		Appendix
		0000000

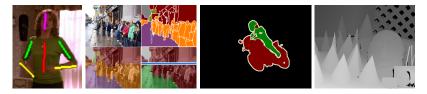
Decision Tree Fields

Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, Pushmeet Kohli

Barcelona, 8th November 2011

Introduction			Appendix
0000			0000000
Introduction			

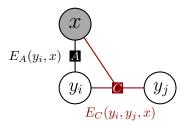
Random Fields in Computer Vision



- Markov Random Fields (MRF) (Kindermann and Snell, 1980), (Li, 1995), (Blake, Kohli, Rother, 2011)
- Conditional Random Fields (CRF) (Lafferty, McCallum, Perreira, 2001)
- Structured prediction of multiple dependent variables

- 4 @ ト 4 ヨト 4 ヨト

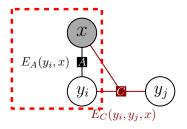
Introduction			Appendix
0000			0000000
Introduction			



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

- ▶ Factor graph notation (Kschischang, Frey, Loeliger, 1998)
- ► x: observed image
- y_i , y_j : dependent variables at pixel *i* and *j*

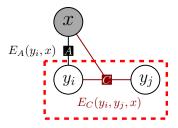
Introduction			Appendix
0000			0000000
Introduction			



590

- Unary energy $E_A(y_i, x)$
- Machine learning (SVM, Boosting, Random Forests, etc.)

Introduction			Appendix
0000			0000000
Introduction			

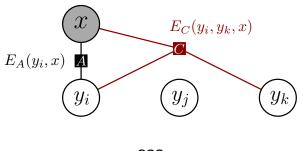


イロト イポト イヨト イヨト 二日

- Pairwise energy $E_C(y_i, y_j, x)$
- Generalized Potts, image independent
- Contrast-sensitive smoothing (e.g. GrabCut, TextonBoost)

$$E_C(y_i, y_j, x) = \exp(-\alpha \|x_i - x_j\|^2)$$

Introduction			Appendix
0000			0000000
Introduction			



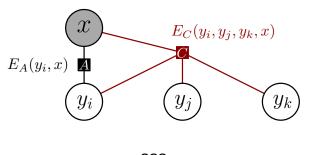
???

・ロト ・聞ト ・ヨト ・ヨト

E

590

Introduction			Appendix
0000			0000000
Introduction			



???

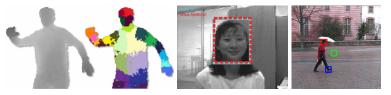
ヘロト 人間ト 人間ト 人間ト

E

996

Introduction			Appendix
0000			0000000
Introduction			

Decision Trees in Computer Vision



- Random Forests (Breiman, MLJ 2000)
- Non-parametric, infinite model capacity
- ► Fast inference and training, parallelizable
- (Shotton et al., 2008, 2011), (Saffari et al., 2009), (Gall and Lempitsky, 2009), etc.

No structured prediction

Introduction			Appendix
0000			0000000
Introduction			

<ロ> <問> <問> < 同> < 同> < 同> < □> <

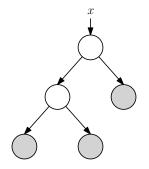
э.

Contributions

- 1. Learn image-dependent interactions
- 2. Combine random fields and decision trees
- 3. Efficient training
- 4. Superior empirical performance

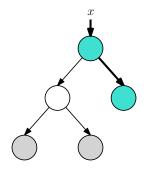
	Decision Tree Fields		Appendix
	•000000		0000000
Decision Tree Fields			

Decision Tree Classifiers



	Decision Tree Fields		Appendix
	•000000		0000000
Decision Tree Fields			

Decision Tree Classifiers



	Decision Tree Fields		Appendix
	000000		0000000
Decision Tree Fields			

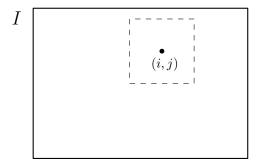
Decision Trees for Image Labeling

◆□▶ ◆□▶ ◆注▶ ◆注▶ ● 注

590

	Decision Tree Fields		Appendix
	000000		0000000
Decision Tree Fields			

Decision Trees for Image Labeling (cont)

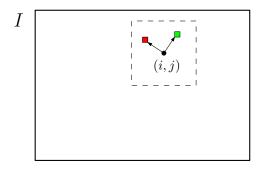


イロト イ部ト イヨト イヨト 三日

Apply decision tree, to each pixel independently

	Decision Tree Fields		Appendix
	000000		0000000
Decision Tree Fields			

Decision Trees for Image Labeling (cont)



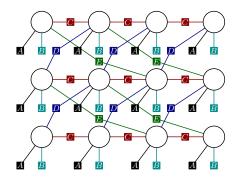
(a) < (a) < (b) < (b)

E

Apply decision tree, to each pixel independently

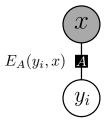
	Decision Tree Fields		Appendix
	000000		0000000
Decision Tree Fields			

Decision Tree Field (DTF) Example



◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ① ● ○ ● ●

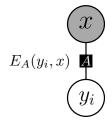
	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			

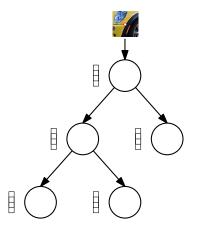


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

- ► x: entire observed image
- y_i : prediction at pixel $i, y_i \in \{1, 2, 3, 4\}$
- $E_A(y_i, x)$: energy function

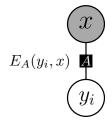
	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			

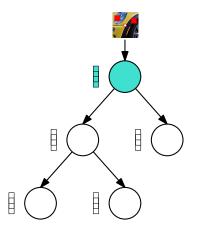




590

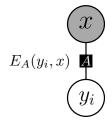
	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			

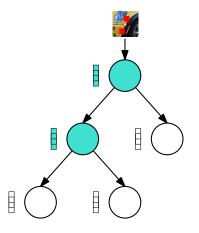




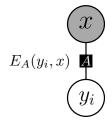
590

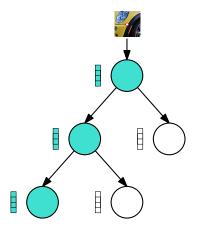
	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			



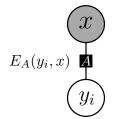


	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			

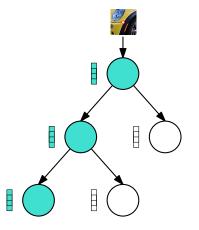




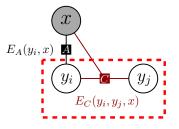
	Decision Tree Fields 0000000		Appendix 0000000
Decision Tree Fields			



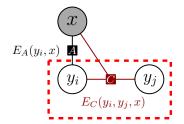
$$E_A(y_i, x) = \sum_{q \in \operatorname{Path}(x)} w_A(q, y_i)$$

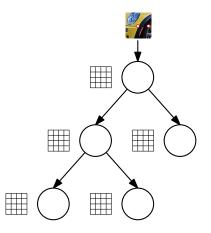


	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			



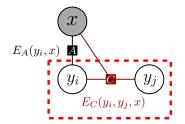
	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			

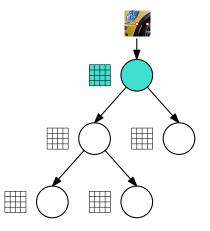




590

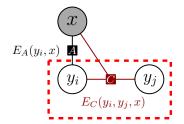
	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			

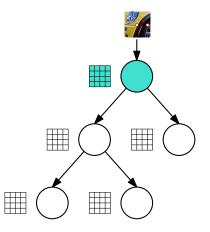




590

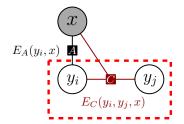
	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			

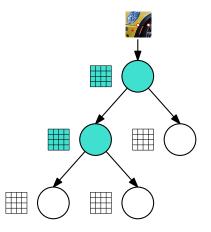




590

	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			



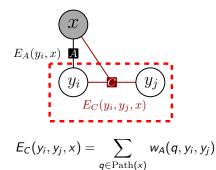


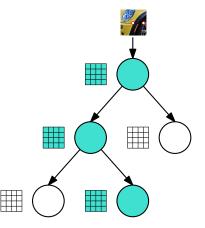
・ 日 ・ ・ 画 ・ ・ 画 ・ ・ 日 ・ うへぐ

Sebastian Nowozin, Carsten Rother, Shai Bagon, Toby Sharp, Bangpeng Yao, Pushmeet Kohli

Decision Tree Fields

	Decision Tree Fields		Appendix
	0000000		0000000
Decision Tree Fields			





900

	Decision Tree Fields 000000●		Appendix 0000000
Decision Tree Fields			

Full DTF Model

$$E(\mathbf{y}, \mathbf{x}, \mathbf{w}) = \sum_{F \in \mathcal{F}} E_{t_F}(y_F, x_F, w_{t_F}).$$

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \exp(-E(\mathbf{y}, \mathbf{x}, \mathbf{w})),$$

$$Z(\mathbf{x}, \mathbf{w}) = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}, \mathbf{x}, \mathbf{w}))$$

・ 同下 ・ ヨト ・ ヨト

- ► x: image, y: predicted labels, one for each pixel
- ▶ w: weights/energies, to be learned from data
- How is this different from other models?
- What about learning and inference?

	Decision Tree Fields 000000●		Appendix 0000000
Decision Tree Fields			

Full DTF Model

$$E(\mathbf{y}, \mathbf{x}, \mathbf{w}) = \sum_{F \in \mathcal{F}} E_{t_F}(y_F, x_F, w_{t_F}).$$

$$p(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{1}{Z(\mathbf{x}, \mathbf{w})} \exp(-E(\mathbf{y}, \mathbf{x}, \mathbf{w})),$$

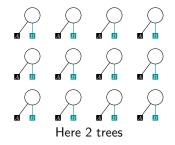
$$E(\mathbf{y}, \mathbf{x}, \mathbf{w}) = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(-E(\mathbf{y}, \mathbf{x}, \mathbf{w}))$$

- x: image, y: predicted labels, one for each pixel
- ▶ w: weights/energies, to be learned from data
- How is this different from other models?
- What about learning and inference?

	Related Work		Appendix
	000		0000000
Related Work			

Relationship to Other Models

- Generalizes random forests (learned weights)
- Markov random fields



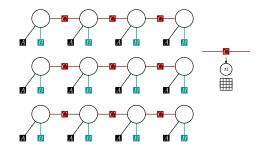
- 4 同 1 - 4 回 1 - 4 回 1

3

	Related Work		Appendix
	000		0000000
Related Work			

Relationship to Other Models

- Generalizes random forests (learned weights)
- Markov random fields



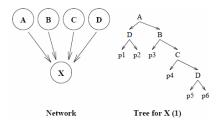
→ Ξ →

3

	Related Work ○●○		Appendix 0000000
Related Work			

CPT-Trees (1995)

- Conditional Probability Table Trees
- (Glesner, Koller, 1995), (Boutilier et al., 1996)
- Decision tree on states of random variables
- Limited to Bayesian networks



	Related Work ○○●		Appendix 0000000
Related Work			

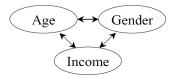
Learning a Markov Chain

Dependency Networks

- Learn $p(x_i|x_{\mathcal{V}\setminus\{i\}})$
- (Heckermann et al., 2000)
- Decision tree on states of random variables
- Inference requires simulation (pseudo-Gibbs sampling)

Random Forest Random Field

- (Payet and Todorovic, 2010)
- Decision tree determines sampler
- Inference: Swendsen-Wang Metropolis MCMC



- ロト - (理ト - (ヨト - (ヨト -)

		Learning ●0000	Appendix 0000000
Learning			

Learning DTFs

Given iid data $\{(x, y)_i\}_{i=1,...,N}$, need to learn

- Structure of the factor graph,
- ▶ Tree structure defined by split functions,
- Weight parameters in decision nodes.

Let us assume structure and trees are given

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

		Learning ●0000	Appendix 0000000
Learning			

Learning DTFs

Given iid data $\{(x, y)_i\}_{i=1,...,N}$, need to learn

- Structure of the factor graph,
- ▶ Tree structure defined by split functions,
- Weight parameters in decision nodes.

Let us assume structure and trees are given

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ○ ○ ○

		Learning 00000	Appendix 0000000
Learning			

Training

Maximum Likelihood Estimation, given ground truth y^*

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \log p(y^* | \mathbf{x}, \mathbf{w})$$

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ① ● ○ ● ●

		Learning ○●○○○	Appendix 0000000
Learning			

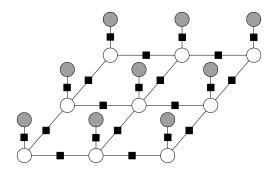
Maximum Likelihood Estimation, given ground truth y^*

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \log p(y^* | \mathbf{x}, \mathbf{w})$$

Intractable!

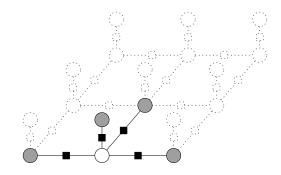
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

		Learning	Appendix
		00000	0000000
Learning			



◆□ > ◆母 > ◆臣 > ◆臣 > ○臣 ○ の < @

		Learning	Appendix
		00000	0000000
Learning			



◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─臣

500

		Learning ○●○○○	Appendix 0000000
Learning			

Maximum Pseudo-Likelihood Estimation (Besag, 1974)

$$\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} \frac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \log p(y_i | y^*_{\mathcal{V} \setminus \{i\}}, \mathbf{x}, \mathbf{w})$$

with ground truth y^* and

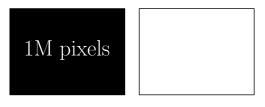
 $\mathcal V: \ {\rm set} \ {\rm of} \ {\rm pixels} \ {\rm in} \ {\rm all} \ {\rm images}.$

(details in paper)

Sac

		Learning 00●00	Appendix 0000000
Learning			

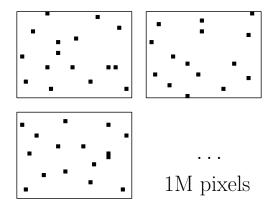
Efficient Training by Subsampling



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

		Learning	Appendix
		00000	0000000
Learning			

Efficient Training by Subsampling



ヘロト 人間 ト 人間 ト 人間 トー

Э

		Learning	Appendix
		00000	0000000
Learning			

Efficient Training by Subsampling

We subsample our training set to train a structured model

- 4 同下 - 4 同下 - 4 同下 - -

3

		Learning 000●0	Appendix 0000000
Learning			

イロト イポト イヨト イヨト

1

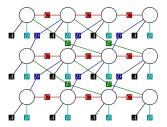
Training Algorithm

- 1. Fix factor graph structure
- 2. For each factor: learn classification tree
- 3. Jointly optimize convex pseudo-likelihood objective in ${f w}$

		Learning 0000●	Appendix 0000000
Learning			

Test-time Inference in DTFs

- 1. Energy minimization (MAP) E.g. TRW-S
- 2. Maximum Posterior Marginal (MPM) E.g. Gibbs sampling



		Experiments	Appendix
		0000000	0000000
Experiments			

990

		Experiments	Appendix
		0000000	0000000
Experiments			

590

		Experiments	Appendix
		0000000	0000000
Experiments			

996

		Experiments	Appendix
		0000000	0000000
Experiments			

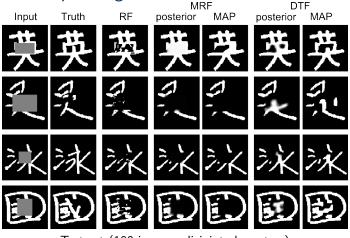
590

		Experiments	Appendix
		0000000	0000000
Experiments			

3

- 4 伺 ト 4 ヨ ト 4 ヨ ト

		Experiments 0●000000	Appendix 0000000
Experiments			



Test set (100 images, disjoint characters)

€ 990

<ロト < 団ト < 団ト < 団ト < 団ト -

		Experiments 00●00000	Appendix 0000000
Experiments			

Instances

- Densely-connected, 64 neighbors
- Each instance: 10k variables, 300k factors
- \blacktriangleright \rightarrow hard to minimize energy

www.nowozin.net/sebastian/papers/DTF_CIP_instances.zip

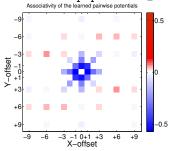
▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

		Experiments 00●00000	Appendix 0000000
Experiments			

Instances

- Densely-connected, 64 neighbors
- Each instance: 10k variables, 300k factors
- $\blacktriangleright \rightarrow$ hard to minimize energy

www.nowozin.net/sebastian/papers/DTF_CIP_instances.zip



3

► 4 Ξ ►

		Experiments	Appendix 0000000
Experiments			

Experiment: Body-part Recognition

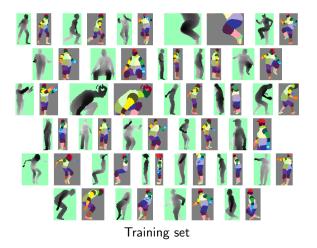
イロト イポト イヨト イヨト

3

- Body part recognition (Shotton et al., CVPR 2011)
- ▶ 1500 training images, 150 test images

		Experiments 0000●000	Appendix 0000000
Experiments			

Experiment: Body-part Recognition (cont)

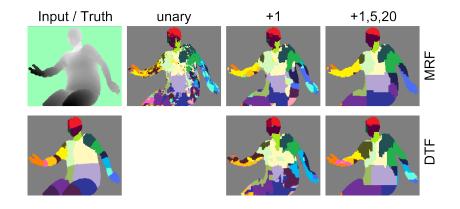


590

3

イロト イポト イヨト イヨト

				Experiments	Appendix 0000000
Experiments	0000000	0000	00000	000000000	0000000



ヘロト 人間ト 人間ト 人間ト

Э

		Experiments 00000€00	Appendix 0000000
Experiments			

Model	Measure	Shotton et al.	unary	+1	+1,20	+1,5,20
MRF	avg-acc	34.4	36.15	37.82	38.00	39.30
	runtime	6h34	*	*	*	(30h)*
	weights	-	6.3M	6.2M	6.2M	6.3M
DTF	avg-acc	-	-	39.59	40.26	41.42
	runtime	-	-	*	*	(40h)*
	weights	-	-	6.8M	7.8M	8.8M

		Experiments 00000€00	Appendix 0000000
Experiments			

Model	Measure	Shotton et al.	unary	+1	+1,20	+1,5,20
MRF	avg-acc	34.4	36.15	37.82	38.00	39.30
	runtime	6h34	*	*	*	(30h)*
	weights	-	6.3M	6.2M	6.2M	6.3M
DTF	avg-acc	-	-	39.59	40.26	41.42
	runtime	-	-	*	*	(40h)*
	weights	-	-	6.8M	7.8M	8.8M

		Experiments 00000€00	Appendix 0000000
Experiments			

Model	Measure	Shotton et al.	unary	+1	+1,20	+1,5,20
MRF	avg-acc	34.4	36.15	37.82	38.00	39.30
	runtime	6h34	*	*	*	(30h)*
	weights	-	6.3M	6.2M	6.2M	6.3M
DTF	avg-acc	-	-	39.59	40.26	41.42
	runtime	-	-	*	*	(40h)*
	weights	-	-	6.8M	7.8M	8.8M

		Experiments 00000€00	Appendix 0000000
Experiments			

Model	Measure	Shotton et al.	unary	+1	+1,20	+1,5,20
MRF	avg-acc	34.4	36.15	37.82	38.00	39.30
	runtime	6h34	*	*	*	(30h)*
	weights	-	6.3M	6.2M	6.2M	6.3M
DTF	avg-acc	-	-	39.59	40.26	41.42
	runtime	-	-	*	*	(40h)*
	weights	-	-	6.8M	7.8M	8.8M

		E×periments 00000000	Appendix 0000000
Experiments			

DTF Summary

- Decision Tree Fields: non-parametric CRF model for discrete image labeling tasks
- ▶ Non-parametric: model class can scale with training set size
- Scalable, can make use of large training sets,
- ► Conditional interactions: richer models without latent variables

- 4 間 ト 4 ヨ ト 4 ヨ ト - ヨ

		E×periments 00000000	Appendix 0000000
Experiments			

DTF Summary

- Decision Tree Fields: non-parametric CRF model for discrete image labeling tasks
- ▶ Non-parametric: model class can scale with training set size
- Scalable, can make use of large training sets,
- ► Conditional interactions: richer models without latent variables

Code will be made available after CVPR deadline!

- 4 同下 4 日下 4 日下 - 日

		Experiments	Appendix 0000000
Experiments	 	 	

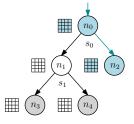
Thank you!

			Appendix •0000000
Appendix			

DTF: Linearity

 $E_{t_F}(y_F, x_F, w_{t_F})$ can be written as a function linear in w_{t_F} ,

$$\sum_{n \in \text{Tree}(t_F)} \sum_{z \in \mathcal{Y}_F} w_{t_F}(q, z) B_{t_F}(q, z; y_F, x_F),$$



<ロ> <問> <問> < 同> < 同> < 同> < □> <

3

where

$$B_{t_F}(q,z;y_F,x_F) = \begin{cases} 1 & \text{if } n \in \operatorname{Path}(x_F) \text{ and } z = y_F, \\ 0 & \text{otherwise.} \end{cases}$$

- \blacktriangleright \rightarrow overall energy function is *linear* in w
- \blacktriangleright \rightarrow (pseudo-)likelihood function is log-concave
- Here: not necessarily unique maximizer

			Appendix 0●000000
Appendix			

Learning the Decision Trees

How to learn the decision tree?

- Ideal world: learn entire model jointly
- ▶ Here: learn decision trees using common information gain criterion
- Pairwise and order-k factors: treat as $\mathcal{L} \times \mathcal{L}$ classification problem (\mathcal{L}^k)
- Although trees are trained independently, overcounting is avoided by optimizing the weights jointly

- 4 間 ト 4 ヨ ト 4 ヨ ト - ヨ

Training summary

- 1. For each factor type, train a decision tree using information gain
- 2. Initialize tree weights to zero
- 3. Maximize the pseudolikelihood (using L-BFGS)

			Appendix 0●000000
Appendix			

Learning the Decision Trees

How to learn the decision tree?

- Ideal world: learn entire model jointly
- ▶ Here: learn decision trees using common information gain criterion
- Pairwise and order-k factors: treat as L×L classification problem (L^k)
- Although trees are trained independently, overcounting is avoided by optimizing the weights jointly

(김희) 김 글 (김) (글) (글)

Training summary

- 1. For each factor type, train a decision tree using information gain
- 2. Initialize tree weights to zero
- 3. Maximize the pseudolikelihood (using L-BFGS)

			Appendix 00●00000
Appendix			

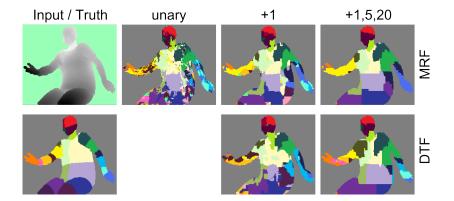


Figure: Test recognition results. MRF (top) and DTF (bottom).

イロト イ部ト イヨト イヨト 三日

			Appendix 0000000
Appendix			

Model	Measure	Shotton et al.	unary	+1	+1,20	+1,5,20
MRF	avg-acc	34.4	36.15	37.82	38.00	39.30
	runtime	6h34	*	*	*	(30h)*
	weights	-	6.3M	6.2M	6.2M	6.3M
DTF	avg-acc	-	-	39.59	40.26	41.42
	runtime	-	-	*	*	(40h)*
	weights	-	-	6.8M	7.8M	8.8M

Table: Body-part recognition results: mean per-class accuracy, training time on a single 8-core machine, and number of model parameters.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

			Appendix 0000000
Appendix			

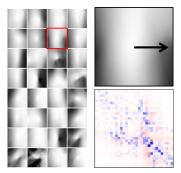


Figure: Learned horizontal interactions: Left: mean silhouette reaching the 32 leaf nodes in the learned tree. One leaf (marked red) and corresponding effective 32×32 weight matrix. Visualizing the most attractive (blue) and most repulsive (red) weights. Right: superimposing label-label interactions on test images, (a) matching the pattern, (b) no match, interaction is inactive.

イロト イポト イヨト

			Appendix 0000000
Appendix			

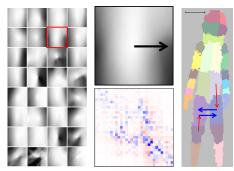


Figure: Learned horizontal interactions: Left: mean silhouette reaching the 32 leaf nodes in the learned tree. One leaf (marked red) and corresponding effective 32×32 weight matrix. Visualizing the most attractive (blue) and most repulsive (red) weights. Right: superimposing label-label interactions on test images, (a) matching the pattern, (b) no match, interaction is inactive.

イロト イポト イヨト イヨト

			Appendix 0000000
Appendix			

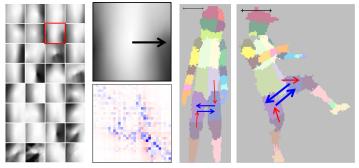


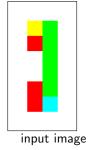
Figure: Learned horizontal interactions: Left: mean silhouette reaching the 32 leaf nodes in the learned tree. One leaf (marked red) and corresponding effective 32×32 weight matrix. Visualizing the most attractive (blue) and most repulsive (red) weights. Right: superimposing label-label interactions on test images, (a) matching the pattern, (b) no match, interaction is inactive.

イロト 不得下 イヨト イヨト 二日

			Appendix 000€0000
Appendix			

Experiment: Snakes

- Simplest tasks with conditional label-label structure
- Snake: 10 labels from head (black) to tail (white)
- Image contains perfect instructions
 - ▶ red = "go up",
 - yellow = "go right",
 - ▶ green = "go down",
 - ▶ blue = "go left"
- Myopic decisions are impossible (weak local evidence)
- Training: 200 small images
- Testing: 100 small images
- Features: relative pixel color tests



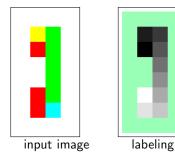
イロト イポト イヨト イヨト



			Appendix 000€0000
Appendix			

Experiment: Snakes

- Simplest tasks with conditional label-label structure
- Snake: 10 labels from head (black) to tail (white)
- Image contains perfect instructions
 - ▶ red = "go up",
 - yellow = "go right",
 - ▶ green = "go down",
 - ▶ blue = "go left"
- Myopic decisions are impossible (weak local evidence)
- Training: 200 small images
- Testing: 100 small images
- Features: relative pixel color tests



- 4 同 ト 4 ヨ ト - 4 ヨ ト

			Appendix 00000000
Appendix			

Experiment: Snakes, Results

	RF	Unary	MRF	DTF
Accuracy	90.3	90.9	91.9	99.4
Accuracy (tail)	100	100	100	100
Accuracy (mid)	28	28	38	95

Table: Test set accuracies for the snake data set.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ● ● ●

			Appendix 0000●000
Appendix			

Experiment: Snakes, Results

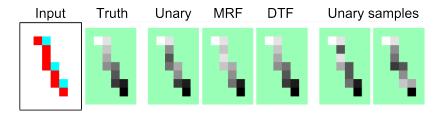


Figure: Predictions on a novel test instance.

590

E

イロト イポト イヨト イヨト

			Appendix
			0000000
Appendix			

Experiment: Snakes, Conclusion

Here,

- > Strong pairwise interactions help when having weak local evidence,
- > Pairwise interactions are strong because they *condition* on the image,

イロト イポト イヨト イヨト

3

200 training images are enough

			Appendix 000000
Appendix			

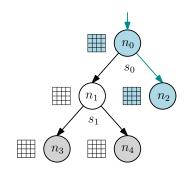
Factor type in DTFs

Every factor type has one

- scope: relative set of variables it acts on,
- decision tree: tree with split functions,
- weight parameters: in each node

Energy is the sum along path of traversed nodes

$$E_{t_F}(y_F, x_F, w_{t_F}) = \sum_{q \in \operatorname{Path}(x_F)} w_{t_F}(q, y_F)$$



			Appendix 0000000
Appendix			

Minimize in \mathbf{w} the regularized negative log-pseudolikelihood,

$$\ell_{npl}(\mathbf{w}) = rac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \ell_i(\mathbf{w}) - rac{1}{|\mathcal{V}|} \sum_t \log p_t(w_t),$$

with

$$\ell_i(\mathbf{w}) = -\log p(y_i | y^*_{\mathcal{V} \setminus \{i\}}, \mathbf{x}, \mathbf{w})$$

and

 $\mathcal V: \ {\rm set} \ {\rm of} \ {\rm pixels} \ {\rm in} \ {\rm all} \ {\rm images}.$

Sac

			Appendix 0000000
Appendix			

$$\ell_{npl}(\mathbf{w}) = rac{1}{|\mathcal{V}|} \sum_{i \in \mathcal{V}} \ell_i(\mathbf{w}) - rac{1}{|\mathcal{V}|} \sum_t \log p_t(w_t),$$

			Appendix 0000000
Appendix			

$$\ell_{npl}(\mathbf{w}) = \mathbb{E}_{i \sim \mathcal{U}(\mathcal{V})} \left[\ell_i(\mathbf{w})\right] - \frac{1}{|\mathcal{V}|} \sum_t \log p_t(w_t),$$

			Appendix 0000000
Appendix			

$$\ell_{npl}(\mathbf{w}) = \mathbb{E}_{i \sim \mathcal{U}(\mathcal{V})} \left[\ell_i(\mathbf{w})\right] - \frac{1}{|\mathcal{V}|} \sum_t \log p_t(w_t),$$

- ► Composite objective: expectation + simple function
- \blacktriangleright Approximate expectation, deterministic, for $\mathcal{V}' \subset \mathcal{V},$

$$\ell_{npl}(\mathbf{w}) pprox rac{1}{|\mathcal{V}'|} \sum_{i \in \mathcal{V}'} \ell_i(\mathbf{w}) - rac{1}{|\mathcal{V}|} \sum_t \log p_t(w_t).$$

イロト イポト イヨト イヨト 二日

 \blacktriangleright \rightarrow MPLE enables subsampling on variable level