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Abstract

Image blur from camera shake is a common cause for
poor image quality in digital photography, prompting a sig-
nificant recent interest in image deblurring. The vast ma-
jority of work on blind deblurring splits the problem into
two subsequent steps: First, the blur process (i.e., blur ker-
nel) is estimated; then the image is restored given the esti-
mated kernel using a non-blind deblurring algorithm. Re-
cent work in non-blind deblurring has shown that discrim-
inative approaches can have clear image quality and run-
time benefits over typical generative formulations. In this
paper, we propose a cascade for blind deblurring that alter-
nates between kernel estimation and discriminative deblur-
ring using regression tree fields (RTFs). We further con-
tribute a new dataset of realistic image blur kernels from
human camera shake, which we use to train the discrim-
inative component. Extensive qualitative and quantitative
experiments show a clear gain in image quality by inter-
leaving kernel estimation and discriminative deblurring in
an iterative cascade.

1. Introduction

Camera shake causes light quantities of several, spatially
distinct locations of the scene to coincide at a single coordi-
nate of the image plane during exposure. Modern cameras
stabilize the lens or the sensor, but this can only counter-
act relatively small camera motion. Besides limiting the
user experience in consumer digital photography, image
blur from camera shake is also encountered in scientific and
industrial applications, causing wide interest in removing
the effects of such blur [28].

The most widely adopted restoration approach is to first
estimate the blur kernel [4, 7, 10, 14, 15, 30, 32, 33], of-
ten by making some statistical assumptions on the unknown
sharp image. In a separate, non-blind step the sharp image is
then restored given the kernel estimate, which is held fixed
during the procedure. Many modern non-blind deblurring
algorithms adopt a generative approach and impose prior
knowledge on the image [13, 22, 34]. While accurate gen-
erative models exist, e.g., high-order Markov random fields
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Figure 1. Deconvolution with interleaved RTF cascade.

(MRFs) [22], their extensive computational demands pro-
hibit the use as part of the kernel estimation phase. The
origins of our work lie in recent discriminative approaches
to non-blind deblurring, which use a neural network [23],
or prediction cascades of regression tree fields (RTFs) [21]
or shrinkage fields [20]. Their benefit is that they deliver
high-quality image estimates, which outperform most gen-
erative approaches, at a fraction of the computational cost.
However, their use in kernel estimation or blind deblurring
has not been considered so far.

In this paper, we propose an RTF cascade for blind de-
blurring, which alternates between discriminative deblur-
ring and re-estimating the blur kernel using the refined im-
age prediction. This generalizes previous work on RTF cas-
cades for non-blind deblurring [21] to the blind deblurring
task. One feature of discriminative deblurring approaches is
that typical errors made by the kernel estimation procedure
are learned during training, so they can be compensated for
in the image recovery procedure. Kernel estimation and
non-blind deblurring are therefore trained as inter-related
components. To the best of our knowledge, we are the first
to use discriminative image prediction custom trained to the
blur updates of a blind deconvolution procedure.

To train a powerful discriminative model for image
restoration, the training data should cover a rich variety of
camera motions to avoid overfitting. We address this by
further contributing a novel dataset of blur kernels obtained
by photographing an isolated point light source under hu-
man camera shake, and use this data to train our model. We
evaluate our approach extensively, and find that it clearly
outperforms other recent methods from the literature.



2. Related Work
An early approach for camera shake removal was pro-

posed by Fergus et al. [4], using a variational Bayesian ap-
proach. Later research [15, 31] showed that estimating the
blur kernel by (approximately) marginalizing over the la-
tent sharp image allows to cope with the ill-posed nature of
the problem and also yields high-quality results in practice.
Maximum a posteriori (MAP) approaches to kernel estima-
tion typically excel in terms of fast running time [2]. How-
ever, a naı̈ve implementation is likely to favor the trivial no-
blur solution [16]. Fortunately, this can be circumvented by
intermediate shock or bilateral filtering of the latent image
[2, 32], alternating minimization schemes [18], or clever de-
sign of the image prior [14, 17, 24, 33].

Blind deblurring algorithms often rely on first detecting
a set of useful image edges, from which the blur kernel
can be estimated robustly [11, 25]. In particular, Xu and
Jia [32] estimate the blur on salient edge locations and en-
force the expensive kernel sparsity constraint only once, at
the end of the multi-scale blur estimation procedure. Since
this method yields a favorable combination of efficiency and
performance (see, e.g., [12]), we use it to bootstrap our ap-
proach. However, note that our framework can also operate
over multiple image scales, taking a delta kernel as initial
input. An alternative to image-based blur estimation is to
use motion sensor data recorded during exposure to recon-
struct the kernel [10]. Another technique to boost restora-
tion performance is to use context-specific sharp image ex-
amples [26]. We focus here on the more common post-
capture scenario, where only the blurry image is given.

Discriminative approaches to image restoration often
take the form of conditional random fields (CRFs). Due
to their computational advantages, Gaussian CRFs have
attracted particular attention. Tappen et al. [27] were
among the first to propose discriminatively trained Gaus-
sian CRFs. A more recent variant is termed regression tree
fields (RTFs) [9]. The parameters of these Gaussian CRFs
are determined by non-parametric regression trees; we pro-
vide more technical details on their application to image
deblurring in Sec. 4. RTFs have proven effective in a va-
riety of restoration tasks, including denoising, inpainting,
and colorization [8, 9]. Recently, two different kinds of
discriminative non-blind deblurring approaches have been
proposed: (1) using a neural network [23], and (2) based
on a stacked CRF cascades [20, 21]. We here rely on RTF
cascades [21], since they do not require the test-time blur
kernel to be known at training time, which is a prerequi-
site for using them as a component in a blind deblurring
approach. In our work, we further explore the capacity of
discriminative cascades by generalizing them to blind im-
age deblurring through interleaving the discriminative pre-
diction stages with blur kernel estimation.

To generalize well, a discriminative model must be ex-

posed to a sufficiently large variety of training data. How-
ever, publicly available blurs resulting from real camera
shake are limited to 8 instances in the dataset of [16], and
12 instances from the dataset of [12]. In our work, we cap-
ture realistic blurs by recording human camera shakes, and
we validate the novel data by using it to train a state-of-
the-art discriminative deblurring model. Note here that the
recorded data will be made publicly available, and may ben-
efit other research too, e.g., generative blur modeling.

3. Recording Natural Camera Shake

Figure 2. White LED
point light source setup

Training a good regressor
generally requires many in-
stances of realistic data. To
generate realistic blur kernels
for training our RTF cascade,
we recorded trajectories of a
point light source under cam-
era shake. For this we used a
white LED (OSA Opto Light
Series 400 white) as light
source, placed within a cardboard box. We limited the spa-
tial area of the light source as well as the overall amount
of emitted light by placing a blue tack onto the LED, then
piercing it finely with a needle, producing a white point
light source of high intensity; the cardboard box is shown
in Fig. 2.

We placed the box in an entirely dark room and recorded
images from approximately 2 to 4 meters distance with a
handheld Panasonic Lumix DMC-LX3 CCD camera. Cap-
turing was done in 12 bit RAW format in manual mode
at different focus depths (ISO 80, 500ms exposure, F2.0).
We converted the images to raw TIFF using dcraw (v9.17,
with dcraw -T -v -4 -D), then removed the constant
black level. Because of the low ISO, almost no dark cur-
rent noise remained in the digitized signal. Also, there were
no saturated pixels. However, because of optical dispersion
and different spectral sensitivities, the four color channels
in the RAW frame (R, G1, G2, B) had different intensities
and spatial blur. Thus, the RAW RGGB signal resembled
a checkerboard pattern that could not be removed by ap-
plying a scalar gain factor to each channel. Because the
green channels are the most sensitive, we simply used the
G1 channel and discarded the other channels. We centered
and normalized the blur kernel. Note that we did not ob-
serve any aliasing artifacts in the obtained blur kernels. Fig.
3 shows examples of recorded camera shakes. Overall, we
generated 192 blur kernels. Note that this data set captures
the physical process and human aspects of camera shake.
Future research could involve recording spatially varying
blur using a grid of LED point light sources.



Figure 3. Instances of realistic blur kernels used for model training
(Sec. 4.3). The blurs were obtained by recording the trajectory of
a point light source under human camera shake.

4. Blind Deconvolution Cascades
4.1. Standard non-blind RTF cascades

As is most common, we model the formation process
of image blur as convolution under additive noise, y =
k ⊗ x + n. Thereby, y denotes the blurry input image, k
the blur kernel, x the unknown sharp image, and n the addi-
tive noise. Specifically, we follow the standard assumption
of normally distributed, white noise n ∼ N (0, σ2I). How-
ever, we could use a more realistic noise model such as [5]
as well. Solving for the sharp image given the blur kernel is
an ill-posed, difficult problem. This is partly due to sensor
noise being amplified by simply inverting the kernel. Fur-
thermore, the inverse is not properly defined if the blur ker-
nel contains zero frequencies. Therefore, it is necessary to
impose additional knowledge. In contrast to the many gen-
erative approaches to deconvolution, we here choose a re-
cent, discriminative framework for image recovery, namely
Regression Tree Fields (RTFs) [8], to model the parameters
of the posterior probability p(x|y,k) directly.

RTFs are Gaussian CRFs that derive their expressive-
ness from inferring the parameters of the local potentials
using regression trees acting locally on input image fea-
tures. Each tree stores at its leaves a linear term and preci-
sion matrix to define the quadratic energy contribution from
the local factor variables. Regressing the potential param-
eters allows to overcome the apparent simplicity of Gaus-
sian potentials, while taking full advantage of their inher-
ent efficiency. Note that both the regression trees and the
potential parameters stored at the leaves are learned in a
principled, joint fashion to minimize a loss function (here,
negative peak signal-to-noise ratio (PSNR)) on the training
data. For more details on RTFs, we refer to [8, 9].

An RTF model for deblurring can be formulated as a
Gaussian CRF of the form

p(x|y,k) ∝ N (x|µ(y,k),C(y,k)) , (1)

whereby the parameters of the mean µ(y,k) and covari-
ance matrix C(y,k) are partly regressed from the input im-
age y by the RTF framework, with the blur kernel k be-
ing held fixed as a constant. In more detail, let Tk denote
the Toeplitz matrix expressing convolution by blur kernel k,
such that the identity Tkx ≡ k ⊗ x is fulfilled. Motivated
by generative approaches to deblurring, Schmidt et al. [21]
show that the covariance and mean of the Gaussian CRF in

Eq. (1) may be chosen as

C(y,k) =

(
W(y) +

1

σ2
TT

kTk

)−1

(2)

µ(y,k) = C(y,k)

(
w(y) +

1

σ2
TT

ky

)
, (3)

whereby the matrix W(y) and vector w(y) are regressed
from the input image by the RTF framework. Overall, infer-
ence consists of regressing the CRF parameters and subse-
quently computing the prediction as argmaxx p(x|y,k) =
µ(y,k).

However, it is not easy to regress optimal potential pa-
rameters from the input image immediately, because the
blur strongly obfuscates the image content, for example by
creating ghosting-like overlays of edges in uniform regions.
This can be overcome by stacking RTFs into a cascade [19],
which generates a sequence of iteratively refined sharp im-
age estimates (x1, . . . ,xN ). At each level of the cascade,
the corresponding RTF parameters are regressed not only
from the input image, but also from the improved previous
prediction, which facilitates the procedure. In particular, the
matrix Wi(y,xi−1) and vector wi(y,xi−1) are regressed
at the i-th level of the cascade. Fig. 4(a) depicts a schematic
illustration of the non-blind RTF cascade model from [21].

4.2. Interleaved RTF cascades

Besides their quantitative and qualitative benefits in
terms of image quality and efficiency, a distinctive feature
of discriminative deconvolution methods is their adaptabil-
ity to kernel estimation (errors). In particular, RTF cascades
yield best results when trained with blur kernels of similar
kind as those provided at test time [21]. In this work, we
interleave the image prediction steps in the RTF cascade
with kernel re-estimation. Note that we here focus on uni-
form blur. Although the image formation model of spatially
varying blur is more involved, the procedure detailed below
is in principle equally valid.

We design an interleaved procedure by updating the blur
kernel using the improved latent image prediction available
at every cascade level, such that each RTF stage is provided
with a refined kernel estimate. Note that the cascade is ini-
tialized with the kernel estimate k0 of an auxiliary method1.
For higher stages i = 1, . . . , N of the interleaved cascade,
the output xi of the i-th RTF is used to compute a refined
kernel estimate ki. Fig. 4(b) depicts a schematic illustration
of the interleaved RTF prediction cascade.

Specifically, we compute the kernel update using the im-
age derivatives by minimizing with respect to k the objec-

1In the experiments, we mostly use [32] to perform this step, but we
can also initialize with the delta kernel when estimating the blur over the
scales of an image pyramid. (In this case, the final kernel estimate at one
scale is upsampled to serve as the initial estimate for the next interleaved
RTF cascade, see Fig. 9.)
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Figure 4. Comparison of standard, [21], versus our proposed interleaved RTF cascade schemes. (a) Standard non-blind RTF cascade: The
blur kernel is set to the initial blur estimate k0 and stays invariant over the cascade. (b) Interleaved RTF cascade: The kernel is re-estimated
over cascade stages using the refined image predictions xi. In the experiments, we mostly use [32] to obtain the initial blur estimate, but
we can also initialize with the delta kernel by using several interleaved RTF cascades to operate over the scales of an image pyramid.

Algorithm 1 Interleaved RTF cascade
input: Blurry image y, initial blur kernel k0

output: Deblurred image xN , refined blur kernel kN

for i = 1, ..., N do
[update latent image using i-th RTF regressor]

xi :=

(
Wi(y,xi−1) +

1

σ2
TT

ki−1
Tki−1

)−1

×(
wi(y,xi−1) +

1

σ2
TT

ki−1
y

)
[update blur kernel]
ki := argmink ‖∇y − k⊗∇xi‖2 + γ‖k‖1

end for

tive function

f(k) = ‖∇y − k⊗∇xi‖2 + γ‖k‖1. (4)

Hereby, we let∇x = (∂1x, ∂2x) = (f1⊗x, f2⊗x) denote
the canonical image gradients computed with the standard
derivative filters f1 = [1,−1] and f2 = [1,−1]T . For the
gradient image, we define convolution by the blur kernel to
apply component-wise, i.e., k⊗∇x := (k⊗∂1x,k⊗∂2x).
Note further that the objective for kernel re-estimation
(Eq. 4) consists of a squared residuals term motivated by
a Gaussian noise assumption, and an L1-norm penalty to
encourage kernel sparsity, which is weighted by a constant
γ > 0. The regularization parameter γ can be learned from
data (cf . Sec. 4.3), but even simply setting γ = 1 already
yields very good results. Algorithm 1 summarizes the pro-
posed interleaved RTF cascade for blind deblurring.

We optimize the kernel update objective f(k) of Eq.
(4) using iterative re-weighted least squares (IRLS). This
means iteratively solving varying least-squares problems
until the distance between consecutive solutions passes be-
low a convergence threshold. Specifically, at the j-th itera-
tion of IRLS, we compute

kj = argmink ‖∇y − k⊗∇xi‖2 + γkT diag(z)k. (5)

Thereby, the n-th element of the weighting vector z is deter-

mined by zn = 1/max(kj−1
n , ε), where we fixed ε = 10−5

in the experiments. Minimizing the quadratic expression in
Eq. (5) is equivalent to solving a linear system of equations
Ak = b. The left-hand side matrix of this system is deter-
mined by A =

∑
h

∑
c[∂hx]c[∂hx]

T
c + γdiag(z), using [·]c

to denote the c-th kernel-sized clique. On the other hand,
the right-hand side vector is b =

∑
h

∑
c[∂hx]c(∂hy)c,

using (∂hy)c to denote the pixel situated at the center of
the c-th kernel-sized clique in the derivative image ∂hy.
Note that this system is generally not amenable to solving
by FFT. Hence we use conjugate gradients with Jacobi pre-
conditioning, computing the diagonal of the system matrix
as
∑

h 1 ⊗ [∂hx]
◦2 + γz, where [·]◦2 denotes component-

wise Hadamard square, while 1 is an image of ones and size
dim(x)− dim(k) + [1, 1]T .

4.3. Learning

Training data. We compiled sharp images for use as
ground-truth data from two different benchmark datasets,
BSDS500 [1] and PASCAL VOC [3]. Note that the train-
ing images stem from entirely different sources than those
used in the experimental evaluation (Sec. 5). As blur data
we used 95 realistic blur kernels generated by recording the
trajectory of a light source under human camera shake (see
Sec. 3). We complemented these with synthetic blurs cre-
ated by projecting randomly sampled motions in 3D space
onto the camera plane [21]. Note that none of these kernels
is used at test time. To obtain blurry images, we synthet-
ically convolved the ground-truth images and added Gaus-
sian noise of standard deviation equal to 0.2% of the maxi-
mum pixel intensity. We used 336 clean and corrupted im-
age pairs and blur kernels to train our models.

Learning the latent image prediction. At each level of the
cascade, we learn a separate RTF model for image restora-
tion. Besides the blurry input image, each model receives as
additional input the previous image prediction and is further
parameterized by a blur kernel of increasing refinement.
This is different from [21], where the blur kernel remains
fixed throughout all stages. We remark that the RTF mod-
els learned at every level adapt precisely to the kernel re-



Fergus [4] Cho [2] Xu [33] Levin [15]
∅ PSNR 29.38 29.71 29.74 30.05

Standard RTF Interleaved RTF
31.16 31.50

Table 1. Average PSNR (dB) values on the test set of Levin et al. [15].

Xu [32] Cho [2] Whyte [29] Hirsch [7] Krishnan [14]
∅ PSNR 29.54 28.98 28.07 27.77 25.73

Std. RTF Interl. RTF
29.91 30.11

Table 2. Average PSNR (dB) values on the test set of Köhler et al. [12].

estimation and to the preceding image predictions given as
inputs (see Tab. 3). The resulting, interleaved cascade thus
forms a unit of inter-related components and needs to be
trained together. We opt for regression trees of depth 7. To
leverage more discriminative features than simple pixel in-
tensities, we rely on the FoE filter bank of [6], i.e., each
model receives as additional features the filter responses of
the previous prediction. Per depth level, we use 40 itera-
tions of LBFGS to optimize the model parameters, with an-
other 100 clean-up cycles after splitting the leaves at the fi-
nal level 7. To accelerate the learning procedure, we did not
use the original size images, but 125×125 sized pairs of de-
graded and sharp crops. Learning a cascade of depth 3 (plus
evaluating the full interleaved model on the training images
for each additional level) took 10 days on a machine with a
3.20GHz Intel Core i7 3930K CPU. Training time could be
reduced by parallel computing on several machines.

Learning the blur kernel update. With regard to updat-
ing the blur kernel, the regularization parameter γ weight-
ing the influence of likelihood and prior in the objective
function for the kernel update (Eq. 4) may also be learned
from data in a loss-based fashion. We opt for a blur ker-
nel loss function based on the outlier resistant L1 metric,
namely ε(k,kgt) = ‖k− kgt‖1/|k|, where |k| denotes the
number of kernel elements. Note here that care must be
taken to align the blur kernels with each other before eval-
uating the distance, since a translation in the kernel sim-
ply leads to a translation in the deblurred image, and this
should not be penalized. Although we could also optimize
w.r.t. image quality, it is more efficient to compute the ker-
nel loss, which obviates the more expensive image predic-
tion step. Hence at the i-th level of the interleaved cas-
cade, a weight γi can be learned to optimize the empirical
risk 〈ε(ki,kgt)〉 = 1

N

∑
n ε(k

n
i ,k

n
gt) over the training data.

Since this is a unimodal objective function, a simple 1D line
search suffices to find the optimum.

5. Experiments

Tab. 1 gives the performance of the proposed, interleaved
RTF cascade on the benchmark of Levin et al. [15]. Our in-
terleaved algorithm outperforms the blind deblurring meth-
ods [2, 4, 15, 33] on this benchmark with a very large mar-
gin of at least 1.45 dB. We further evaluated the non-blind,

standard RTF cascade on this benchmark, using the blur
estimate of [32] as input. This guarantees a fair compari-
son to the interleaved RTF cascade, which, although boot-
strapped with [32], re-estimates the blur iteratively over the
prediction stages. We remark that standard RTF cascades
are state-of-the-art in non-blind deblurring and outperform
many existing sparsity-based methods [21]. Tab. 1 shows
that our interleaved RTF cascade achieves significantly bet-
ter results than the state-of-the-art non-blind cascade [21]
by 0.34 dB in PSNR. This demonstrates how useful it is
to re-estimate the blur kernel between discriminative image
updates in a learned cascade.

Tab. 2 gives results on the benchmark of Köhler et
al. [12]. Here, our interleaved algorithm achieves sub-
stantially better results than a multitude of other methods
[2, 7, 14, 29, 32] by at least 0.57 dB. Note that several im-
ages of the dataset [12] are very challenging, having spa-
tially varying blur of over 100 pixels. The interleaved algo-
rithm again outperforms its standard, non-blind counterpart
by a significant margin of 0.2 dB.

Figs. 1, 6 and 8 show that our method preserves challeng-
ing regions of image texture faithfully, while suppressing
ringing and noise artifacts in smooth regions or on the im-
age boundary. Notably, Fig. 6 demonstrates visibly superior
performance of the interleaved cascade over a wide vari-
ety of blind deconvolution methods, while Fig. 8 shows that
interleaving with kernel updates yields a noticeably higher
degree of realism in the deblurred image than using the stan-
dard cascade.

We further analyze the benefit of custom, discriminative
training of the interleaved cascade to the refined kernel es-
timates available at each stage. Tab. 3 gives results for pre-
diction with and without interleaved kernel updates, using
RTF cascades learned with and without interleaved kernel
updates. We observe that it is important to train the im-
age prediction step based on the refined blur estimates to

Ilvd. prediction Std. prediction
Ilvd. training 31.50 30.67
Std. training 30.81 31.16

Table 3. Performance of RTF cascade models in average PSNR
(dB) on the test set of [15]. Training and prediction is performed
with interleaved (“Ilvd.”) or without (“Std.”) re-estimation of the
blur kernel over cascade levels.
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(a) Interleaved RTF cascade
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(b) Standard RTF cascade

Figure 5. Average blur kernel error versus image quality over in-
terleaved and standard RTF cascade levels on the test set of Levin
et al. [15]. The kernel error is quantified in mean absolute dis-
tance ε(k,kgt) = ‖k−kgt‖1/|k| to the ground truth blur (letting
|k| denote the number of kernel elements). The interleaved RTF
cascade simultaneously enhances the image and blur kernel.

unlock the full potential of our approach. Simply interleav-
ing a pre-trained standard cascade with blur updates leads
to substantially inferior results. Note further that learning
the image restoration steps expressly to extract maximum
effect from the refined kernel estimates is a key benefit of
discriminative updates.

To gain more insight into the role of kernel refinement
over cascade stages, we rely on the dataset of Levin et al.
[15], since it includes ground truth blur kernels to evaluate
with. In particular, we measure the mean absolute distance
of the (aligned) blur estimates to the ground truth kernels.
Fig. 5 depicts the average kernel error versus the average
image quality over all 32 image and kernel pairs of the
benchmark, shown after each of three cascade levels. We
observe that the increasing image quality over the cascade
allows to improve the kernel estimate and vice versa, while
on the other hand, holding the blur fixed over the cascade
leads to inferior overall performance.

We further examine the blur refinement effect of our
algorithm in a visual study, relying once more on the 8
ground-truth camera shakes of [15]. Fig 7 shows three
versions of each camera movement: The kernel estimate
of [32] used as initialization to the interleaved restoration
process, the blur estimate from the last stage of the inter-
leaved cascade, and the ground-truth kernel provided with
the benchmark. We observe that the interleaved estimation
procedure substantially enhances the initial estimate.

To measure running times, we used a 3.20GHz Intel Core
i7 3930K processor. For a kernel size of 41× 41, blind de-
convolution with our interleaved cascade algorithm needed
98.66s for an image of size 800× 800. For comparison, we
measured 156.49s for the efficient deblurring algorithm of
Krishnan et al. [14]. Note that as a prototype, our imple-
mentation is not optimized for fast running time.

Finally, to demonstrate that our approach does not re-
quire a specific auxiliary method for initialization, Fig. 9
shows an instance of multiscale interleaved RTF regression

(a) Blurry, SSIM 0.841 (b) Deblurred, SSIM 0.943

(c) Kernel estimates over scale. Rightmost: Ground-truth blur.

Figure 9. Multiscale interleaved RTF regression with delta kernel
initialization. Each level of the pyramid is equipped with a pro-
gressively more powerful interleaved RTF cascade.

with delta kernel initialization. Hereby, interleaved cas-
cades are used to predict image and kernel estimates at each
level of a Gaussian pyramid. The estimates at one level are
enlarged to serve as inputs for the next finer level. Note that
the model trained with initial blur estimation from another
method [32] cannot be used with delta blur initialization.
Instead, going from coarse to fine, we trained progressively
more powerful interleaved models to account for the higher
level of image details.

6. Conclusion
In this paper, we put forth a novel, interleaved RTF cas-

cade model for blind deblurring that consolidates discrimi-
native image prediction with blur estimation, whereby each
step is trained expressly to fit to the other. The model is
validated by extensive experimentation. Further, we con-
tributed a novel dataset of human camera shakes by record-
ing LED trajectories with a handheld camera, using this data
to train our model. All code, data, and trained models will
be made freely available.
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keeping boundary artifacts at a minimum.

(1) Xu & Jia [30] (2) proposed (3) ground truth (1) Xu & Jia [30] (2) proposed (3) ground truth

Figure 7. Kernel refinement on the dataset of Levin et al. [16]. For all of the 8 blurs in the test set, a triple is displayed horizontally.
From left to right, each triple consists of: (1) The estimate of Xu and Jia [32] used to initialize the interleaved cascade, (2) the refined blur
estimate at the final level of the cascade, (3) the ground-truth kernel. Each triple is scaled jointly to the full intensity range.
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Figure 8. Qualitative comparison of interleaved versus standard RTF cascade. The interleaved RTF cascade recovers a higher level of image
details and yields a more realistic deblurring result.
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