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Abstract. Conditional Random Fields (CRFs) are popular models in
computer vision for solving labeling problems such as image denoising.
This paper tackles the rarely addressed but important problem of learn-
ing the full form of the potential functions of pairwise CRFs. We ex-
amine two popular learning techniques, maximum likelihood estimation
and maximum margin training. The main focus of the paper is on models
such as pairwise CRFs, that are simplistic (misspecified) and do not fit
the data well. We empirically demonstrate that for misspecified models
maximum-margin training with MAP prediction is superior to maximum
likelihood estimation with any other prediction method. Additionally we
examine the common belief that MLE is better at producing predictions
matching image statistics.

1 Introduction

Many computer vision tasks can be cast as an image labeling problem. Appli-
cations include semantic image segmentation [8], background-foreground seg-
mentation [14] or image denoising [18,16]. Structured models such as Markov
Random Fields and Conditional Random Fields have been successfully applied
in this context and shown in practice to outperform other methods. These models
combine local evidence, dependencies between neighboring pixels and possibly
global cues for specifying the probability of a labeling. The usage of a structured
model requires learning and inference (prediction). Learning consists of estimat-
ing the parameters of the model (i.e., the potentials) from labeled training data,
while inference is the task of predicting a labeling for a given image.

Inference has received a lot of attention in recent years, the dominant ap-
proach being maximum-a-posteriori (MAP) inference, for which several efficient
and accurate approximate algorithms have been developed [2,6]. On the other
hand, learning is still predominantly done by either hand-tuning the parameters
or performing a grid-search over a number of settings. This work considers the
relation between learning and inference for image labeling using a structured
model. Two approaches are discussed here. The classical approach estimates the
parameters w of the posterior distribution P (y|x,w) of a label y given an im-
age x using maximum likelihood. It predicts the label according to Bayesian
decision theory, which requires the specification of a suitable loss function ∆.
Depending on the loss function, different prediction functions are obtained, such
as MAP, maximum marginal or minimum mean squared error (MMSE). Ex-
pected risk minimization is the second approach, it directly trains a prediction
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Fig. 1: The two learning and prediction approaches. Left: The classical approach first
estimates a posterior P (y|x,w∗) from training data and incorporates the loss ∆ at
test-time to infer the optimal label. Right: The alternative approach directly trains a
classifier for a specific loss and skips the distributional estimation step.

function which already incorporates the loss. Training and inference in these two
paradigms is visualized in Fig. 1. The first approach is known to be superior in
the ideal case where the model accurately describes the underlying image ac-
quisition process and sufficient amount of training data is given such that the
parameters can be correctly estimated.

The primary contribution of this paper is to show that there exist practical
situations in which the direct learning of a prediction function yields better per-
formance. We show that such settings arise when the assumed model does not
fully capture the dependencies in the data, a situation referred to as misspecifi-
cation [20]. This is an important insight for computer vision applications since
the data generating process is rather complicated and thus often inaccurately
modeled. As a second contribution we show that it is possible to learn the full
potentials of pairwise structured models even for relatively large state spaces
such as in image denoising applications. We conclude that through appropriate
training, efficient MAP inference can perform on par with more complex pre-
diction functions such as MMSE. In particular, we also demonstrate that MAP
is as good at reproducing image statistics as MMSE. Another goal of this work
is to review important facts about prediction and learning for image labeling
problems, which we feel are not well-known in the computer vision community.

2 The image labeling problem

Most structured models for image labeling problems can be expressed as an
energy function of a labeling y, an image x and parameters w of the form

E(y,x,w) =
∑
t∈T

∑
c∈Ct

ψα(yc,x,w
t). (1)

The model factorizes into cliques which are assumed to be grouped into sets
(templates) t that share the same parameter wt. yi is assumed to be in the set
{0, . . . ,K − 1}, leading to a total of KM possible labelings. Here M denotes
the number of sites for which a label is predicted. The CRF assumes that the
posterior of a labeling for an observed image is given by the Gibbs distribution

P (y|x,w) =
1

Z(x,w)
exp(−E(y,x,w)), (2)

with partition sum Z(x,w) =
∑

y′ exp(−E(y′,x,w)). In the context of struc-
tured models it is usually assumed that the model depends linearly on the pa-
rameters [5, Section 4.4.1.2], which we also do here. To make this linear depen-
dence explicit, the energy in (1) is rewritten as E(y,x,w) = −〈w, s(x,y)〉. Here
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s(x,y) denotes the sufficient statistics which counts using indicator functions the
different configurations of the cliques in (1). We will discuss an example of such
a sufficient statistics in more detail in the next section.

2.1 Image Denoising

In this work we discuss as a running example the problem of image denoising.
Given an observed noisy image the goal is to reconstruct the original noise-free
image. For this task we consider a simple pairwise CRF to illustrate all the
concepts. The labeling y in this context is the reconstruction of the original
image and x denotes the noisy observation. The energy is assumed to be

E(y,x,w) = −
∑
i∈V

wu|yi−xi| −
∑

(i,j)∈E

wp|yi−yj |, (3)

where the graph G = (V, E) is the standard 4-neighborhood grid commonly
used in computer vision. The potentials have one parameter for each possible
outcome of the unary and pairwise term, respectively. This results in a total of
2K parameters. We denote by wuj the j-th component of the unary parameter
wu and similarly for wp the pairwise parameter. For this simple image denoising
model the sufficient statistics s(x,y) = [su(x,y)T, sp(y)T]T are thus given by

suk(x,y)=
∑
i∈V

δk(|xi − yi|), spk(y)=
∑

(i,j)∈E

δk(|yi − yj |).

Here δk(z) denotes the Kronecker delta function which evaluates to one if z = k
and to zero otherwise. For image denoising the state space of the variables yi is
typically quite large, for example K = 256 for a grayscale image.

2.2 Learning and Prediction

Most image labeling applications come with some form of labeled training data
on which a parameter w∗ is learned according to some objective. We will discuss
maximum margin learning and maximum likelihood estimation. Having deter-
mined w∗, the inference task considers predicting the optimal labeling y∗ for an
observed image. There exist several approaches for this, which we will discuss in
§ 4. The most popular prediction function is the MAP inference which can be
understood as maximizing the posterior distribution in a CRF

y∗ = argmin
y

E(y,x,w∗) = argmax
y
〈w∗, s(x,y)〉.

Its popularity stems from the fact that efficient MAP inference algorithms such
as graph-cut or TRW-S exist. Strictly speaking, the MAP interpretation of a
labeling having minimal energy is only valid if the associated Gibbs distribution
leads to reasonable posterior estimates, i.e., the parameter is estimated with the
distributional aspect in mind. Here we use MAP to refer to finding the minimum
energy labeling regardless of whether (2) accurately describes the posterior.
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3 Related work

Early work on learning the potentials for low-level vision from data dates back
to the mid ’90s [22]. With the advance of structured models in machine learning,
more sophisticated techniques for estimating the parameters have also evolved
in computer vision. [7] trains a CRF for the tasks of binary image denoising
and the detection of man-made structures. More recently, principled discrimi-
native training has gained popularity in high-level vision applications, such as
semantic segmentation [11] and object recognition [4]. In the context of low-level
vision problems, learning has been done in stereo vision [17] and image denois-
ing. In denoising, the application considered in our work, the Fields-of-Experts
(FoEs) model [13] is a popular continuous, generative model with higher-order
factors (e.g., of size 3× 3). In the original work, Roth and Black train the model
using contrastive divergence, an approximate maximum likelihood learning ap-
proach, and finally perform MAP inference at test time. Better results can be
obtained [16] by a training approach tailored towards the MAP prediction. Fi-
nally, [18] demonstrates improved accuracy when using contrastive divergence
learning and MMSE instead of MAP inference. They find that their predictions
better match the image statistics observed in natural images.

Our work sheds some light on these findings [18] and shows that MAP, while
inferior to MMSE in theory for an ideal setting, in practice can still outperform
MMSE. This is attributed to the fact that models are often misspecified and ap-
proximate maximum likelihood approaches, such as maximum pseudo-likelihood,
lead to inaccurate parameter estimates. Experiments are shown for the pairwise
model in § 2.1 which differs in several aspects to the FoE model. First, unlike
the FoE model, it is a discrete model. This allows us to learn the full shape
of the potential without any prior assumptions on the form. In contrast, such
assumptions are needed in the FoE model as it is a continuous model whose po-
tentials are functions parametrized by a small set of shape parameters. Second,
maximum likelihood and maximum margin training for our model is convex, this
is not the case for the FoE due to modeling assumptions. The convexity has the
advantage that our learning approach does not get stuck in local minima.

4 Optimal Prediction

Assuming that one is given the true posterior P (y|x) (note in particular that
we distinguish this from a model posterior P (y|x,w∗)) we now consider the
prediction task. In this context the loss ∆(y′,y) specifies the error/loss incurred
when predicting the label y′ if y would be the true label. The loss is application
dependent and can be thought of as the error measure used in many computer
vision benchmarks: For semantic image segmentation this might be given by the
pixelwise accuracy, whereas for image denoising the pixelwise squared distance
of prediction and ground-truth might be used. According to Bayesian decision
theory [12, Theorem 2.3.2] the optimal prediction minimizes the expected risk:

y∗ = argmin
y′

EP (y|x)[∆(y′,y)] = argmin
y′

∑
y

∆(y′,y)P (y|x). (4)

Next, we relate several prediction functions to their implied loss function. The
loss is assumed to be non-negative and zero for the ground-truth labeling.



Putting MAP back on the map 5

Zero-one error The zero-one error is given by ∆(y′,y) = 1− δy(y′). Here we
extend the Kronecker delta function to several variables. This loss treats all labels
y′ with y′ 6= y in the same way by assigning a loss of one to them. A labeling
of an image with only one pixel different from the ground-truth is assigned the
same loss as a label that is different in every pixel. If the zero-one loss is used in
(4), then one identifies the MAP prediction rule y∗ = argmaxy P (y|x). As most
evaluation metrics are not as aggressive as the zero-one error discussed here, it
is clear that this is not the best loss term for most labeling tasks.

Mean pixel-wise error The mean pixelwise error is given by ∆(y′,y) =
1
|V|

∑
i∈V(1− δyi(y′i)). When inserting this loss into the Bayes predictor we end

up with the max-marginal prediction rule y∗i = argmaxyi P (yi|x) ∀i ∈ V. Here
P (yi|x) denotes the marginal for the i-th pixel.

Mean squared error The mean squared error (MSE) ∆(y′,y) = 1
V
∑
i∈V(yi−

y′i)
2 is a sensible choice if there exists an order on the labels, as for example in

image denoising. Optimal prediction is achieved by y∗i = EP (yi|x)[yi] ∀i ∈ V.
Thus, taking the mean of the individual variable posterior distribution mini-
mizes the mean squared error. This predictor is referred to as minimum mean
squared error (MMSE). For discrete variables one can round the expectation.

The underlying assumption in this section was that the true posterior dis-
tribution P (y|x) is known. In practice this posterior is modeled by the CRF
distribution P (y|x,w∗) which in many scenarios in computer vision does not
accurately model the true posterior. There might exist several reasons for this:
First, not enough data might be available to estimate all the parameters accu-
rately. Second, an improper estimation technique could be used for w∗. Third,
the model might not model all the dependencies in the data. As we will show,
if a model posterior distribution P (y|x,w∗) does not match the true P (y|x),
optimality of the schemes above is no longer guaranteed.

5 Learning

In this section we consider learning the optimal parameters w∗ of a structured
model for a given training set D = {(xn,yn)}Nn=1. We focus on maximum like-
lihood estimation (MLE) and maximum margin (MM) learning. As MLE is
generally intractable we also consider the maximum pseudo-likelihood.

5.1 Maximum Likelihood and Maximum Pseudo-likelihood

MLE of the parameters for a given training set corresponds to finding the param-
eter with the largest likelihood given the observed data. To prevent overfitting,
an L2 regularizer is often included:

wmle = argmin
w

− 1

N

N∑
n=1

logP (yn|xn,w)+
λ

2
‖w‖2. (5)

In general, no closed form solution for the convex MLE objective exists and thus
iterative methods are employed. To evaluate the function value and the gradient,
the partition sum and the marginals need to be computed. For loopy graphs
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these computations are generally intractable and one resorts to approximations.
A tractable alternative is given by the maximum pseudo-likelihood estimate [1]
(MPLE) which replaces logP (yn|xn,w) by

∑
i∈V logP (yni |ynN (i),x

n,w). Here

N (i) denotes the Markov blanket of a variable i and yN (i) all the variables in
the Markov blanket. Conditioning on the ground-truth label of the neighboring
variables makes the partition sum collapse to a sum over the different states
of variable yi, which has linear complexity. Interestingly, the MPLE has the
desirable property that for enough data it converges to the MLE.

5.2 Maximum Margin

Instead of taking the detour of first estimating a posterior and subsequently
constructing a predictor by incorporating a loss, one can directly train a linear
predictor fw(x) = argmaxy〈w, s(x,y)〉. This predictor can be trained using
a particular loss function ∆(y′,y). Max-margin training (or equivalently the
structured SVM) [19] considers the following training objective

wmm=argmin
w

λ

2
‖w‖2+

1

N

N∑
n=1

max
y′

[
〈w, s(xn,y′)−s(xn,yn)〉+∆(y′,yn)

]
. (6)

For computer vision max-margin training has several advantages when compared
to MLE. First, inference reduces to a standard MAP problem, and thus neither
marginals nor the partition sum need to be computed. Second, it directly incor-
porates a loss in training and is expected to work well for this particular loss,
even if the model is not expressive enough. However, for the ideal setting, the
Bayes predictor in (4) is superior to MAP trained using max-margin, as it is
more expressive. Most training algorithms for max-margin work by successively
generating maximally violated constraints and repetitively solving the quadratic
programming problem in (6). Generation of the constraints reduces to the MAP
problem for the loss augmented model which incorporates the loss ∆(y′,yn).

5.3 Insights on statistic matching
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Fig. 2: Pairwise image statistics on log-
arithmic scale, see text for remarks.

It is widely known that the image statis-
tics of natural images have a heavy tailed
distribution [15]. This is conjectured to be
an important property that most computer
vision systems still fail to model. The im-
age statistic of an image is obtained by
applying linear filters to the image and
building histograms of the resulting re-
sponses. For a pairwise gradient filter the
histogram obtained is equivalent to the suf-
ficient statistics sp(y) of our pairwise image denoising model. For the task of im-
age denoising, [18] observes that the MAP prediction of the FoE model trained
using maximum likelihood, exhibit poor image statistics. The authors propose
MMSE prediction as an alternative resulting in better image statistics. The dis-
cussion in § 4 shows that the superior performance of MMSE can be explained by
the loss being more suitable for the image denoising task. The improved image
statistics come only as a byproduct. MMSE in itself is not better at reproducing
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natural image statistics. If predictions should explicitly show the heavy tails ob-
served in natural image statistics, then this property has to be either included in
the model as in [21], or in the prediction function using an appropriate loss. If no
regularization is included in the objective in (5) then MLE can be understood
as matching the empirical distribution in training by the expected sufficient
statistics under the model distribution P (y|xn,wmle):

1

N

N∑
n=1

EP (y|xn,wmle)[s(xn,y)] =
1

N

N∑
n=1

s(xn,yn).

This follows from the derivative of (5). A similar expectation matching is identi-
fied for MPLE. However, this does not guarantee that the sufficient statistics of
the predicted labelings also match the observed training image statistics. This be-
haviour is demonstrated in Fig. 2 for the image denoising application described
in more detail in § 6.2. Here we train on one image (32 gray levels) and predict a
labeling for the same image. The expected statistics using the simplified model
assumed by pseudo-likelihood P (y|y1,x1,wmple) =

∏
i P (yi|y1

N i,x
1,wmple)

(shown as ‘PL expected’), are very close to the ground truth statistics (shown
as ‘true’). Smaller inaccuries are due to sampling. The expected statistics of the
CRF model P (y|x1,wmple) (shown as ‘CRF expected’), would coincide with the
true statistics if exact MLE could be performed. This also illustrates the deficien-
cies of the pseudo-likelihood approximation for a small dataset. Neither the la-
beling predicted by MAP trained using max-margin (shown as ‘MM/MAP’), nor
the labeling predicted by MMSE learned using maximum likelihood (shown as
‘MPLE/MMSE’), agree with the true statistics. Expected statistics are obtained
using Gibbs sampling of labelings y and averaging s(x1,y) over the sampled y.

6 Experiments

In this section we demonstrate the practical implications of the concepts dis-
cussed for the simple pairwise CRF model in § 2.1.

6.1 Synthetic data
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Fig. 3: Results of the synthetic experiment. Left: for
increasing levels of misspecification MPLE trained
MMSE becomes worse than max-margin trained
MAP. Right: Learned potentials for ε = 2 (MPLE
left, MM right, unary top, pairwise bottom).

Here we study the prop-
erties of maximum pseudo-
likelihood estimation and max-
margin learning on synthetic
data. The synthetic nature of
the dataset allows us to study
the consistency property of
the MPLE for large datasets.
In this experiment we add
structured noise to the labels
to simulate a case where the model is misspecified, i.e., the relationship be-
tween x and y cannot be captured by the assumed posterior P (y|x,w). The
dataset D = {(xn,yn)}Nn=1 is generated as follows: For a given image xn, a
label yn is sampled according to yn ∼ P (y|xn,wtrue) using a Gibbs sampler.
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The image xn itself is generated by adding i.i.d. noise to a fixed image x0

and rounding the values to integers within the domain {0, . . . ,K − 1}, here
for K = 16. For the weights wtrue we assume wtrue,u = −K/[1, 2, . . . ,K]T

and wtrue,p = −3· [0, 2, . . . ,K − 1]T. To study the influence of misspecifica-
tion the labels are perturbed. This is an important scenario to study, as most
computer vision models are still far from accurately describing the real world
situation. Having a parameter estimation and prediction approach that is robust
to misspecification is thus important in practice. To simulate the misspecifica-
tion, the labels yn are not sampled from the model in (3), but rather from a
model which also includes a 4-neighborhood dependency to the pixel two pixels
away (left, right, up, down). The weights of these interactions are chosen to be
wtrue,p,long = −3ε· [0, 1, . . . ,K − 1]T. Parameter estimation is done using the
dataset Dε = {(xn,yn)}Nn=1 for the model in (3). As ε is increased, the model
does not match the true data generating posterior anymore. To evaluate the
methods we learn a parameter and report the MSE of predictions on held out
test data. The results are averaged over five datasets. As we are primarily inter-
ested in the sensitivity of the estimation techniques to model misspecification,
a relatively large training set of size N = 500 is used. In Fig. 3 the MSE of the
different methods is shown.

The max-margin learning combined with MAP prediction leads to smaller
MSE values than MPLE based learning with MMSE. This is in agreement with
our intuition: max-margin learning directly considers the prediction function and
should therefore be more robust to misspecifications. In the non-misspecified set-
ting likelihood based learning combined with MMSE inference performed better.
While the experiment was carried out using pseudo-likelihood, we conjecture that
the same problem is also present in maximum likelihood estimation as we also
performed an experiment that showed that MPLE converged for ε = 0.

6.2 Image denoising
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Fig. 4: Learned unary (left) and pairwise
(right) potentials. Top: result for max-
margin learning. Bottom: weights esti-
mated by maximum pseudo-likelihood.

We consider the real world task of im-
age denoising, an active field of re-
search. The state of the art meth-
ods can broadly be grouped into
modifications of the Fields-of-Experts
framework [18,16,13] and sparse cod-
ing approaches [9,3]. The image de-
noising experiment was performed on
the images from the Berkeley im-
age segmentation dataset [10]. The
same train/test set split as in [18]
was used. The images are reduced to
grayscale values and i.i.d. Gaussian
noise with σ = 25 is added. The re-
sulting pixel values are rounded to in-
tegers in {0, . . . , 255}. Furthermore, the image and the noisy version thereof are
further discretized to 64 labels to obtain the label y and the input image x.
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noisy image,20.29dB original image MM/MAP,26.03dB MPLE/MMSE,25.44dB MPLE/MAP,23.11dB

Fig. 5: MAP can outperform MMSE if trained with maximum margin. In the (cropped)
image above we observe that MM/MAP better preserves the fine structure on the rock.
MAP prediction with the MPLE estimate leads to substantially worse results.

Maximum margin and MPLE training are performed on the 40 training ex-
amples. The resulting learned weights are shown in Fig. 4. We trained on the
full images as opposed to only on smaller subpatches, as it is often done for
contrastive divergence. We observe that the learned weights for the MM learn-
ing are much smaller. The pairwise potential is almost linear and the unary
potential has a roughly quadratic shape with truncation areas. The potentials
trained by MPLE differ substantially and show a much more varying shape.

standard model with BM3D
method MSE PSNR MSE PSNR

MM/MAP 8.65 27.05 6.86 28.23
MPLE/MAP 17.42 24.30 13.31 25.5
MPLE/MMSE 10.04 26.65 8.47 27.54
BM3D only - - 6.95 28.19

Table 1: Image denoising test results of
the different methods. For MSE smaller
is better, for PSNR higher is better.

As it is standard for image denoising
problems we use the peak signal-to-noise
ratio (PSNR) for comparison of the dif-
ferent methods. The test set consisted
of 68 images. Comparing the results of
the different approaches in Table 1, we
see that max-margin training combined
with MAP prediction leads to a lower
MSE and PSNR than maximum pseudo-likelihood estimation followed by MMSE
prediction. For comparison we also show the results obtained using the BM3D
algorithm [3], considered state-of-the-art. For BM3D we used the full 256 level
grayscale images and discretized the result to 64 levels. We also trained our
pairwise model with BM3D predictions as a secondary unary feature. The MAP
labeling obtained using MM training result in a small improvement over BM3D.
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Fig. 6: Aggregated pairwise im-
age statistics on the test images.
MPLE/MMSE and MM/MAP re-
sult in similar statistics.

Unlike in the synthetic experiment, we can
not give a final conclusion on why MMSE per-
forms worse: it could be either the inaccurate
approximation made by pseudo-likelihood or
as the model is simplistic, that misspecifica-
tion becomes a problem as in the synthetic
experiment. However, the image denoising ex-
periment shows that in practice if trained ap-
propriately, MAP can lead to accurate predic-
tions on par with MMSE. Unless the full im-
age zero-one loss is desired as an evaluation
criteria, MAP should not be used in combina-
tion with maximum likelihood learning. We visualize the test set image statistics
in Fig. 6. One observes that for the pairwise statistics the MM/MAP predic-
tions show a very similar behavior as the MPLE/MMSE solutions. MM/MAP
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seems to be a bit closer to the true image statistics for the more often occurring
configurations. An example of the predictions is shown in Fig. 5.

7 Conclusions

This paper gives a general review of learning and inference for structured models.
For image denoising we found that if appropriately trained, MAP is competitive
with MMSE, the optimal prediction in theory. We explain this by misspeci-
fications of the model and the approximations needed in order for maximum
likelihood learning to become tractable. MAP, with many efficient inference al-
gorithms readily available, is therefore back on the road map of computer vision.
Our investigations also show that there exist scenarios where MMSE can outper-
form MAP. As models become more accurate, these differences might get more
pronounced in the future. However, we suspect that better approximate maxi-
mum likelihood approaches are needed for MMSE to substantially outperform
MAP in practice.
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