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Motivation
•Non-blind deblurring is an important component for removing
image blur (e.g. due to camera shake) after blur estimation.

•High-quality learning-based methods have been limited to the
generative case and are often computationally expensive.

•Hand-defined models with inferior quality are most widely used.
•How to devise a flexible discriminative approach with high
restoration quality and efficiency?

Three challenges:

1 Lack of training data, in particular realistic blur kernels
2 Work with arbitrary images and blurs
3 Appropriate feature functions given blurred image

1. Synthesize Training Data

•Realistic blur kernels are scarce, recording them is difficult
•Existing blurs used for testing, shouldn’t be used for training
•Generate artificial blur kernels from random 3D trajectories,
obtained with simple motion model

•Blurred image synthesized from clean image and blur kernel

Figure 1: Examples of artificially generated blur kernels.

2. Gaussian CRF for Deblurring

Idea: Split parameters into learnable and blur-dependent
ones, akin to combining likelihood and prior in a generative approach:

p(x|y,K) ∝ N (y; Kx, I/α)︸ ︷︷ ︸
Likelihood

· N (x; Θ−1θ,Θ−1)︸ ︷︷ ︸
Prior

∝ N
x; (Θ + αKTK)−1(θ + αKTy), (Θ + αKTK)−1

Now define Gaussian CRF where model parameters are regressed from
blurred input image y, i.e. Θ ≡ Θ(y) and θ ≡ θ(y). The CRF is
parametrized by and thus works with arbitrary blurs K and images y.

Deblurred image x̂ obtained as MAP estimate of Gaussian CRF:
x̂ = arg maxx p(x|y,K) = (Θ(y) + αKTK)−1(θ(y) + αKTy)

Use regression tree fields (RTFs) [3, 4]
to learn model parameters Θ(y) and θ(y).
•RTFs are flexible Gaussian CRFs
•Non-linear regression via regression trees
•Loss-based training [3] (for PSNR)
Extend previous RTFs by 1) incorporating
blur parameters, and 2) using a cascade.
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Fig. 2: Illustration of how regression trees and random fields are combined in the
regression tree field: a pairwise factor type is instantiated on a grid of random
variables. At each instantiation a regression tree is evaluated on the surrounding
image content, performing a sequence of tests (1, 2 and 3) until a leaf node is
reached. Because the image content di↵ers around each factor instantiation, the
leaf node reached can also be di↵erent. The selected leaf node determines which
e↵ective interaction is used for the factor. The conditional model now becomes
a Gaussian random field, enabling e�cient inference as a solution to a linear
system of equations.

Parameterization. Each local energy term working on a subset of pixels is
called a factor and denoted by F . The components of y corresponding to the
pixels covered by factor F will be denoted by column vector yF . Factors sharing
the same parameters are grouped into types. The set of all factors F of type t
is denoted by Ft. Each factor type t defines a regression tree that stores at its

leaves l 2 Lt a set of parameters wt = {L(l)
t ,Q

(l)
t }l2Lt

. We define Lt(xF ) and

Qt(xF ) as maps to the parameters Q
(l⇤)
t and L

(l⇤)
t of the particular leaf l⇤ that

was selected for factor F of type t given the observed input image x.
The energy of a particular factor F of type t then assumes the form

Et(yF | xF ;wt)
def
= 1

2y
T
F Qt(xF )yF � yT

F Lt(xF )bt(xF ), (4)

where bt(xF ) 2 RBt is a linear basis vector whose dimensionality depends on
the factor type. In the simplest case, this term is constant, bt(·) = 1 2 R, but
we will in addition use more general image features in our experiments. For the
parameters, if yF 2 RDt , we have Lt(xF ) 2 RDt⇥Bt and Qt(xF ) 2 RDt⇥Dt � 0.

The positive-definiteness constraint on the latter implies that all Q
(l)
t parameters

must also be positive-definite and ensures that

E(y | x;w)
def
=

X

t

X

F2Ft

Et(yF | xF ;wt) (5)

leads to a valid Gaussian density p(y | x;w) / exp[�E(y | x;w)].
For factors of any size, (5) can again be written compactly as in (1), so

higher-order factors do not increase expressiveness of the model. The entries
of Q(x,w) and l(x,w) arise as sums of per-factor contributions Qt(xF ) and

lt(xF )
def
= Lt(xF )bt(xF ), respectively. Predictions are again obtained as in (2).

Figure 2: RTF example from [3].

Our Approach
•First discriminative approach for non-blind deblurring
for arbitrary images and blurs.

•Efficient with state-of-the-art results on three benchmarks.
•Generalizes commonly-used half-quadratic deblurring.
•Cascade model with a Gaussian CRF at each stage,
based on recent regression tree fields (RTFs).

•Loss-based training with data from synthetic blur kernels.
•Cascade model not limited to image deblurring.

(y,K)

RTF1 x(1) RTF2 x(2) RTF3 x(3)Filter bank Filter bank

Figure 3: RTF prediction cascade. Only three stages are shown.

3. Discriminative Prediction Cascade

Difficult to devise feature functions due to blurred image content y.
Easier for denoising, where discriminative methods successful, e.g. [3, 11].
Motivation: Half-quadratic deblurring as commonly-used to ease
inference with sparse image priors p(x) [6, 7, 10]:
•Latent variables z introduced with
p(x) = maxz p(x, z); augmented posterior:

p(x, z|y,K) ∝ p(y|x,K) · p(x, z)
•MAP estimation of deblurred image

x̂ = arg maxx p(x|y,K) via alternating
max. of p(x|y, z,K) and p(z|x,y,K).

• Iterative refinement of inhomogeneous
Gaussian MRF p(x|y, z,K) (through z).

Figure 4: Half-quadratic
representation of a sparse
image prior.

Approach: Replace restricted half-quadratic inference with flexible dis-
criminative prediction cascade (trained Gaussian CRF at each stage).

Figure 5: Half-quadratic vs.
discriminative cascade.
In half-quadratic deblurring (top),
z can only be updated based on
pixels in the local clique of the
MRF (small white circles).
In the proposed discriminative
cascade (bottom), arbitrary fea-
tures over larger areas (large
white circles) can be used to
regress parameters Θ(i) and θ(i).
Expect better results in fewer iter-
ations due to increased flexibility.
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•Previous Gaussian CRFs [3, 11] → one stage of proposed cascade
• sufficient for simpler tasks (e.g. image denoising)
•would likely benefit from iterative refinement

Deblurring example at different model stages

Ground truth Blurred, 15.68dB rtf1, 25.39dB rtf2, 27.71dB rtf6, 28.20dB

Experimental Results

State-of-the-art performance at faster runtime
RTF1
RTF2
RTF3
RTF4
RTF5
RTF6

Krishnan and Fergus [6]
Levin et al. [7]

Schmidt et al. [10]

26.0 26.5 27.0 27.5 28.0 28.5 29.0

< 1 second
1-2 seconds

∼ 4 minutes

∼ 2 seconds

Figure 6: Average PSNR (dB) on 64 images from [10] (perfect blur kernels, σ = 2.55).

Superior results with estimated kernels

 Ground truth

Levin et al. [8]

Fergus et al. [2]
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Half-quadratic baseline (Levin et al. [7])
RTF2, training: ground truth (GT) kernels
RTF2, training: mix of GT and est. kernels

Baseline

Baseline

Baseline
RTF2 – not adapted

RTF2 – not adapted

RTF2 – not adapted
RTF2 – adapted to kernel errors

RTF2 – adapted to kernel errors

RTF2 – adapted to kernel errors

Ground truth
kernels

Levin et al. [8]
kern. estimates

Fergus et al. [2]
kern. estimates

Figure 7: Average PSNR (dB) on 32 images from [8] (using estimated kernels).

Improvements for realistic higher-resolution images
Image 1 Image 2 Image 3 Image 4

Kernel 01

Kernel 02

Kernel 03

Kernel 04

Kernel 05

Kernel 06

Kernel 07

Kernel 08

Kernel 09

Kernel 10

Kernel 11

Kernel 12

+0.44 +0.54 +1.05 +0.76

+0.44 +0.27 +0.38 +0.46

+0.02 +0.03 +0.39 -0.26

+0.31 +0.30 +0.61 +0.27

+0.61 +0.44 +0.64 +0.05

+0.40 +0.41 +1.03 +0.48

+0.24 +0.55 +0.45 +0.31

+0.76 +0.56 +2.17 +1.73

+0.35 -0.09 +0.02 +0.23

+0.19 -0.55 +0.25 +0.29

-0.19 -0.43 +0.46 +0.09

+0.76 +0.04 +0.66 +0.64

Figure 8: Performance gain (PSNR
in dB) over results of Xu and Jia
[12] in the benchmark of Köhler et
al. [5]. Using kernel estimates of
[12] with our non-blind approach,
we can improve performance in 43
of 48 test instances, on average
about 0.41dB.
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Detailed Results

σ σ
Method 2.55 7.65 Stage 2.55 7.65
Lucy-Richardson 25.38 21.85 rtf1 26.33 24.23
Krishnan and Fergus [6] 26.97 24.91 rtf2 28.21 25.54
Levin et al. [7] 28.03 25.36 rtf3 28.50 25.75
5× 5 FoE (MAP) [9] 28.44 25.66 rtf4 28.58 25.81
Pairw. MRF (MMSE) [10] 28.24 25.63 rtf5 28.65 25.87
3× 3 FoE (MMSE) [10] 28.66 25.68 rtf6 28.67 25.89

Table 1: Training and testing with ground truth blur kernels. Average
PSNR (dB) on 64 images from [10] for two noise levels. Left half reproduced
from [10].

Method Kernels Kernels for testing
for training GT Levin [8] Cho [1] Fergus [2]

rtf1 Ground truth (GT) 32.76 29.41 28.29 27.86
rtf2 Ground truth (GT) 33.81 29.52 27.76 27.84
rtf1 Mix of GT & Xu [12] 32.90 29.90 29.33 28.63
rtf2 Mix of GT & Xu [12] 33.97 30.40 29.73 29.10

Levin [7] — 32.73 30.05 29.71 28.38

Table 2: Adaptation to kernel estimation errors at test time. Average
PSNR (dB) on 32 images from [8]. The last row shows baseline performance
using [7].

Qualitative Example

Figure 9: Example for realistic higher-resolution image from [5], showing the result of
our rtf2 model (right) given blurred image (left) and kernel estimate by [12] (top left).

References

[1] S. Cho and S. Lee. Fast motion deblurring. ACM T. Graphics, 28(5), 2009.
[2] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman. Removing camera shake from a single photograph. ACM T. Graphics,

3(25), 2006.
[3] J. Jancsary, S. Nowozin, and C. Rother. Loss-specific training of non-parametric image restoration models: A new state of the art. ECCV 2012.
[4] J. Jancsary, S. Nowozin, T. Sharp, and C. Rother. Regression tree fields – an efficient, non-parametric approach to image labeling problems.

CVPR 2012.
[5] R. Köhler, M. Hirsch, B. Mohler, B. Schölkopf, and S. Harmeling. Recording and playback of camera shake: Benchmarking blind deconvolution

with a real-world database. ECCV 2012.
[6] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-Laplacian priors. NIPS*2009.
[7] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a conventional camera with a coded aperture. ACM T. Graphics,

26(3):70:1–70:9, 2007.
[8] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient marginal likelihood optimization in blind deconvolution. CVPR 2011.
[9] S. Roth and M. J. Black. Fields of experts. IJCV, 82(2):205–229, 2009.
[10] U. Schmidt, K. Schelten, and S. Roth. Bayesian deblurring with integrated noise estimation. CVPR 2011.
[11] M. Tappen, C. Liu, E. H. Adelson, and W. T. Freeman. Learning Gaussian conditional random fields for low-level vision. CVPR 2007.
[12] L. Xu and J. Jia. Two-phase kernel estimation for robust motion deblurring. ECCV 2010.


