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Bayesian Deep Learning ©

Goal: enable Bayesian inference for deep networks to improve robustness of
predictions!

Active research field where most work focuses on improving approximate
inference to get closer to the Bayes posterior
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ABSTRACT

The posteriors over neural network weights are high dimensional and multimodal.
Each mode typically characterizes a ingfully different rep ion of the
data. We develop Cyclical Stochastic Gradient MCMC (SG-MCMC) to auto-
matically explore such distributions. In particular, we propose a cyclical stepsize
schedule, where larger steps discover new modes, and smaller steps characterize
each mode. We also prove non-asymptotic convergence of our proposed algo-
rithm. Moreover, we provide extensive experimental results, including ImageNet,
to demonstrate the scalability and effectiveness of cyclical SG-MCMC in learning
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modern deep neural networks.
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But is the Bayes posterior actually good?

Florian Wenzel, 15 June 2020



i e
Bayesian Neural Networks (BNNs) &

Neural Network Input Hidden Output

p(D|0) = p(yilz;, 0)

Different models obtained by
different @
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Bayesian Neural Networks (BNNs) € s,

Bayesian Neural Network Input Hidden Output

p(0,D) = p(yi|z:, 0) p(0)

Posterior: Distribution over likely models
given the data

p(6|D)

Florian Wenzel, 15 June 2020



BNNs: Predictions

In standard deep learning we optimize U(6)

Zlogp yz|xza logp( )

SGD (MAP)

BNNs use samples from the posterior (ensemble of models)

01,02,03,... ~ p(6|D) x exp(-U(6))

Florian Wenzel, 15 June 2020
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BNNs: Predictions @

Predict by using an average of models

p(ylz, D) = / p(ylz, 6) p(6]D) d6

H _6 . .
SGD (MAP) 0

~ ZP(MSU, 0,)

91, 92, 93, ves MY p(H\D)

In this talk: A model is good if it predicts well (e.g. low cross entropy loss)

7
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Bayesian Neural Networks (BNNs) € s

Promises of BNNs*:

« Robustness in generalization
- Better uncertainty quantification (calibration)

- Enables new deep learning applications (continual learning, sequential
decision making, ...)

* [e.g., Neal 1995, Gal et al. 2016, Wilson 2019, Ovadia et al. 2019].

Florian Wenzel, 15 June 2020



Bayesian Neural Networks (BNNs) € s,

But in practice BNNs are rarely used!

Florian Wenzel, 15 June 2020



Bayesian Neural Networks (BNNs)

In practice:
- Often, the Bayes posterior is worse than SGD point estimates

« But Bayes predictions can be improved by the use of the

Cold Posterior* For temperature T<T:
We sharpen the
p(@ ‘ D) X €XP ( U (0) /T) posterior (over-count
evidence)

*Explicitly (or implicitly) used by most recent Bayesian DL papers [e.g., Li et al. 2016, Zhang et al. 2020, Ashukha
et al. 2020].
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Bayesian Neural Networks (BNNs)

p(0|D) o< exp(-U(0)/T)
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The cold posterior sharply deviates from the
Bayesian paradigm.

What is the use of more accurate posterior
approximations if the posterior is poor?



Our paper: Hypothesis for the origin of the improved & S
performance of cold posteriors

Inaccurate SDE Simulation?

Bias of SG-MCMC?

Minibatch noise (which is
not Gaussian)?

Bias-variance tradeoff
induced by cold posterior?

Florian Wenzel, 15 June 2020

Likelihood

Dirty likelihoods?

(batch-normalization,

dropout,
data augmentation)

Current priors used for
BNN parameters are
poor?

The effect becomes
stronger with increasing
model depths and
capacity?



Our paper: Hypothesis for the origin of the improved
performance of cold posteriors

Likelihood

Florian Wenzel, 15 June 2020



Our paper: Hypothesis for the origin of the improved & S
performance of cold posteriors

Inaccurate SDE Simulation?

Bias of SG-MCMC?

Minibatch noise (which is
not Gaussian)?

Bias-variance tradeoff
induced by cold posterior?
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Likelihood

Dirty likelihoods?

(batch-normalization,

dropout,
data augmentation)

Current priors used for
BNN parameters are
poor?

The effect becomes
stronger with increasing
model depths and
capacity?



Inference: Is it accurate?

1. How to compute the posterior (inference)?

Sample from the posterior using SG-MCMC methods

Not covered: Approximate posterior using variational inference

2. Does inaccurate inference lead to the cold posterior effect?

Florian Wenzel, 15 June 2020
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SG-MCMC: Stochastic Gradient Markov Chain Monte Carlo @ &7

SGD = optimization goal

Florian Wenzel, 15 June 2020



SG-MCMC: Stochastic Gradient Markov Chain Monte Carlo @ &7

SG-MCMC = convergence in distribution, integration

Florian Wenzel, 15 June 2020



Stochastic Gradient Markov Chain Monte Carlo & S

Langevin Dynamics: one-slide refresher

d@ = M~ 1mdt
dm = —VeU(0)dt — ymdt + /2yTM/2dW

- Simulating SDE has stationary distribution proportional to exp(-U(©) / T)
[Langevin, 1908], [Leimkuhler and Matthews, “Molecular Dynamics”, 2016]

« Parameters ©, moments m, mass matrix M > O, frictiony > O

«“Solving SDE” & obtain one random continuous-time path

Florian Wenzel, 15 June 2020
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Stochastic Gradient Markov Chain Monte Carlo € sz

Symplectic Euler (Discretized version of SDE)

m® = (1= hy)m — VoG (6D) + \/23REM'2N (0, 1)
o) — gt=b L pM1m®

SGD with Momentum Gaussian Noise

scaled by temperature

Florian Wenzel, 15 June 2020 21



Stochastic Gradient Markov Chain Monte Carlo

The discretization scheme leads to

approximate samples from the posterior

3(1)7 3(2)7 3(3)7

Is this accurate enough?

Florian Wenzel, 15 June 2020
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SG-MCMC works well enough!

Synthetic data generated from an MLP

Gold Standard (HMC)
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: 0 s
SG-MCMC inference works well enough! &

Inaccurate SDE Simulation?

Bias of SG-MCMC?

Minibatch noise (which is
not Gaussian)?

Bias-variance tradeoff
induced by cold posterior?

Florian Wenzel, 15 June 2020
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SG-MCMC inference works well enough!

= = =
o = =
(] o =

Test cross entropy
=
o
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Temperature T
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SG-MCMC
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If the model is well-specified, T=1is optimal.

But for real-world data T<1is better!

Florian Wenzel, 15 June 2020
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The cold posterior effect

Why does the cold posterior perform better than the
true Bayes posterior?

Florian Wenzel, 15 June 2020
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i ; 6 ez,
Problems with the Erlor? &

Current priors used for
BNN parameters are > p(H)

N(0,1)

poor?

The effect becomes
stronger with increasing
model depths and
capacity?

29
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Prior Predictive Experiment

Draw from prior

0\ ~ p(6) = N(0,1)

Florian Wenzel, 15 June 2020

Induced predictive distribution

30
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Prior Predictive Experiment &

Draw from prior Induced predictive distribution
Model parameters Class Probabilities
A

' I
>
|
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Prior Predictive Experiment

Draw from prior

0\ ~ p(6) = N(0,1)

Model parameters

A

Florian Wenzel, 15 June 2020

Induced predictive distribution

Class Probabilities

32
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Draw from prior Induced predictive distribution
Model parameters Class Probabilities
A

- A
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Prior Predictive Experiment: ResNet-20 / CIFAR-10 6 s

00) ~ p(0) = N(0. 1) Eymp(x) [p (ylx,o(z‘))}

1
o NG

Prior parameter sample 0 Prior parameter sample 1 Prior parameter sample 2

=
o
=
o

=
o

Train set class distribution

Class probability
o
(6]

Class probability
o
(9]

Class probability
o
(9]

I Train set class distribution I I Train set class distribution I

o
o
o
o

e
o

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Each network drawn from the prior maps all images to one class!

34
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There is no “easy” fix of the prior &
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The cold posterior effect becomes stronger with increasing &

capacity
MLP /CIFAR-10
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Summary
SG-MCMC is accurate enough. RosNet-20/ CIEAR-O
>‘0.5
. % 0.4
Cold posteriors work. R
G 0.3
& 0.2 ’
104 1073

More work on priors for deep nets
is needed.
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Code: aithub.com/gooale-research/
goodgle-research/tree/master/
cold posterior bnn

More info/feedback:
www.florianwenzel.com
florianwenzel@google.com
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How Good is the Bayes Posterior in Deep Neural Networks Really?

Florian Wenzel ! Kevin Roth“*2 Bastiaan S. Veeling “*3! Jakub Swiatkowski** Linh 'h'an S+
1 Sehacti 1

Stephan Mandt®* Jasper Snoek ' Tim Sali

Abstract

During the past five years the Bayeman deep learn-
ing y has developed gly accu-
rate and efficient approximate inference proce-
dures that allow for Bayesian inference in deep
neural networks. However, despite this algo-
rithmic progress and the promise of improved
uncertainty quantification and sample efficiency
there are—as of early 2020—no publicized de-
ployments of Bayesian neural networks in indus-
trial practice. In this work we cast doubt on
the current understanding of Bayes posteriors in
popular deep neural networks: we demonstrate
through careful MCMC sampling that the pos-
terior predictive mduced by the Bayes postenor
yields ically worse p i

to simpler methods mcludmg point esnmates ob-
tained from SGD. Furthermore, we demonstrate
that predictive performance is improved signifi-
cantly through the use of a “cold posterior” that
overcounts evidence. Such cold posteriors sharply
deviate from the Bayesian paradigm but are com-
monly used as heuristic in Bayesian deep learn-
ing papers. We put forward several hypotheses
that could explain cold posteriors and evaluate
the hypotheses through experiments. Our work
questions the goal of accurate posterior approx-
imations in Bayesian deep learning: If the true
Bayes posterior is poor, what is the use of more
accurate approximations? Instead, we argue that
it is timely to focus on understanding the origin
of the improved performance of cold posteriors.

1. Introduction

In

d_deen_learning e 1 a_training_data.

t

094
N L T P S
o092
3
g
B
ﬁ 0.90  we= SG-MCMC
= = = Baseline: SGD

0.88

1074 10 10~ 107 100

Temperature T
Figure 1. The “cold posterior™ effect: for a ResNet-20 on CIFAR-
10 we can improve the performance signi y by
cooling the posterior with a temperature 7" < 1, deviating from
the Bayes posterior p(6|D) o exp(—U(8)/T) atT = 1.

to minimize the regularized cross-entropy objective,
L(6) ——leogp vile:,0) +920), (1)

where )(8) is a regularizer over model parameters. We
approximately optimize (1) using variants of stochastic gra-
dient descent (SGD), (Sutskever et al., 2013). Beside being
efficient, the SGD minibatch noise also has generalization
benefits (Masters & Luschi, 2018; Mandt et al., 2017).

1.1. Bayesian Deep Learning

In Bayesian deep learning we do not optimize for a single
likely model but instead want to discover all likely models.
To this end we approximate the pa:teriar distribution over
model parameters, p(8|D) o exp(—~U(8)/T), where U(0)
is the posterior energy function,

= logp(yilzi, 0
i=1

and T is a temperature. Here p(0) is a proper prior density
function, for example a Gaussian density. If we scale U ()
by 1/n and set (0) = — X log p(8) we recover L(8) in (1).
Therefore exp(—U(0)) simply gives high probability to
models which have low loss L(8). Given p(8|D) we predict

—logp(6), (2
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