On Feature Combination for Multiclass Object Classification

Peter Gehler and Sebastian Nowozin

July 12, 2011

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Peter Gehler and Sebastian Nowozin

Introduction

- Images may be described using a multitude of image features,
 - shape, texture, color, ...
- Each single feature alone may not be discriminative enough to yield good performance.

イロト イポト イヨト イヨト

- ► Goal: classification system
 - capable of combining different image features.
 - handles multiclass problems

Introduction

- Images may be described using a multitude of image features,
 - shape, texture, color, ...
- Each single feature alone may not be discriminative enough to yield good performance.

イロト イポト イヨト イヨト

- Goal: classification system
 - capable of combining different image features.
 - handles multiclass problems

Feature Combinations as Kernel Combination

 Kernel learning algorithms show good performance in image classification tasks.

イロト イポト イヨト イヨト

- Question: How to enable feature combination for kernel learning algorithms?
- ► Idea: Associate a separate kernel with each feature. ⇒ Feature combination problem becomes a kernel combination problem.

Feature Combinations as Kernel Combination

 Kernel learning algorithms show good performance in image classification tasks.

(日) (同) (目) (日)

- Question: How to enable feature combination for kernel learning algorithms?
- ► Idea: Associate a separate kernel with each feature. ⇒ Feature combination problem becomes a kernel combination problem.

Feature Combinations as Kernel Combination

 Kernel learning algorithms show good performance in image classification tasks.

(日) (同) (目) (日)

- Question: How to enable feature combination for kernel learning algorithms?
- ► Idea: Associate a separate kernel with each feature.
 ⇒ Feature combination problem becomes a kernel combination problem.

Learning With Multiple Kernels

Support Vector Machines may use a single kernel function ...

$$k(x,x'), \quad x,x' \in \mathcal{X},$$

... a linear combination of different kernels ...

$$k(x,x') = \sum_{m=1}^{M} eta_m k_m(x,x'), \quad eta_m \in \mathbb{R}_+$$

... or a product of kernels.

$$k(x,x') = \prod_{m=1}^{M} k_m(x,x')$$

・ロン ・回と ・ヨン ・ ヨン

Peter Gehler and Sebastian Nowozir

Learning With Multiple Kernels

Support Vector Machines may use a single kernel function ...

$$k(x,x'), \quad x,x' \in \mathcal{X},$$

... a linear combination of different kernels ...

$$k(x,x') = \sum_{m=1}^{M} \beta_m k_m(x,x'), \quad \beta_m \in \mathbb{R}_+$$

... or a product of kernels.

$$k(x,x') = \prod_{m=1}^{M} k_m(x,x')$$

Peter Gehler and Sebastian Nowozin

Learning With Multiple Kernels

Support Vector Machines may use a single kernel function ...

$$k(x, x'), \quad x, x' \in \mathcal{X},$$

... a linear combination of different kernels ...

$$k(x,x') = \sum_{m=1}^{M} \beta_m k_m(x,x'), \quad \beta_m \in \mathbb{R}_+$$

... or a product of kernels.

$$k(x,x') = \prod_{m=1}^{M} k_m(x,x')$$

・ロン ・四 と ・ ヨ と ・ ヨ と

3

Peter Gehler and Sebastian Nowozin

SVM \rightarrow Multiple Kernel Learning (MKL)

- SVM: single kernel k
- MKL: set of kernels $\{k_1, \ldots, k_M\}$
 - learn classifier and combination weights β
 - can be cast as a convex optimization problem

$$f(\mathbf{x}) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(\mathbf{x}, \mathbf{x}_i), \quad \sum_{m=1}^{M} \beta_m = 1$$

<ロ> <同> <同> < 回> < 回>

Peter Gehler and Sebastian Nowozin

SVM \rightarrow Multiple Kernel Learning (MKL)

- SVM: single kernel k
- MKL: set of kernels $\{k_1, \ldots, k_M\}$
 - learn classifier and combination weights β
 - can be cast as a convex optimization problem

$$f(x) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(x, x_i), \quad \sum_{m=1}^{M} \beta_m = 1$$

イロン イロン イヨン イヨン

Peter Gehler and Sebastian Nowozin

Remarks about MKL

- Special case: average $(\beta_m = \frac{1}{M})$ (no learning of β .)
- It is possible to use infinitely many kernels.
 Argyriou et.al. COLT05, Gehler&Nowozin, CVPR09
- Different MKL formulations have been proposed:
 - 1. Lankriet et.al. JMLR04
 - 2. Sonnenburg et.al JMLR06 (variant of regularization)
 - 3. Varma&Ray ICCV07 (extra regularization term $\sigma \|\beta\|$)

(日) (同) (目) (日)

- All formulations are equivalent!
 - Zien&Ong ICML07, Kloft et.al. NIPS09

Remarks about MKL

- Special case: average $(\beta_m = \frac{1}{M})$ (no learning of β .)
- It is possible to use infinitely many kernels.
 Argyriou et.al. COLT05, Gehler&Nowozin, CVPR09
- Different MKL formulations have been proposed:
 - 1. Lankriet et.al. JMLR04
 - 2. Sonnenburg et.al JMLR06 (variant of regularization)
 - 3. Varma&Ray ICCV07 (extra regularization term $\sigma \|\beta\|$)

イロン 不同 とくほと イロン

- All formulations are equivalent!
 - Zien&Ong ICML07, Kloft et.al. NIPS09

Remarks about MKL

- Special case: average $(\beta_m = \frac{1}{M})$ (no learning of β .)
- It is possible to use infinitely many kernels.
 Argyriou et.al. COLT05, Gehler&Nowozin, CVPR09
- Different MKL formulations have been proposed:
 - 1. Lankriet et.al. JMLR04
 - 2. Sonnenburg et.al JMLR06 (variant of regularization)
 - 3. Varma&Ray ICCV07 (extra regularization term $\sigma \|\beta\|$)

イロン 不同 とくほと イロン

- All formulations are equivalent!
 - Zien&Ong ICML07, Kloft et.al. NIPS09

MKL classification function

$$f(x) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(x, x_i), \quad \sum_{m=1}^{M} \beta_m = 1$$

- Convex combination of SVMs all of which share the same parameters.
- A support vector x_i must be representative w.r.t. all kernels
- Idea: combine separate SVMs

$$f(x) = \sum_{m=1}^{M} \beta_m f_m(x), \quad \sum_{m=1}^{M} \beta_m = 1$$

(日) (同) (目) (日)

3

Peter Gehler and Sebastian Nowozir

MKL classification function

$$f(x) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(x, x_i), \quad \sum_{m=1}^{M} \beta_m = 1$$

- Convex combination of SVMs all of which share the same parameters.
- A support vector x_i must be representative w.r.t. all kernels
- Idea: combine separate SVMs

$$f(x) = \sum_{m=1}^{M} \beta_m f_m(x), \quad \sum_{m=1}^{M} \beta_m = 1$$

(日) (同) (目) (日)

Peter Gehler and Sebastian Nowozir

Multiclass ν -LP-Boost: LP- β and LP-B

Multiclass extension of Linear-Program-Boosting

Demiriz et.al. ML02, Weston&Watkins, ESANN99

- LP- β : mixing weights for all classes jointly $\beta \in [0, 1]^M$
- ► LP-B: mixing weights for each class separately B ∈ [0,1]^{MC}

$$\min_{\beta,\xi,\rho} \quad -\rho + \frac{1}{\nu n} \sum_{i=1}^{N} \xi_i$$

sb.t.
$$\sum_{m=1}^{M} \beta_m f_{m,y_i}(x_i) - \max_{y_j \neq y_i} \sum_{m=1}^{M} \beta_m f_{m,y_j}(x_i) + \xi_i \ge \rho, \forall i$$
$$\sum_{m=1}^{M} \beta_m = 1, \quad \beta_m \ge 0, \ \forall m$$
$$\xi_i \ge 0, \quad \forall i.$$

Peter Gehler and Sebastian Nowozin

Multiclass ν -LP-Boost: LP- β and LP-B

Multiclass extension of Linear-Program-Boosting

Demiriz et.al. ML02, Weston&Watkins, ESANN99

- LP- β : mixing weights for all classes *jointly* $\beta \in [0, 1]^M$
- ▶ LP-B: mixing weights for each class separately $B \in [0, 1]^{MC}$

$$\min_{\boldsymbol{B},\xi,\rho} \quad -\rho + \frac{1}{\nu n} \sum_{i=1}^{N} \xi_i$$

. .

sb.t.
$$\sum_{m=1}^{M} B_m^{y_i} f_{m,y_i}(x_i) - \max_{y_j \neq y_i} \sum_{m=1}^{M} B_m^{y_j} f_{m,y_j}(x_i) + \xi_i \ge \rho, \forall i$$
$$\sum_{m=1}^{M} B_m^c = 1, \quad B_m^c \ge 0, \ \forall m, c$$
$$\xi_i \ge 0, \quad \forall i.$$

ICCV09

. .

Peter Gehler and Sebastian Nowozin

LP-Boosting training

Ideally: train jointly - but limited data available.

- 2-stage training procedure:
- 1. Train each one-versus-rest SVM f_m separately.
- 2. Obtain Cross-Validation scores for all SVMs f_1, \ldots, f_M .
- 3. Train LP- β , LP-B on Cross-Validation scores.
- Less principled, but effective.
- Small number of parameters β allows for true multiclass learning

イロン 不同 とくほと イロン

ICCV09

LP-Boosting training

Ideally: train jointly - but limited data available.

- 2-stage training procedure:
- 1. Train each one-versus-rest SVM f_m separately.
- 2. Obtain Cross-Validation scores for all SVMs f_1, \ldots, f_M .
- 3. Train LP- β , LP-B on Cross-Validation scores.
- Less principled, but effective.
- Small number of parameters β allows for true multiclass learning

イロト イポト イヨト イヨト

Flower Classification: Dataset

イロト イポト イヨト イヨト

- 17 types of flowers 80 images per class
- 7 different precomputed kernels
- Data from Nilsback&Zissermann CVPR06

Peter Gehler and Sebastian Nowozin

Flower Classification: Results

Single feature			Combinations		
Kernel	Accuracy	Time(s)	Method	Accuracy	Time(s)
Colour	60.9 ± 2.1	3	product	85.5 ± 1.2	2
Shape	70.2 ± 1.3	4	averaging	84.9 ± 1.9	10
Texture	63.7 ± 2.7	3	MKL	85.2 ± 1.5	97
HOG	58.5 ± 4.5	4	LP- β	85.5 ± 3.0	80
HSV	61.3 ± 0.7	3	LP-B	85.4 ± 2.4	98
siftint	70.6 ± 1.6	4			
siftbdy	59.4 ± 3.3	5			

- Combination of features improves performance.
- All combination methods perform equally well.
- Time combined time for model selection, training and testing

< ロ > < 回 > < 回 > < 回 > < 回 > .

Flower Classification: Results

Single feature			Combinations		
Kernel	Accuracy	Time(s)	Method	Accuracy	Time(s)
Colour	60.9 ± 2.1	3	product	85.5 ± 1.2	2
Shape	70.2 ± 1.3	4	averaging	84.9 ± 1.9	10
Texture	63.7 ± 2.7	3	MKL	85.2 ± 1.5	97
HOG	58.5 ± 4.5	4	LP- β	85.5 ± 3.0	80
HSV	61.3 ± 0.7	3	LP-B	85.4 ± 2.4	98
siftint	70.6 ± 1.6	4			
siftbdy	59.4 ± 3.3	5			

- Combination of features improves performance.
- All combination methods perform equally well.
- Time combined time for model selection, training and testing

Flower Classification: Adding uninformative kernels

Adding more and more kernels computed on pure noise

In this scenario sparse kernel selection is useful.

Peter Gehler and Sebastian Nowozin

Flower Classification: Adding uninformative kernels

Adding more and more kernels computed on pure noise

(人間) とうり くうり

In this scenario sparse kernel selection is useful.

Peter Gehler and Sebastian Nowozin

Visual Object Classification: Caltech 101/256

<ロ> <回> <回> <回> <回> <回>

102/256 categories of visual object categories

Peter Gehler and Sebastian Nowozin

Visual Object classification: Image Features

- Histogram of SIFTs
- PHOG Bosch et.al. CIVR07
- LBP Ojala et.al. PAMI02
- Region Covariance Tuzel et.al. CPVR07
- V1S+ Pinto et.al. PLOS08
- ... and spatial pyramid representation (4 levels)

・ロト ・回ト ・ヨト ・ヨト

Visual Object classification: Results on Caltech 101

Two scenarios:

- 1. Combining similar features
- 2. Combining diverse features

Performance with respect to best single feature

Peter Gehler and Sebastian Nowozin

Visual Object classification: Results on Caltech 101

Two scenarios:

- 1. Combining similar features
- 2. Combining diverse features

Performance with respect to best single feature

Peter Gehler and Sebastian Nowozin

Caltech 101 - combining 39 kernels

- No significant improvement of MKL over baselines
- LP- β yields sparse mixing weights for *all* classes (7 out of 39)

Peter Gehler and Sebastian Nowozin

Caltech 101/256 comparison

- Over 10% improvement using LP- β
- ► Latest LP-β results ≈ +5% after adding more features Vedaldi&Fulkerson www.vlfeat.org

Peter Gehler and Sebastian Nowozin

Conclusion

- Kernel combinations can improve performance, thanks to strong features!
 - Expect performance gain if combining diverse features.
 - If in doubt: average strong features simple and efficient.
 - In presence of uninformative kernels use selection techniques.
- ► MKL not as effective as may have been thought, ⇒ use proper model selection instead!
- For example LP-β : multiclass, sparse, easily expandable and simple.

イロン 不同 とくほと イロン

- Code and Data available at www.ee.ethz.ch/~pgehler
- Thanks to C. Lampert and N. Pinto

Conclusion

- Kernel combinations can improve performance, thanks to strong features!
 - Expect performance gain if combining diverse features.
 - If in doubt: average strong features simple and efficient.
 - In presence of uninformative kernels use selection techniques.
- ► MKL not as effective as may have been thought, ⇒ use proper model selection instead!
- For example LP-β : multiclass, sparse, easily expandable and simple.

イロト イポト イヨト イヨト

- Code and Data available at www.ee.ethz.ch/~pgehler
- Thanks to C. Lampert and N. Pinto

Conclusion

- Kernel combinations can improve performance, thanks to strong features!
 - Expect performance gain if combining diverse features.
 - If in doubt: average strong features simple and efficient.
 - In presence of uninformative kernels use selection techniques.
- ► MKL not as effective as may have been thought, ⇒ use proper model selection instead!
- For example LP-β : multiclass, sparse, easily expandable and simple.

イロン 不同 とくほと イロン

- Code and Data available at www.ee.ethz.ch/~pgehler
- Thanks to C. Lampert and N. Pinto