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Abstract

Deep neural network models trained on large labeled datasets are the state-of-the-
art in a large variety of computer vision tasks. In many applications, however,
labeled data is expensive to obtain or requires a time consuming manual annota-
tion process. In contrast, unlabeled data is often abundant and available in large
quantities. We present a principled framework to capitalize on unlabeled data by
training deep generative models on both labeled and unlabeled data. We show that
such a combination is beneficial because the unlabeled data acts as a data-driven
form of regularization, allowing generative models trained on few labeled samples
to reach the performance of fully-supervised generative models trained on much
larger datasets. We call our method Hybrid VAE (H-VAE) as it contains both the
generative and the discriminative parts. We validate H-VAE on three large-scale
datasets of different modalities: two face datasets: (MultiPIE, CelebA) and a hand
pose dataset (NYU Hand Pose). Our qualitative visualizations further support im-
provements achieved by using partial observations.

1 Introduction

Understanding the world from images or videos requires reasoning about ambiguous and uncertain
information. For example, when an object is occluded we receive only partial information about it,
making our resulting inferences about the object class, shape, location, or material uncertain. To
represent this uncertainty in a coherent manner we can use probabilistic models. A key distinction
is between generative and discriminative probabilistic models, see Lasserre et al. [2006].

Generative models represent a joint distribution p(d,h) over an observation d and a quantity h that
we would like to infer. We can inspect a generative model by drawing samples (d,h) ∼ p(d,h) (see
Fig. 1), and we can make predictions by conditioning, evaluating p(h|d). In contrast, discriminative
models directly model the distribution p(h|d), always assuming that d is observed. We can make
predictions but no longer inspect the internals of the model through sampling. Discriminative models
often outperform generative models on prediction tasks where a large amount of labeled data is
available. Conversely, generative models have the advantage that in principle they can make use of
abundant unlabeled data, but in practice there are computational challenges.

Today, the majority of popular computer vision models are discriminative, but recently deep learning
revolutionized how we build generative models and perform inference in them. In particular, current
works on generative adversarial networks (GANs) (Goodfellow et al. [2014], Nowozin et al. [2016])
and variational autoencoders (VAEs) (Kingma and Welling [2014], Rezende et al. [2014], Doersch
[2016]) allow for rich and tractable generative models. In the current study, we extend the genera-
tive VAE framework to represent a joint distribution p(d,h) and derive a generative-discriminative
hybrid making use of abundant unlabeled data.
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Figure 1: Samples (d,h) ∼ p(d,h) of two generative models trained on the CelebA dataset (top),
and on the MultiPIE dataset (bottom). Note how the models consistently sample both the image and
the corresponding pose.

To derive our hybrid model we start with a generative VAE model of the form pθ(d,h), where θ
are neural network parameters. Since labeled data is costly, we assume that only a small subset of
the training instances is labeled {(d,h)}, while a much larger training subset contains a collection
of unlabeled observations {(d)} only. To allow learning from the unlabeled set we consider the
marginal likelihood pθ(d) =

∫
pθ(d,h) dh and derive a tractable variational lower bound. Inter-

estingly, through a particular choice in the derivation of this lower bound we can create an auxiliary
discriminative neural network model q(h|d). With the help of the bound the maximum likelihood
learning objective for our generative model now becomes the sum of the full likelihood and the
marginal likelihood.

The benefit of this hybrid approach is that it allows learning from partial observations in a principled
manner and scales to realistic computer vision applications. In summary, our contributions are:

• Deriving a principled hybrid variational autoencoder model that allows for high-
dimensional continuous output labels.

• Using unsupervised data as data-driven regularization for large scale deep learning models.
• Experimentally validating the improved generative model performance in terms of better

likelihoods and improved sample quality for facial landmarks.

2 Full Variational Autoencoder Framework

We extend the deep VAE framework originally presented in Kingma and Welling [2014], Rezende
et al. [2014], Doersch [2016] to the case of pairs of observations. This extension is technically
straightforward and, like the VAE approach, has three components: first, a probabilistic model for-
mulated as an infinite latent mixture model; second, an efficient approximate maximum likelihood
learning procedure; and third, an effective variance reduction method that allows effective maximum
likelihood training using backpropagation.

For the probabilistic model, we are interested in representing a distribution p(d,h). Here d is an
image, and h is an encoding of a continuous image label, e.g. a set of locations of the markers for
face alignments. We define an infinite mixture model using an additional latent variable z as

p(d,h) =

∫
pθ(d,h|z) p(z) dz. (1)

The conditional distribution pθ(d,h|z) is described by a neural network and has parameters θ to be
learned from a training data set. In practice this is implemented by outputting the parameters of a
multivariate Normal distribution,N (µθ(z),Σθ(z)) so that the conditional likelihood pθ(d,h|z) can
be computed easily. The distribution p(z) is fixed to be a multivariate standard Normal distribution,
p(z) = N (0, I). The above model is expressive, because it corresponds to an infinite Gaussian
mixture model and hence can approximate complicated distributions.

To learn the parameters of the model using maximum likelihood, Kingma and Welling [2014],
Rezende et al. [2014] introduce a tractable lower-bound on the log-likelihood. Consider the log-
likelihood of a single joint training sample (d,h). Using variational Bayesian bounding techniques
(see Doersch [2016]) we can lower bound the log-likelihood via an auxiliary model q(z|d,h) by

log p(d,h) ≥ Ez∼qω(z|d,h) [log pθ(d,h|z)]−DKL(qω(z|d,h)‖p(z)) =: LF (θ,d,h), (2)
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Figure 2: The architecture of the F-VAE deep generative neural network model we use to implement
Equation (2). Here FC denotes a fully-connected neural network.

where DKL is the Kullback-Leibler divergence between the variational distribution and the prior,
which for the case of two Normal distributions has a simple analytic form.

To optimize the bound (2) we can use stochastic gradient descent, approximating the expectation
using a few samples, perhaps using only a single sample. A naive sampling approach would incur
a high variance in the estimated gradients; the reparametrization trick (see Kingma and Welling
[2014], Rezende et al. [2014]) allows significant variance reduction in estimating (2). In the follow-
ing, we refer to the models trained using eq. 2 as Full VAE or F-VAE, as they use only fully observed
data for training. Fig. 2 shows the architecture of the F-VAE model.

3 Hybrid Learning: Using Unlabeled Data

Obtaining a large amount of {di} is possible for many computer vision tasks; however, it may be
expensive to collect large amounts of paired data (di,hi) because it involves some procedure for
ground truth collection or manual labelling of images. In the case of abundant unlabeled data where
only the image part is observed, we would like to train our model from both the expensive labeled
set and the partially observed data.

Given an unlabeled image d, we consider the marginal likelihood p(d) of the image as

log p(d) = log

∫ ∫
pθ(d,h|z)p(z) dz dh. (3)

The above is a difficult high-dimensional integration problem. In what follows, we drop neural net-
work parameters θ and w for brevity of notation. Using a variational Bayes bounding technique we
derive a tractable lower bound on this marginal log-likelihood by introducing one auxiliary model,
q(h|d) and reusing q(z|d,h) introduced in the Full VAE framework, (2),

log

∫ ∫
q(h|d)

p(d,h|z)

q(h|d)
q(z|d,h)

p(z)

q(z|d,h)
dz dh. (4)

Replacing the integrals with expectations and moving the logarithm inside gives the variational lower
bound on the log-likelihood:

log p(d) = logEh

[
Ez

[p(d,h|z)

q(h|d)

p(z)

q(z|d,h)

]]
≥ EhEz

[
log

p(d,h|z)

q(h|d)
+ log

p(z)

q(z|d,h)

]
= Eh

[
Ez

[
log p(d,h|z)− log q(h|d)

]
−DKL(q(z|d,h)‖p(z))

]
. (5)

Here, Eh is shorthand for Eh∼q(h|d), and likewise Ez stands for Ez∼q(z|d,h). We rewrite (5) by
recognizing the entropy term H(q(h|d)) = −Ez[log q(d|h)], giving

log p(d) ≥ Eh

[
Ez [log pθ(d,h|z)]−DKL(q(z|d,h)‖p(z))

]
+H(q(h|d)) =: LP (θ,d). (6)

In our case, the entropy H(q(h|d)) is available as a simple analytic form because we use a mul-
tivariate Normal distribution for q(h|d). Note that q(h|d) represents essentially a discriminative
model, implemented using a deep neural network.
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Figure 3: Extending the variational autoencoder (VAE) model to the case of hybrid labeled/unlabeled
observations. (a) the standard VAE model extended to the paired observation case: an encoder
q(z|d,h) and decoder p(d,h|z) mapping to/from a latent code z; (b) the hybrid VAE model intro-
ducing a discriminative variational model q(h|d) (c) The architecture of the discriminative network.

We now combine LF and LP into one learning objective. For this, we assume we have a
dataset {(di,hi)}i=1,...,n of fully-observed samples and another dataset {(dj)}j=1,...,m of partially-
observed data, so that only d is observed. Typically m� n because it is easier to obtain unlabeled
images. Because both LF and LP are log-likelihood bounds for a single instance, one principled
way to combine the two learning objectives is to simply sum them over all instances,

L1(θ) :=

n∑
i=1

LF (θ,di,hi) +

m∑
j=1

LP (θ,dj). (7)

While (7) is a valid log-likelihood bound, we found that empirically learning is faster when the
relative contribution of each sum is weighted equally. We achieve this through the learning objective

L(θ) :=
1

n

n∑
i=1

LF (θ,di,hi) +
1

m

m∑
j=1

LP (θ,dj). (8)

We optimize (8) using minibatch stochastic gradient descent, sampling one separate minibatch for
each sum per iteration. We consider L(θ) in (8) to be a hybrid learning objective, as it couples
together generative and discriminative models. Hence the name of the model: Hybrid VAE (H-
VAE).

We show in the experimental section that hybrid learning using (8) greatly improves the log-
likelihood on the hold-out set of the generative model. Additionally we show that the use of a
large set of partially observed instances prevents overfitting of the generative models. Fig. 3a and
Fig. 3b outline the components of the F-VAE and H-VAE frameworks respectively.

3.1 Modeling Depth Images

Compared to natural images, depth images have the additional property that depth values could be
unobserved. This is either because a pixel is outside the operating range of the camera or because
the pixel is invalidated by the depth engine.

To model this effect accurately, we proceed in two steps: for each pixel, we first compute a proba-
bility of being observed, p(b|z), where b is a probability map with one probability bu ∈ [0, 1] for
each position u. If bu = 1 then the normal continuous model p(du|z) is used, but if bu = 0,
then the depth value is set to du = ∅, a symbolic “unobserved” value. Formally this corre-
sponds to enlarging the domain of depth observations to R ∪ {∅} and using the probability model
p(d|z) =

∫
p(d|b, z) p(b|z) db. We can implement this simple model efficiently as a summation

over two maps because there are only two states for each pixel.

4 Experiments

4.1 Implementation Details

An H-VAE model has three neural networks as shown in Fig. 3b. Each of these networks uses either
convolutional or deconvolutional subnetworks, and these parts closely follow the encoder-decoder
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architecture proposed in Radford et al. [2015]. We visualize the network architectures in Fig. 2 and
Fig. 3c. Every convolutional layer doubles the number of channels, while shrinking the width and
height by a factor of two. Deconvolutatal layers perform the opposite operation: they reduce the
number of channels by the factor of two, but double the width and height by a factor of two.

Given a pair of (d,h) the encoding network q(z|d,h) independently processes d using the convolu-
tional subnetwork, while h is processed by the three-layer fully-connected neural network (FC-NN).
These two outputs are then concatenated and passed through another FC-NN, producing a diagonal
multivariate Normal distribution over z. The decoder network p(d,h|z) first processes z using an
FC-NN, the pipeline then split, and the deconvolutional subnetwork is used to produce a diagonal
multivariate Normal distribution over d. The distribution over h is computed by yet another FC-
NN, again as a diagonal multivariate Normal. We use ReLU activations (Nair and Hinton [2010])
throughout all the networks and every FC-NN hidden layer has 256 units. In every stochastic layer,
we use unbiased estimates for the expectations by averaging three samples from the corresponding
distribution. We implement the pipeline in Chainer (Tokui et al. [2015]) and train it end-to-end
using SGD with learning rate 0.01 and momentum 0.9.

4.2 Datasets

Previous work on generative models used data sets such as MNIST (LeCun et al. [1998]) and
SVHN (Netzer et al. [2011]) for evaluating their models. In our work, however, these datasets
do not allow us to show the benefits of the proposed H-VAE approach, as they include categori-
cal labels only, whereas our method extends the standard VAE framework to deal with continuous
annotation h.

We evaluate our method on two up-to-date datasets used in the computer vision community. To
simulate partially observed samples, we shuffle the dataset and split it into fully- and partially-
observed subsets and separate a holdout test set, not available during training.

MultiPIE. The MultiPIE (Gross et al. [2010]) dataset consists of face images of 337 subjects taken
under different pose, illumination and expressions. The pose range contains 15 discrete views,
capturing a face profile-to-profile. Illumination changes were modeled using 19 flashlights located
in different places of the room. The database has been extensively used in the community for face
alignment (Xiong and De la Torre [2013], Zhu and Ramanan [2012], Tulyakov et al. [2017a]). For
our purposes we use only the views annotated either with 68 or 66-points markup, in total producing
47250 images. We drop the inner mouth corner points, so that all the images have the same 66-point
markup. Images were cropped around the landmarks and downscaled to 48×48 size. We reserve 2K
(d,h) pairs from the MultiPIE dataset for testing purposes.

CelebA face dataset. The CelebA (Liu et al. [2015]) is a large scale face attributes dataset con-
taining more that 200K celebrity images annotated with 40 attributes (such as eyeglasses, pointy
nose etc.) and 5 landmark locations (eyes, nose, mouth corners). It contains more than 10K distinct
identities. As in Lamb et al. [2016] we center and crop all images around the face and resize to
64 × 64. We use the provided landmarks as continuous labels h. The testing set consists of 10K
fully observed instances.

NYU Hand Pose dataset. The NYU Hand Pose Dataset (Tompson et al. [2014]) contains 72757
training frames of RGBD data and 8252 testing set frames. For every frame, the RGBD data from
3 kinects is available. In our experiments we use only depth frames captured from the front view.
We resize depth maps to 128× 128 and preprocess the depth values using the code from Oberweger
et al. [2015].

4.3 Quantitative Evaluation

A commonly accepted comparison procedure for generative modeling is evaluation of the negative
log-likelihood (NLL) on the testing data (Gneiting and Raftery [2007], Lamb et al. [2016], Kingma
et al. [2016]). We compute the NLL using Eq. (2) on the same fully observed testing data for each
model. This metric, however, is difficult to interpret, requiring visual samples from the model to
assess their quality. Therefore, we additionally report the task-loss Etask. The task-loss in the case
of face alignment is the average point-to-point Euclidean distance, normalized by the interocular
distance (Tulyakov and Sebe [2015], Trigeorgis et al. [2016]). For hand pose experiment we report
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Table 1: Comparison of F-VAE and H-VAE models on three datasets: (a) MultiPIE, (b) CelebA, (c)
NYU Hand Pose. The number of fully observed samples used for training is denoted by n, while
m corresponds to the total number of partially observed instances. We report the task-loss Etask and
the negative log-likelihood of the fully observed testing data computed using eq. 2.

(a) MultiPIE

n m Etask − log p(d,h)

F-
VA

E 5k - - -23.00
15k - - -27.33
30k - - -31.25

H
-V

A
E 500 5k 0.1162 -20.43

500 30k 0.1457 -25.75
5k 5k 0.0935 -28.29
5k 30k 0.0845 -32.36

(b) CelebA

n m Etask − log p(d,h)

F-
VA

E

15k - - -3.49
30k - - -7.40
50k - - -7.19
100k - - -8.15

H
-V

A
E

5k 100k 0.1425 -6.90
5k 150k 0.1420 -6.98
15k 15k 0.1181 -5.90
15k 100k 0.0929 -9.08

(c) NYU Hand Pose

n m Etask − log p(d,h)

F-
VA

E

10k - - 29.31
30k - - 26.27

H
-V

A
E

10k 10k 4.54 29.31
10k 20k 4.82 25.89
10k 30k 4.56 21.13
30k 10k 4.82 19.20
30k 20k 4.56 18.42
30k 30k 4.56 14.11

Source TargetReconstruction Step 1 Step 2 Step 3 Step 4 Step 5 Reconstruction

(a) Samples the first row (red) for every example are obtained using the F-VAE(5K) model, the bottom row
(green) is produced by the H-VAE(5K, 30K) model. Both models were trained on the MultiPIE dataset.

Source TargetStep1 Step 2 Step 3 Step 4 Step 6 Step 7 Step 8 Step 8 Step 9 Step 10

(b) Interpolating depth images using the H-VAE(30K, 30K) model trained on the NYU Hand Pose dataset.

Figure 4: Selected examples showing interpolations. For every interpolation, the source and the
target images are taken from the testing set, projected to and reconstructed from the latent space,
interpolation is performed from the source to the target.

the average L2 distance between the ground truth and the prediction. We report the task-loss by
evaluating the mean of q(h|d) trained using the hybrid objective (8). This metric is not available
for the F-VAE models. For brevity reasons, we denote F-VAE(n) as a F-VAE model trained using n
fully observed samples, and similarly H-VAE(n, m) trained with n fully- and m partially-observed
instances.

Table 1a compares multiple F-VAE models against the proposed H-VAE models on the MultiPIE
dataset. Clearly, using a hybrid learning objective with partially observed data helps drastically
improve the likelihood: the H-VAE(500, 30K) model outperforms the F-VAE(5K). Similarly, the
H-VAE(5K, 30K) model shows better NLL as compared to F-VAE(30K).

The same holds for the CelebA dataset, as seen in table 1b. The F-VAE(5K) model is not able
to accurately learn the distribution. Instead, it overfits, leading to the worse NLL. In contrast, the
H-VAE(5K, 15K) has comparable results with the F-VAE(15K), advocating for the use of inex-
pensive partial observations. Additionally, H-VAE(30K, 150K) outperforms F-VAE(150K). Similar
results can be observed on the NYU Hand Pose dataset (Table 1c), where the H-VAE(10k, 10k)
models shows NLL comparable to F-VAE(30K), and clearly the model having the most of fully
observed and partially observed data scores best.

4.4 Qualitative Evaluation

One of the key benefits of generative modeling is the ability to analyze the learned distribution by
performing sampling. Since z ∼ N (0, I) one can sample z and then sample (d,h) ∼ p(d,h|z) to
get an image and its label. Fig. 1 shows several examples of that. Note how a generative model can
consistently represent pose and image information. The CelebA dataset consists of public images of
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celebrities, and therefore is biased towards smiling faces. The bottom half of Fig. 1 shows samples
from the distribution learned using the MultiPIE dataset. Since the MultiPIE dataset consists of
multiple poses, illuminations and expressions, the model is able to encode them. Interestingly, one
can project two images onto the z-space by sampling z ∼ q(z|d,h) and analyze the structure of the
learned space by linearly interpolating between the two points.

Source-target interpolation on the MultiPIE dataset is given in Fig. 4a. The models were trained
on the MultiPIE dataset. For this example, the top row is obtained using the F-VAE(5K) model
that saw only 5K labeled examples during training. The bottom row is produced using the model
trained on 5K fully observed samples and 30K of partial observations (H-VAE(5K, 30K)). Clearly,
partial observations significantly improve image quality, making the texture less blurry, and better
representing facial expressions. Interestingly, both models gradually transform between images
(i.e. open a mouth or rotate a face), indicating that by exploring the latent representation one can
generate plausible face trajectories. It also shows that, in general, useful semantics are linearized in
the hidden representation of the model.

Similar interpolation on the NYU Hand Pose dataset is given in Fig. 4b. Interestingly, gesture trans-
formation is encoded in the representation. Traversing a line transforms to bending or unbending
fingers in the image space.

5 Related work

We first discuss existing state-of-the-art deep generative models. Since our formulation is joint in
terms of images and their labels we review previous attempts to create such a joint representation.
Additionally, as our model is a hybrid consisting of discriminative and generative parts we outline
previous related works in this area.

5.1 Deep Generative Models

Current research focuses on two classes of models, generative adversarial networks and variational
autoencoders.

Generative adversarial networks (GAN) were proposed recently in the machine learning commu-
nity as neural architectures for generative models (Goodfellow et al. [2014]). In a GAN two networks
are trained together, competing against each other: the generator tries to produce realistic samples,
e.g. images; the adversary tries to distinguish generated samples from training samples. Formally,
this yields a challenging min−max optimization problem and a variety of techniques have been
proposed to stabilize learning in GANs, see Salimans et al. [2016], Sønderby et al. [2016], Metz
et al. [2016].

Despite this difficulty, multiple extensions of the original work appeared in the literature. Deep
convolutional generative adversarial network in Radford et al. [2015] and Denton et al. [2015] show
surprisingly photo-realistic and sharp image samples as compared to previous works. The authors
provide multiple architectural guidelines that improve the overall quality of the sampled images.
As a result the models are able to produce samples for trajectories in the latent space, showing the
internal structure of the learned space. The work in Nowozin et al. [2016] shows that GANs can
be viewed as a special case of a more general variational divergence estimation approach. Further
examples of GANs include generating images of birds from textual description, Reed et al. [2016],
styling images, Ulyanov et al. [2016], and video generation, Vondrick et al. [2016], Tulyakov et al.
[2017b].

Variational autoencoders were introduced independently by two groups (Kingma and Welling
[2014], Rezende et al. [2014]). VAEs maximize a variational lower bound on the log-likelihood
of the data. Similarly to GANs, this is a recently emerged and rapidly evolving area of generative
modeling.

Since the original works, there have been many extensions introduced. The work in Kingma et al.
[2014] extends the VAE framework to semi-supervised learning. In Maaløe et al. [2015] the idea of
semi-supervised learning is exploited further, by introducing and auxiliary variables improving the
variational approximation. The Deep Recurrent Attentive Writer (DRAW), Gregor et al. [2015], em-
ploys recurrent neural networks acting as encoder and decoder, in a way mimicking the foveation of
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the human eye. Inverse Autoregressive Flow (IAF) presented in Kingma et al. [2016] and auxiliary
variables (Maaløe et al. [2015]) are two approaches to further improve the quality of the variational
approximation and quality of the images generated by the model. Another recent attempt at improv-
ing inferences is to consider hybrid GAN-VAE models as in Wu et al. [2016].

5.2 Hybrid Models

Learning a probabilistic model from different levels of annotations has been proposed earlier
in Navaratnam et al. [2007]; in particular, using Gaussian processes (GP) the authors report im-
proved person tracking performance. However, while GPs are analytically tractable they do not
scale well and the work is limited to use very small data sets.

In Lasserre et al. [2006] the authors consider the problem of combining a generative models p(d,h)
with a discriminative model pd(h|d). They achieve this in a satisfying manner by creating a new
model whose likelihood function can smoothly balance between training objectives of the generative
and discriminative models. However, the proposed coupling prior of Lasserre et al. [2006] is not
useful in the context of neural networks because Euclidean distance in the parameter vector of two
neural networks does not measure useful differences in the function realized by the neural network.
The model is shown to work well for discrete labels h in the empirical study (Druck et al. [2007]).

Whereas the above work addresses semi-supervised learning with the goal to improve the predictive
performance of p(h|d), our main interest is in improving the performance of the generative model
p(d,h). Moreover, our work shows to to handle the marginal likelihood over h in an efficient ant
tractable manner.

6 Conclusions

We demonstrated a scalable and practical way to learn rich generative models of multiple output
modalities. Compared to the ordinary deep generative model our hybrid VAE model does not re-
quire fully labelled observations for all samples. Because the hybrid VAE model derives from the
principled variational autoencoder model it can represent complex distributions of images and pose
and could be easily adapted to other modalities.

Our experiments demonstrate that when mixing fully labelled with unlabelled data the hybrid learn-
ing greatly improves over the standard generative model which can use only the fully labelled data.
The improvement is both in terms of test set log-likelihood and in the quality of image samples
generated by the model.

We believe that hybrid generative models such as our hybrid VAE model address one of the key
limitation of deep learning: the requirement of having large scale labelled data sets. We hope that
hybrid VAE model will enable large scale learning from unsupervised data for a variety of computer
vision tasks.
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