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Abstract

Supplementary materials to the main paper, containing
further technical details and additional results.

1. Live Video Demonstration
We submit a video with audio commentary

(video-2685.mp4) showing further results on live
scenes. The video is annotated and self explanatory and all
depth results shown are without any spatial filtering. We
summarize the main points this video demonstrates:

• Robustness of the approach: we show the results on
four varied sequences which include both camera and
object motions.

• Realtime performance: the results were obtained by
running the trained regression trees as described in Sec-
tion 4 in the main paper, achieving 30 frames per sec-
ond.

• The dynamic TOF model reduces depth noise: we
demonstrate this in static image and 3D point cloud
visualizations.

• The method handles motion seamlessly—any remain-
ing (minor) artifacts are due to the regression tree ap-
proximation. Because the inference function being ap-
proximated is deterministic the tree approximation can
be made more accurate using more training samples,
multiple trees, or deeper trees.

2. Motion Map Statistic
We compute the motion map statistic for each pixel as

M = 1− E~θ(1:2)

[
ωP (~θ(2))

ωP (~θ(2)) + (1− ω)Q(~θ(2) | ~θ(1))

]
,

(1)
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where the expectation in (1) is over the posterior beliefs,
P (~θ(1:2)|~R(1:2)).

3. MCMC Inference Accuracy
Markov chain Monte Carlo (MCMC) is an approximate

inference method that generates samples from the exact pos-
terior distribution only asymptotically [1]. Therefore, in
practice we need to truncate the Markov chain after a finite
number of steps and the amount of steps required depends
on both the difficulty of the posterior distribution and the
mixing time of the chain, that is, how fast the Markov chain
visits all regions of the posterior distribution.

The choice of number of steps can be made either stat-
ically or adaptively while running the chain. To perform
adaptive truncation we could use popular convergence di-
agnostics [1], however, maintaining the diagnostics brings
about additional runtime overheads, so we adopt the simpler
static strategy of using a fixed number of MCMC iterations.

In the experiments of the main paper we adopt the choice
of 217 iterations, because this offers a reasonable tradeoff
between accuracy and speed. To confirm this choice, we
perform a simple validation experiment as follows.

We generate 4096 samples from the prior and a fixed
number m of MCMC iterations for burn-in, not recording
any statistics. Then we again use m iterations, this time
collecting the posterior mean statistic using an efficient run-
ning mean algorithm. We evaluate m ∈ {213, 214, . . . , 219}.
The runtime is linear in m and we show accuracy results in
Figure 1, evaluated using the known ground truth.

The results confirm that after 217 iterations there are only
small additional gains.

4. Parameter Constraints
In Section 3.4 of the main paper we discuss the MCMC

procedure and mention that the parameters are constrained
to their valid range. We now provide additional details on
how we achieve this during inference.

There are two parts to constraining the parameters: first,
how to avoid leaving the feasible set during MCMC pertur-
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Figure 1: Evaluation of the 2F-TP inference accuracy as a
function of the MCMC iterations used. The box plots show
the 25/50/70 percentiles of the absolute depth errors in cm,
the whiskers show the 10/90 percentiles.

bations, and second, how to evaluate the correct likelihood
function under constraints.

To remain in the feasible set we can simply reject any
MCMC proposal move that would violate a parameter con-
straint. The resulting Markov chain preserves the correct
stationary distribution [2].

To evaluate the likelihood function correctly, we need to
truncate and renormalize the density functions affected by
truncation. The per-frame observation model uses the uni-
form distribution and we can achieve truncation by suitably
shrinking the interval. The dynamic motion model is more
involved, as it involves the non-uniform Laplace distribution
either as an additive perturbation (for t(s+1) given t(s) and
likewise for t(s+1)

2 ), or as a multiplicative factor (for ρ(s+1)

given ρ(s), and λ(s+1) given λ(s)).
For example, to evaluate the likelihood of the mo-

tion model P (θ(s+1)|θ(s)) one term is based on the ratio
ρ(s+1)/ρ(s). For this term the truncated likelihood for the
multiplicative factor fρ = ρ(s+1)/ρ(s) (Equation (13) in the
main paper) yields a truncated Laplace distribution given as

TruncLap(ρ(s+1)/ρ(s), µ = 1, bρ, ` = ρmin/ρ
(s), u = ρmax/ρ

(s)),

where [`, u] is the truncation interval. Effectively the interval
only allows factors fρ that ensure ρ(s+1) ∈ [ρmin, ρmax]. For
the other parameters similar constraints apply, all leading to
a truncated Laplace distribution. We evaluate all transition
likelihoods through the apropriately truncated Laplace dis-
tribution; likewise, when sampling from the motion model
prior we also sample from the correctly truncated Laplace
distribution.

We now give a summary of the truncated Laplace distri-
bution. Although straightforward to derive, we are not aware
of any prior description of the distribution.

4.1. Truncated Laplace Distribution

We consider the case when a Laplace distribution is condi-
tioned on the interval [`, u], effectively assigning zero proba-
bility outside this interval. The resulting distribution has a

density function that is the same as the Laplace density but
requires a suitable renormalization. We derived the truncated
Laplace density and give the detailed form of the truncated
Laplace density in Figure 2.

4.2. Sampling from the Truncated Laplace Distri-
bution

We now give a procedure how to sample from
TruncLap(µ, b, `, u). In the main paper this is needed when-
ever a sample from the prior is generated, such when ini-
tializing the MCMC procedure and when attempting a
Metropolized independence sampling transition.

Because we must have ` < u there are only three possi-
bilities to consider:

1. If µ ≥ ` and µ ≤ u.

We perform simple rejection sampling as follows. We
generate samples from the non-truncated Laplace dis-
tribution using the exponential reduction: if x ∼
Exp(1/b), and y ∼ Exp(1/b), then z = x − y + µ
is a sample from Laplace(µ, b). If z /∈ [`, u] we repeat
the procedure. While this procedure could be inefficient
if u − l � b we have not observed any problems in
practice.

2. If µ < `.

We use inverse transform sampling by first generating
U ∼ Uniform([0,1]), then computing

z = µ− b log
(
exp(log(1− z)− `

b ) + exp(log(z)− u
b )
)
.

(3)
It can be shown that z is distributed as
TruncLap(µ, b, `, u).

3. If µ > u.

By symmetry we reduce this case to the previous one:
we first generate z′ ∼ TruncLap(µ, b, 2µ − u, 2µ −
`), then compute z = 2µ − z′. Again z is correctly
distributed.
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TruncLap(x;µ, b, `, u) =


exp(−|x−µ|/b)

2b−b exp((`−µ)/b)−b exp(−(u−µ)/b) , if ` ≤ µ ≤ u,
exp(−|x−µ|/b)

b exp(−(`−µ)/b)−b exp(−(u−µ)/b) , if µ < `, µ < u,
exp(−|x−µ|/b)

b exp((u−µ)/b)−b exp((`−µ)/b) , if ` < µ, u < µ,
0, if x /∈ [`, u].

(2)

Figure 2: Probability density function for the truncated Laplace distribution TruncLap(·;µ, b, `, u) with mean µ, dispersion
parameter b and bound interval [`, u].


