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Abstract

Supplementary materials to the main paper.

1. Proofs

Proof of Proposition 4

Proof. We have

E[Sk] =
∑
i∈V

Ezi [1{zi=k∧yi=k}]

=
∑
i∈V

pi(k)1{yi=k}.

Likewise we have

E[Tk] =
∑
i∈V

Ezi [1{zi=k∨yi=k}]

=
∑
i∈V

Ezi [1{zi=k} + 1{yi=k} − 1{zi=k∧yi=k}]

=
∑
i∈V

(pi(k) + 1{yi=k} − pi(k) 1{yi=k})

=
∑
i∈V

(1{yi=k} + pi(k) 1{yi 6=k}).

Proof of Proposition 5

Proof. In (5) the first central moment 〈1Tk〉 is always zero,
hence the only term that could be non-zero is

〈Sk,
1 Tk〉 = E[(Sk − ESk)(Tk − ETk)]

= E[SkTk]− ESkETk − ETkESk + ESkETk
= E[SkTk]− ESkETk.

We will show that these two terms are equal and hence their
difference is zero. To this end we first expand the product
as

E[SkTk] = E

[
(
∑
i∈V

1{zi=k∧yi=k})(
∑
i∈V

1{zi=k∨yi=k})

]

= E

∑
i∈V

∑
j∈V

1{zi=k∧yi=k}1{zj=k∨yj=k}

 .(1)

In order to expand the expectation operator in (1) we
would like to use the conditional independence assumption
pij(zi, zj) = pi(zi) pj(zj) for i 6= j. For this, we split the
sum into the cases i = j and i 6= j as follows.

=
∑
i∈V

∑
zi∈Y

pi(zi) 1{zi=k∧yi=k}1{zi=k∨yi=k} +

∑
i∈V

∑
j∈V\{i}

∑
zi∈Y

∑
zj∈Y

pi(zi) pj(zj)

1{zi=k∧yi=k}1{zj=k∨yj=k}

The first sum can be simplified by observing that
1{zi=k∧yi=k} 1{zj=k∨yj=k} = 1{zi=k∧yi=k} and by ob-
serving that all terms in the sum are zero except for the case
when zi = k. For the second sum we reorder terms, obtain-
ing

=
∑
i∈V

pi(k) 1{yi=k} +∑
i∈V

∑
zi∈Y

pi(zi) 1{zi=k∧yi=k} ∑
j∈V\{i}

∑
zj∈Y

pj(zj) 1{zj=k∨yj=k}

 .

We perform the same simplification as before on the second
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sum and then factor out the joint term, yielding

=
∑
i∈V

pi(k) 1{yi=k} +
∑
i∈V

pi(k) 1{yi=k} ∑
j∈V\{i}

(
pj(k) + (1− pj(k)) 1{yj=k}

)
=

∑
i∈V

pi(k) 1{yi=k}

(
1 +

∑
j∈V\{i}

(
pj(k) + (1− pj(k)) 1{yj=k}

) )
.

Due to the factor 1{yi=k} we can simplify the case j = i
once we observe that yi = k implies yj = k and hence the
inner summand is equal to one. This allows us to merge the
1 into the sum so that the sum runs over V instead of over
just V \ {i}.

=
∑
i∈V

pi(k) 1{yi=k}(∑
j∈V

(
pj(k) + (1− pj(k)) 1{yj=k}

) )
.

Finally, by considering the cases yj = k and yj 6= k sepa-
rately we observe that the inner summation can be equiva-
lently replaced as follows.

=
∑
i∈V

pi(k) 1{yi=k}
∑
j∈V

(
1{yj=k} + pj(k) 1{yj 6=k}

)
=

(∑
i∈V

pi(k) 1{yi=k}

)
∑

j∈V

(
1{yj=k} + pj(k) 1{yj 6=k}

)
= E[Sk] E[Tk].

The proof shows that Sk and Tk are uncorrelated random
variables and we have 〈S,1 T 〉 = 0. It follows that Ψ1 =
0.

2. Algorithm Convergence
In Figure 1 we show the value of the optimization objec-

tive as a function of optimization iterations. By construction
the algorithm produces monotonically increasing objective
values.

3. Greedy Algorithm
The greedy algorithm we use is almost identical to the

one of Tarlow and Adams [1] except that we use a simple
sweep instead of prioritizing some variables over others.
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Figure 1. Optimization objective over 60 iterations. Convergence
is monotonic by construction but levels off after about thirty itera-
tions.

We start with a random initial solution λ and iteratively
increase the objective function (9) as follows. We perform
a sequence of sweeps. In each sweep we select a random
ordering of variables V and process each variable j ∈ V in
this order. For the variable j we attempt to relabel it with
each of the K possible labels. Let us assume the variable
has label k1 at the moment and we test label k2 6= k1. To
compute the difference ∆k1→k2

in the objective (9) we first
define the following statistics.

αk(λ) =
∑
i∈V

pi(k) λi,k

βk(λ) =
∑
i∈V

[pi(k) + (1− pi(k)) λi,k] . (2)

Given α and β we can compute the change as

∆k1→k2
=

1

K

(
αk2

(λ) + pj(k2)

βk2
(λ) + 1− pj(k2)

+
αk1

(λ)− pj(k1)

βk1
(λ)− 1 + pj(k1)

−αk2(λ)

βk2
(λ)
− αk1(λ)

βk1
(λ)

)
.

We test all possible labels k2 6= k1 and pick the label k∗

with maximal ∆k1→k∗ . If this quantity is strictly positive
we relabel the variable and update α and β. If it is zero or
negative, we do not change its label, so that it remains as
k1.

In the experiments we always run the greedy algorithm
until no further change yields an increase in expected IoU
score.

The greedy algorithm has the advantage of being simple
and fast to implement, and that it also maintains an integral
feasible solution. A potential disadvantage is that it is a lo-
cal search method with small neighborhood which may get
stuck in a suboptimal solution; however, our experiments
confirm that this is not the case and therefore indicate that



the IoU objective may have certain properties that make it
well suited to the greedy local search procedure.

4. Visualization
We show some randomly selected test set predictions

from the PASCAL VOC 2012 segmentation test set in Fig-
ure 2 and 3.
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Figure 2. Visualizations of the predictions on the VOC 2012 segmentation test set. The five images are drawn at random from all test
images. Columns, from left to right: input image, MAP prediction, inverse-weighted MAP (iwMAP), IoU-optimized predictions after 30
iterations (RF-IoU-opt30).



Figure 3. More visualizations, ordering as in Figure 2, from left to right: input image, MAP, iwMAP, IoU-opt30.


