels of θ can indicate sub-structures
of communities. Leaves that are fluctuating between groups are not clearly
categorized and likely to be at the boundary between two clusters.

In general, the solution path provides richer information than one single
clustering and permits a more careful analysis of the data, in particular if the
value of a decisive model parameter is uncertain.

Conclusions

We have shown a new general method to compute stability ranges for com-
binatorial problems. Applied to a unifying formulation, GPP, this method
opens up new ways to carefully analyze graph partitioning problems. The
experiments illustrate examples for GPP and an analysis of the method.

A useful extension will be to find the perturbation to which the solution is
most sensitive, rather than specifying the direction beforehand.

Given the generality of the method developed in this work, where else
could the analysis of solution stability lead to further insights? Examples
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may be other learning settings, algorithms that make use of combinatorial
optimization, or theoretical analysis.





Discussion

Approach each new problem not with a view
of finding what you hope will be there, but to
get the truth, the realities that must be
grappled with. You may not like what you
find. In that case you are entitled to try to
change it. But do not deceive yourself as to
what you do find to be the facts of the
situation.

Bernard M. Baruch

In this thesis we have studied machine learning methods for structured
input and structured output data together with their applications to high-level
computer vision problems.

Structured learning methods are a recent trend in machine learning but their
application to computer vision problems has largely remained unexplored.
We believe this is not due to missing applicability — in fact the rich structure
present in the input and output domain of many computer vision problems
lends itself almost ideally to such methods — but rather due to three reasons.
First, it can be difficult to adequately formalize and model the structure.
Second, there is no established consensus on best practices, standard models
and learning methods. Third, many models result in hard to solve inference
problems, often of combinatorial flavor.

We have seen the latter point in the graph-based recognition approach,
that required the solution of NP-hard graph isomorphism problems, and in
the image segmentation under connectivity constraints, that also yielded an
NP-hard MAP estimation problem.

We have shown how this issue of computational tractability in structured
models can be addressed. For the case of structured input learning we
proposed the substructure poset framework where efficient enumeration methods
from the data mining community allow us to learn discriminative classifiers
using large substructure-induced feature spaces. For structured prediction we
argued for the principled construction of relaxations to the original problem
using polyhedral combinatorics. For structured output problems with a finite
output domain our construction is universal. We believe both contributions
have broad applicability beyond computer vision.

The ability to learn prediction functions with highly structured
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output spaces is often achieved at the cost of giving up the probabilistic
interpretation of the model.

In our image segmentation application we have seen that by giving up
the probabilistic interpretation we can enforce even highly combinatorial
constraints on the prediction outputs, such as the connectivity constraint.
However, by giving up the probabilistic interpretation, basic natural operations
such as maximum likelihood learning and computing marginal probabilities
become inapplicable.

We address this issue partially by considering solution stability as an al-
ternative to quantify certainty in a structured prediction. As a result of our
proposed method we have shown that the solution stability can always be
computed if we can compute the structured prediction itself; it is thus always
tractable under our computational assumptions.

In general we believe that alternative, non-probabilistic measures of predic-
tion uncertainty could be a viable addition to structured prediction models in
order to compensate for the non-probabilistic nature of many of these models.
Yet, our contribution can only be seen as a first step in this direction.

Throughout the thesis we have extensively evaluated the proposed
approaches experimentally on high-level computer vision problems. In some
cases, such as for the graph-based recognition approach, the results did not
show a clear general improvement in prediction accuracy of our proposed
approach over existing baseline models. We have discussed possible reasons
specific to our computer vision applications earlier, but would like to briefly
point out a more fundamental issue raised by our research in structured models.

Structured models are more complex to build, more complex to train and
more complex to understand. While current research including this thesis
focuses on the issues of training and interpreting the model output, there
is a lack of effort into examining problems of model building outside the
probabilistic regime in a principled way.

We believe that in order to fully benefit from the capabilities of structured
machine learning models further research into model building is necessary.



Appendix: Proofs

Proof to Lemma 6

Every single node k constitutes a connected subgraph. By setting yk = 1,
yh = 0 for h 6= k a feasible solution is obtained. All these solutions are affinely
independent. Furthermore the empty graph is also a feasible subgraph. It
follows that dim(Z) = |V|, i.e., the connected subgraph polytope has full
dimension. �

Proof to Lemma 7

First, yi ≥ 0. For each i, we construct |V| affinely independent points in C
with yi = 0. Fix i, then one solution is obviously x = 0, the empty subgraph.
Next, for all p 6= i, obtain one solution by setting only yp = 1, and for all
j 6= p set yj = 0. Clearly, yj = 0 and the |V| − 1 solutions thus obtained are
affinely independent. In total we have |V| solutions with yi = 0, thus yi ≥ 0 is
facet-defining.

Second, yi ≤ 1. Again let i be arbitrary. We construct |V| affinely indepen-
dent points in C with yi = 1. For this, set yi = 1 and yj = 0 for all j 6= i. This
is obviously one solution. Now root a spanning tree in i and set one node k at
a time to yk = 1, respecting the order of the spanning tree, i.e., the subgraph
selected all nodes j with yj = 1 always remains a connected subgraph of
the spanning tree. This constructs |V| − 1 solutions, all affinely independent.
Adding the first solution yields |V| solutions in total, completing the proof. �

Proof to Theorem 5

First, the direction “is feasible” implying “is connected”. Assume any given
feasible y given, hence any yi ∈ {0, 1}. If ∑i yi ≤ 1, the resulting subgraph
is trivially connected, hence assume ∑i yi ≥ 2. For arbitrary yi = 1, yj = 1,
i 6= j, assume i and j are not connected, that is (i, j) /∈ E and moreover there
exists no path on G with all vertex variables being one. Trivially, we construct
a vertex-separator set S = {k ∈ V : yk = 0} with S ∈ S(i, j). The removal of
S from V must disconnect i and j, as (i, j) /∈ E. However, by (64) we must
have yi + yj − ∑k∈S yk − 1 = 2− 0− 1 = 1 ≤ 0, which is clearly violated.
Thus, feasibility implies connectedness. Second, the direction “is connected”
implying “is feasible”. Take any yi = 1, yj = 1, i 6= j, and i, j connected in
G by a path starting at i and ending at j such that all intermediate nodes k
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satisfy yk = 1. For all separators S ∈ S(i, j), at least one node t of this path
must satisfy t ∈ S. Therefore yi + yj −∑k∈S yk − 1 ≤ yi + yj − yt − 1 = 0 ≤ 0
is satisfied. Thus any connected subgraph is feasible. �

Proof to Theorem 6

We will prove this for any i,j ∈ V by constructing |V| affinely independent
points in C which satisfy the inequality as equality. By section 9.2.3 in 266 this266 Laurence A. Wolsey. Integer Program-

ming. John Wiley & Sons, New York,
1998

shows that the inequality is facet-defining.
For i, j ∈ V arbitrarily chosen, for any S ∈ S̄(i, j), let S = {s1, . . . , s|S|} be

the set of nodes in the essential vertex-separator set.

i j

Pi

Pj

Pq1

S

s1

s2

Figure 73: The separator set S induces a
graph partitioning.

Further let S induce a partitioning of the graph into the set S, the connected
subgraphs Pi, Pj, containing i and j, respectively, and the connected subgraphs
Ps connected to exactly one s ∈ S (if it is connected to more than one s ∈ S,
remove all but one edge arbitrarily). This is shown in Figure 73.
First, we construct |Pi|+ |Pj| affinely independent solutions in C which satisfy
the equality.

1. For the connected subgraph Pi, root a spanning tree in i. Set yi = 1, yk = 0,
∀k ∈ Pi, k 6= i. For each such k ∈ Pi, enlarge the subgraph incrementally
by one node in an arbitrary ordering respecting the spanning tree, i.e., set
yk = 1. Each enlarged solution is a connected subgraph of Pi and G, and
affinely independent to all previous ones and satisfied the equality.

2. Likewise, do this for Pj, starting with just yj = 1.

Next, for each s ∈ S, we construct |Ps| + 1 affinely independent solutions
satisfying the equality as follows.

1. Set yk = 1, ∀k ∈ Pi ∪ Pj, and ys = 1. This solution is in C because S is
essential and thus s connects Pi and Pj. Construct |Ps| more solutions by
building a spanning tree for Ps, rooted in the node connected to s. By
incrementally setting yk = 1 in an order respecting the spanning tree, |Ps|
affinely independent solutions in C are obtained.

We now consider the total number of solutions constructed.

|Pi|+ |Pj|+ ∑
s∈S

(|Ps|+ 1) = |V|.

We have constructed |V| affinely independent solutions in C satisfying the
equality. Therefore, by section 9.2.3 in 267, the inequality defines a facet of267 Laurence A. Wolsey. Integer Program-

ming. John Wiley & Sons, New York,
1998

conv(C). �
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