
Foundations and Trends R© in

sample
Vol. xx, No xx (xxxx) 1–175
c© xxxx xxxxxxxxx

DOI: xxxxxx

Structured Learning and
Prediction in Computer Vision

Sebastian Nowozin1 and Christoph H. Lampert2

1 Microsoft Research Cambridge, Sebastian.Nowozin@microsoft.com
2 IST Austria (Institute of Science and Technology Austria), chl@ist.ac.at

Abstract

Powerful statistical models that can be learned efficiently from large

amounts of data are currently revolutionizing computer vision. These

models possess a rich internal structure reflecting task-specific relations

and constraints. This tutorial introduces the reader to the most popular

classes of structured models in computer vision. Our focus is discrete

undirected graphical models which we cover in detail together with

a description of algorithms for both probabilistic inference and maxi-

mum a posteriori inference. We discuss separately recently successful

techniques for prediction in general structured models. In the second

part of this tutorial we describe methods for parameter learning where

we distinguish the classic maximum likelihood based methods from the

more recent prediction-based parameter learning methods. We high-

light developments to enhance current models and discuss kernelized

models and latent variable models. To make the tutorial practical and

to provide links to further study we provide examples of successful

application of many methods in the computer vision literature.

Contents

1 Introduction 1

1.1 An Example: Image Segmentation 2

1.2 Outline 3

2 Graphical Models 5

2.1 Factor graphs 9

2.2 Energy Minimization and Factor Graphs 11

2.3 Parameterization 12

2.4 Inference and Learning Tasks 14

3 Inference in Graphical Models 19

3.1 Belief Propagation and the Sum-Product Algorithm 19

3.2 Loopy Belief Propagation 25

3.3 Mean field methods 30

3.4 Sampling 35

4 Structured Prediction 47

i

ii Contents

4.1 Introduction 47

4.2 Prediction Problem 48

4.3 Solving the Prediction Problem 51

4.4 Giving up Generality 52

4.5 Giving up Optimality 59

4.6 Giving up Worst-case Complexity 76

4.7 Giving up Integrality: Relaxations and Decompositions 83

4.8 Giving up Determinism 105

5 Conditional Random Fields 113

5.1 Maximizing the Conditional Likelihood 113

5.2 Gradient Based Optimization 116

5.3 Numeric Optimization 117

5.4 Faster Training by Use of the Output Structure 121

5.5 Faster Training by Stochastic Example Selection 122

5.6 Faster Training by Stochastic Gradient Approximation 123

5.7 Faster Training by Two-Stage Training 124

5.8 Latent Variables 126

5.9 Other Training Objectives 129

6 Structured Support Vector Machines 134

6.1 Structural Risk Minimization 134

6.2 Numeric Optimization 138

6.3 Kernelization 146

6.4 Latent Variables 149

6.5 Other Training Objectives 152

6.6 Approximate Training 154

7 Conclusion 157

Notations and Acronyms 158

1

Introduction

In a very general sense computer vision is about automated systems

making sense of image data by extracting some high-level information

from it. The image data can come in a large variety of formats and

modalities. It can be a single natural image, or it can be a multi-spectral

satellite image series recorded over time. Likewise, the high-level infor-

mation to be recovered is diverse, ranging from physical properties such

as the surface normal at each image pixel to object-level attributes such

as its general object class (“car”, “pedestrian”, etc.).

The above task is achieved by building a model relating the image

data to the high-level information. The model is represented by a set of

variables that can be divided into the observation variables describing

the image data, the output variables defining the high-level informa-

tion, and optionally a set of additional auxiliary variables. Besides the

variables a model defines how the variables interact with each other.

Together the variables and interactions form the structure of the model.

Structured models allow a large number of variables and interac-

tions, leading to rich models that are able to represent the complex

relationships that exist between the image data and the quantities of

interest.

1

2 Introduction

Instead of specifying a single fixed model we can also introduce

free parameters into the interactions. Given some annotated data with

known values for the output variables we can then adjust the parame-

ters to effectively learn a good mapping between observation and out-

put variables. This is known as parameter learning and training the

model.

1.1 An Example: Image Segmentation

We will now use the task of foreground-background image segmentation

to make concrete the abstract concepts just discussed. In foreground-

background image segmentation we are given a natural image and need

to determine for each pixel whether it represents the foreground object

or the background. To this end we define one binary output variable

yi ∈ {0, 1} for each pixel i, taking yi = 1 if i belongs to the foreground,

yi = 0 otherwise. A single observation variable x ∈ X will represent

the entire observed image.

To define the interactions between the variables we consider the fol-

lowing: if the image around a pixel i looks like a part of the foreground

object, then yi = 1 should be preferred over yi = 0. More generally we

may assume a local model gi(yi, x), where gi(1, x) takes a high value if

x looks like a foreground object around pixel i, and a low value oth-

erwise. If this were the only component of the model we would make

independent decisions for each pixel. But this is clearly insufficient. For

example the model gi might be inaccurate or the image locally really

does resemble the foreground object. Therefore we introduce an inter-

action aimed at making locally consistent decisions about the output

variables: for each pair (i, j) of pixels that are close to each other in

the image plane – say within the 4-neighborhood J – we introduce a

pairwise interaction term gi,j(yi, yj) that takes a large value if yi = yj
and a small value otherwise.

We can now pose segmentation as a maximization problem over all

possible segmentations on n pixels,

y∗ = argmax
y∈{0,1}n

 n∑
i=1

gi(yi, x) +
∑

(i,j)∈J

gi,j(yi, yj)

 . (1.1)

1.2. Outline 3

Fig. 1.1 Input image to be
segmented into foreground

and background. (Image

source: http://pdphoto.org)

Fig. 1.2 Pixelwise separate
classification by gi only:

noisy, locally inconsistent de-

cisions.

Fig. 1.3 Joint optimum y∗

with spatially consistent de-

cisions.

The optimal prediction y∗ will trade off the quality of the local model

gi with making decisions that are spatially consistent according to gi,j .

This is shown in Figure 1.1 to 1.3.

We did not say how the functions gi and gi,j can be defined. In the

above model we would use a simple binary classification model

gi(yi, x) = 〈wyi , ϕi(x)〉, (1.2)

where ϕi : X → Rd extracts some image features from the image around

pixel i, for example color or gradient histograms in a fixed window

around i. The parameter vector wy ∈ Rd weights these features. This

allows the local model to represent interactions such as “if the picture

around i is green, then it is more likely to be a background pixel”. By

adjusting w = (w0, w1) suitably, a local score gi(yi, x) can be computed

for any given image. For the pairwise interaction gi,j(yi, yj) we ignore

the image x and use a 2-by-2 table of values for gi,j(0, 0), gi,j(0, 1),

gi,j(1, 0), and gi,j(1, 1), for all adjacent pixels (i, j) ∈ J .

1.2 Outline

In Graphical Models we introduce an important class of discrete struc-

tured models that can be concisely represented in terms of a graph. In

this and later parts we will use factor graphs, a useful special class of

graphical models. We do not address in detail the important class of

directed graphical models and temporal models.

Computation in undirected discrete factor graphs in terms of proba-

bilities is described in Inference in Graphical Models. Because for most

models exact computations are intractable, we discuss a number of pop-

ular approximations such as belief propagation, mean field, and Monte

4 Introduction

Carlo approaches.

In Structured Prediction we generalize prediction with graphical

models to the general case where a prediction is made by maximiz-

ing an arbitrary evaluation function, i.e. y = f(x) = argmaxy g(x, y).

Solving this problem – that is, evaluating f(x) – is often intractable

as well and we discuss general methods to approximately make predic-

tions.

After having addressed these basic inference problems we consider

learning of structured models. In Conditional Random Fields we in-

troduce popular learning methods for graphical models. In particular

we focus on recently proposed efficient methods able to scale to large

training sets.

In Structured Support Vector Machines we show that learning is

also possible in the general case where the model does not represent a

probability distribution. We describe the most popular techniques and

discuss in detail the structured support vector machine.

Throughout the tutorial we interleave the main text with successful

computer vision applications of the explained techniques. For conve-

nience the reader can find a summary of the notation used at the end

of the tutorial.

2

Graphical Models

In computer vision we often need to build a model of the real world that

relates observed measurements to quantities of interest. For example,

given an observed image we would like to know physical quantities like

the depth from the observer for each measured pixel in the image. Al-

ternatively we could be interested high-level questions such as knowing

where all objects of a certain kind are visible in the image.

Graphical models allow us to encode relationships between multi-

ple variables using a concise, well-defined language. We can use this

language to relate observations and unknown variables to each other.

Naturally some of the problems we are interested in solving are not

well-posed in the sense that it is impossible to determine with cer-

tainty the correct answer from the observation. Probabilistic graphical

models help in this setting. They encode a joint or conditional probabil-

ity distribution such that given some observations we are provided not

just with a single estimate of the solution but with a full probability

distribution over all feasible solutions. Moreover, we can incorporate

additional assumptions in the form of prior probability distributions.

There exist different types of graphical models, but they all have

in common that they specify a family of probability distributions by

5

6 Graphical Models

means of a graph. The various types differ by the allowed graph struc-

ture and the conditional independence assumptions encoded in the

graph. Given a graphical model we can think of it as a filter for proba-

bility distributions through which only distributions may pass that sat-

isfy all the conditional independences encoded in the graph. Therefore

a graphical model does not specify a single distribution but a family of

probability distributions.

In this work we will limit ourselves to graphical models for discrete

variables. One reason is that discrete models have been more popu-

lar in computer vision. Another reason is that in many cases prior

assumptions and constraints on predictions are more easily enforced

on discrete variables than on continuous ones. That said, models for

continuous random variables are important because discretization of a

continuous variable can lead to inefficiencies both in the computational

and statistical sense. Computationally a fine discretization is needed to

achieve high accuracy leading to a large and inefficient state space of

the resulting model. Statistically, estimating many parameters for dis-

tinct states discards the original continuous structure that produced

the discretization and leads to an increase in estimation error. Despite

these conceptual drawbacks we feel that many problems in computer

vision are best modelled using a discrete model.

We denote the set of output variables with V and the overall output

domain by Y. The output domain is the product of individual variable

domains Yi so that we have Y = ×
i∈V
Yi. In many practical models we

have Yi := L, a single set L of labels. The input domain X varies for

different tasks; typically X would be the set of images and a single

x ∈ X is one image. The random variables of the model are denoted

by Yi, and their realization is denoted by Yi = yi or just yi. Similarly,

Y = y or just y is the joint realization over all variables.

Two types of graphical models are popular. Directed graphical mod-

els, also known as Bayesian networks, specify the family p(Y = y) =

p(y) by means of a directed acyclic graph G = (V, E) and the factor-

ization of p(y) as

p(y) =
∏
i∈V

p(yi|ypaG(i)), (2.1)

7

where each p(yi|ypaG(i)) is a conditional probability distribution, and

paG(i) denotes the set of parents of node i ∈ V . Figure 2.1 shows a

simple Bayesian network defining a family of distributions on four vari-

ables. The factorization (2.1) defines a family of distributions. By select-

ing suitable conditional probability distribution functions p(yi|ypaG(i))

and parameterizing them with a set of parameters w ∈ Rd to obtain

p(yi|ypaG(i);w) we can identify members of this family. In later sections

we will discuss parameterization and parameter learning in detail.

Yi Yj

Yk

Yl

Fig. 2.1 Illustration of a Bayesian network. The directed acyclic graph defines the factor-
ization as p(Y = y) = p(Yl = yl|Yk = yk)p(Yk = yk|Yi = yi, Yj = yj)p(Yi = yi)p(Yj = yj).

The most popular graphical models we will concentrate on in this

tutorial are undirected graphical models, also known as Markov random

fields (MRF). More information about directed models can be found

in [Barber, 2011; Koller and Friedman, 2009].

A MRF defines a family of joint probability distributions by means

of an undirected graph G = (V, E) as factorization

p(y) =
1

Z

∏
C∈C(G)

ψC(yC), (2.2)

where C(G) denotes the set of all cliques1 of G. By YC we denote the

subset of variables that are indexed by C. The normalizing constant Z

is given by

Z =
∑
y∈Y

∏
C∈C(G)

ψC(yC) (2.3)

1Given G = (V, E), a subset W ⊆ V of the vertices is a clique if for any i, j ∈ W we have
{i, j} ⊆ E, that is there exist an edge for any pair of vertices in W .

8 Graphical Models

and is known as partition function. The partition function computes a

sum over all configurations Y = Y1 × · · · × Y|V |. The functions ψC :

YC → R+ are the so called potential functions or factors. Each factor

ψC defines an interaction between one or more variables but in contrast

to Bayesian networks it is not a conditional probability but an arbitrary

non-negative function. Two examples of Markov random fields and their

factorization are shown in Figure 2.2 and 2.3.

The relation between the factorization (2.2) and G is well-defined

but cumbersome: imagine we would like to use only pairwise interac-

tions between all pairs of variables shown in the graph of Figure 2.3. To

obtain a form (2.2) that contains all pairwise potentials we would need

to specify G as shown in Figure 2.3 but set most factors ψC(YC) = 1

for all |C| < 2 and |C| > 2. The reason for this inefficiency is that the

graph that defines the Markov random field does not make explicit the

factorization.

Yi Yj Yk

Fig. 2.2 A Markov random field defining the factorization p(y) =
1
Z
ψi(yi)ψj(yj)ψl(yl)ψi,j(yi, yj)ψj,k(yj , yk).

Yi Yj

Yk Yl

Fig. 2.3 A Markov random field with completely connected graph, defining the factorization

p(y) = 1
Z

∏
A∈2{i,j,k,l} ψA(yA).

A more convenient graphical model to directly specify a factoriza-

tion is a factor graph as introduced in the following section.

2.1. Factor graphs 9

2.1 Factor graphs

Factor graphs are undirected graphical models that make explicit the

factorization of the probability function [Kschischang et al., 2001]. We

define a factor graph as follows.

Definition 2.1 (Factor graph). A factor graph is a tuple (V,F , E)

consisting of a set V of variable nodes, a set F of factor nodes, and a

set E ⊆ V × F of edges having one endpoint at a variable node and

the other at a factor node. Let N : F → 2V be the scope of a factor,

defined as the set of neighboring variables,

N(F) = {i ∈ V : (i, F) ∈ E}. (2.4)

Then the factor graph defines a family of distributions that factorize

according to

p(y) =
1

Z

∏
F∈F

ψF (yN(F)), (2.5)

with

Z =
∑
y∈Y

∏
F∈F

ψF (yN(F)). (2.6)

By convention, when drawing a factor graph, factor nodes are drawn

as “�” and variable nodes are drawn as “©”. The edges are drawn as

undirected edges between variable and factor nodes. Let us write the

shorthand yF := yN(F) from now on.

Two examples of factor graphs are shown in Figure 2.4 and 2.5.

2.1.1 Conditional distributions: Conditional Random Fields

We often have access to measurements that correspond to variables that

are part of the model. In that case we can directly model the conditional

distribution p(Y = y|X = x), where X = x is the observation that is

always available.

This can be expressed compactly using conditional random fields

(CRF) with the factorization provided by a factor graphs as shown

in Figure 2.6. The observations X = x we condition on are drawn as

10 Graphical Models

Yi Yj

Yk Yl

Fig. 2.4 A possible factorization represented

by the Markov random field in Figure 2.3.

Here only pairwise interactions are used.

Yi Yj

Yk Yl

Fig. 2.5 Another possible factorization rep-

resented by the Markov random field in Fig-

ure 2.3. The MRF specification of a family of
distributions cannot distinguish between the

factorization in Figure 2.4 and Figure 2.5.

Yi Yj

Xi Xj

Fig. 2.6 A factor graph specifying a conditional distribution p(Yi = yi, Yj = yj |Xi =

xi, Xj = xj) = 1
Z(xi,xj)

ψi(yi;xi)ψj(yj ;xj)ψi,j(yi, yj).

shaded variable nodes and the respective factors have access to the

values of the observation variables they are adjacent to. Then (2.5)

becomes

p(Y = y|X = x) =
1

Z(x)

∏
F∈F

ψF (yF ;xF), (2.7)

with

Z(x) =
∑
y∈Y

∏
F∈F

ψF (yF ;xF). (2.8)

Note that the normalizing constant Z(x) in (2.7) now depends on the

observation. Given the distribution (2.7) we typically would like to

infer marginal probabilities p(YF = yF |x) for some factors F ∈ F . For

example, the marginal probability p(Yi = “foreground”|x) in an image

2.2. Energy Minimization and Factor Graphs 11

segmentation model could mean the marginal probability that a pixel

i is labelled foreground, given the observed image. In a later section we

discuss conditional random fields and inference problems in detail.

2.2 Energy Minimization and Factor Graphs

In computer vision the term energy minimization is popularly used to

describe approaches in which the solution to the problem is determined

by minimizing a function, the “energy”. The energy function is defined

for all feasible solutions and measures the quality of a solution.2 We

now show how energy minimization is interpreted as solving for the

state of maximum probability in (2.5).

We define an energy function for each factor F ∈ F ,

EF : YN(F) → R, (2.9)

where YF = ×
i∈N(F)

Yi is the product domain of the variables adjacent

to F . We define the factors ψF : YF → R+ and energy function as

ψF (yF) = exp(−EF (yF)), and EF (yF) = − log(ψF (yF)). (2.10)

We can now rewrite p(Y) in (2.5) as follows.

p(Y = y) =
1

Z

∏
F∈F

ψF (yF) (2.11)

=
1

Z

∏
F∈F

exp(−EF (yF)) (2.12)

=
1

Z
exp(−

∑
F∈F

EF (yF)), (2.13)

with the normalizing constant taking the form

Z =
∑
y∈Y

exp(−
∑
F∈F

EF (yF)). (2.14)

2The term “energy” originates with statistical mechanics. For a fascinating account of the
connections between physics, computer science and information theory, see [Mézard and
Montanari, 2009].

12 Graphical Models

Finding the state y ∈ Y with the highest probability can now be seen

as an energy minimization problem:

argmax
y∈Y

p(Y = y) = argmax
y∈Y

1

Z
exp(−

∑
F∈F

EF (yF)) (2.15)

= argmax
y∈Y

exp(−
∑
F∈F

EF (yF)) (2.16)

= argmax
y∈Y

−
∑
F∈F

EF (yF) (2.17)

= argmin
y∈Y

∑
F∈F

EF (yF). (2.18)

Energy minimization approaches are a success story in computer

vision and often the most efficient technique to solve a problem. The

probabilistic interpretation (2.13) differs in two ways,

(1) it provides a natural way to quantify prediction uncertainty

by means of marginal distributions p(YF), and

(2) it enables parameter learning by the maximum likelihood

principle.

In the last decade breakthroughts have been made in enabling

similar advantages for models in which only energy minimization is

tractable. We will discuss these advances in detail in the later section

Structured Support Vector Machines.

Let us now introduce parameterization of factor graphs, followed by

a description of the key inference and learning tasks on factor graphs.

2.3 Parameterization

Factor graphs define a family of distributions. By introducing parame-

ters into the model we can identify members of this family with parame-

ter values. Parameterization is the process of deciding what parameters

should be used, how they are shared across different parts of the model,

and how they are used to produce the energies for each factor. A high

level illustration of what is achieved by parameterizing the model is

shown in Figure 2.7.

2.3. Parameterization 13

pw1

pw2

distributions
indexed
by w

distributions
in family

Fig. 2.7 Schematic relationship of the families of distributions: the full set of all distributions

in the family defined by a factor graph (shown in white) is restricted to a subset (shown

in gray) by parameterization. This subset is indexed by w ∈ RD and any particular choice
of w1, w2 ∈ RD produces one probability distribution pw1 , pw2 . Increasing the number

of parameters and features enlarges the realizable subset of distributions; decreasing the
number of parameters by parameter sharing makes the set smaller.

Parameters are typically introduced into the energy function as fol-

lows. For a given factor F ∈ F and parameter vector w ∈ RD we define

EF : YN(F) × RD → R, and write EF (yF ;w) to show the dependence

on w. As an example consider binary image segmentation with a pair-

wise energy function encouraging nearby pixels to take the same value,

taking the form

EF : {0, 1} × {0, 1} × R2 → R, (2.19)

with

EF (0, 0;w) = EF (1, 1;w) = w1, (2.20)

EF (0, 1, w) = EF (1, 0, w) = w2, (2.21)

where w1 and w2 are parameters directly describing the energies for

the subsets {(0, 0), (1, 1)} and {(0, 1), (1, 0)} of states, respectively.

As discussed in Section 2.1.1 we may let EF depend on observations

xF . Then, a popular form to parameterize EF is to use a linear function

EF (yf ;xf , w) = 〈w(yF), ϕF (xF)〉, (2.22)

where ϕF : XF → RD is a feature function operating on the ob-

servations and w : YF → RD is a concatenation of weight vectors

14 Graphical Models

w(yF) ∈ RD, one for each yF ∈ YF . In the above binary image segmen-

tation task, we might use a unary energy function for each pixel, where

ϕF (xF) extracts D-dimensional image features of the image patch ob-

servation xF and w(0), w(1) ∈ RD are learnable weight vectors.

2.4 Inference and Learning Tasks

Once a factor graph model has been fully specified and parameterized

there are two tasks left to do: to learn its parameters, for example from

training instances, and to use the model for solving inference tasks on

future data instances. We now define the different types of learning and

inference problems that we will discuss in this tutorial, starting with

inference.

2.4.1 Inference Tasks

Ultimately, the goal of probabilistic modeling in computer vision is to

make predictions about unobserved properties for a given data instance.

Obviously, we would like these predictions to be as good as possible,

which shows the necessity for a measure of prediction quality.

We formalize this in the framework of statistical decision the-

ory [Bishop, 2006]: let d(X,Y) denote the probability distribution of

the data for the problem we try to solve, which we factor into the condi-

tional probability distribution of the label d(y|x), and a data prior d(x).

Furthermore, let ∆ : Y × Y → R+ be a loss function where ∆(y, y′)

specifies the cost of predicting y′ for a sample when the correct label

is y. For any sample x ∈ X we can measure the quality of predicting a

label f(x) ∈ Y by the expected loss of this decision

R∆
f (x) = Ey∼p(y|x;w) ∆(y, f(x)) (2.23)

=
∑
y∈Y

d(y|x) ∆(y, f(x)). (2.24)

The two important inference problems frequently encountered in

computer vision applications, maximum aposteriori (MAP) inference

and probabilistic inference, can be interpreted as the optimal decision

rules for two specific loss functions, when we assume that the parame-

terized distribution p(y|x,w) reflects d(y|x).

2.4. Inference and Learning Tasks 15

Arguably the most common loss function for classification tasks is

the 0/1 loss, ∆0/1(y, y′) = Jy 6= y′K, i.e. ∆(y, y′) = 0 for y = y′, and

∆(y, y′) = 1 otherwise. Computing its expected loss we obtain

R0/1
f (x) = 1− p(Y = f(x)|x,w) (2.25)

This expression is minimized by choosing f(x) =

argmaxy∈Y p(y|x,w) for every x ∈ X , which shows that the op-

timal prediction rule in this case is MAP inference.

Problem 1 (Maximum A Posteriori (MAP) Inference). Given

a factor graph, parameterization, and weight vector w, and given the

observation x, find the state y∗ ∈ Y of maximum probability,

y∗ = argmax
y∈Y

p(Y = y|x,w) = argmin
y∈Y

E(y;x,w). (2.26)

Another popular choice of loss function for structured prediction

tasks is the Hamming loss: ∆(y, y′)H = 1
|V |
∑

i∈V Jyi 6= y′iK. It is some-

times more intuitive than the 0/1-loss. For example, in pixel-wise image

segmentation, the Hamming loss is proportional to the number of mis-

classified pixels, whereas the 0/1-loss assigns the same cost to every

labeling that is not pixel-by-pixel identical to the intended one. For the

Hamming loss, the expected loss takes the form

RHf (x) = 1− 1

|V |
∑
i∈V

p(Yi = f(x)i|x,w), (2.27)

which is minimized by predicting with f(x)i = argmaxyi∈Yi p(Yi =

yi|x,w), that is, by maximizing the marginal distribution of each node.

To evaluate this prediction rule, we rely on probabilistic inference.

Problem 2 (Probabilistic Inference). Given a factor graph, pa-

rameterization, and weight vector w, and given the observation x, find

the value of the log partition function and the marginal distributions

for each factor,

logZ(x,w) = log
∑
y∈Y

exp(−E(y;x,w)), (2.28)

µF (yF) = p(YF = yF |x,w), ∀F ∈ F , ∀yF ∈ YF . (2.29)

16 Graphical Models

When using the Hamming loss in conjunction with a distribution

p(y|x,w), we use the per-variable marginal distributions p(Yi = yi|x,w)

to make a single joint prediction y for all variables. This produces a

small loss in expectation, but might produce a labeling y that does

not have a low energy. Furthermore, if we allow infinite energy values

in the factors—in effect making some configurations infeasible—then

a labeling produced from variable marginals can still have an infinite

energy.

Comparing the two inference problems, the MAP inference pro-

vides us with the mode of p(y|x,w), whereas the result µ of the prob-

abilistic inference describes the marginal distributions of p(y|x,w) for

each factor. Both inference problems are known to be NP-hard for

general graphs and factors [Shimony, 1994] but can be tractable if suit-

ably restricted. We will discuss these issues and the use of both (2.26)

and (2.29) in computer vision in later parts.

Example 2.1 (Probabilistic inference and MAP). To illustrate

how the two inference methods differ qualitatively, in Figure 2.8 to 2.11

we visualize the results of probabilistic inference and MAP inference

on the task of recognizing man-made objects in images, originally pro-

posed in [Kumar and Hebert, 2004].

We have one binary variable Yi per 16-by-16 block i of pixels. The

marginal distribution p(yi|x,w) of the block predicts the presence of

a man-made structure. This marginal distribution is visualized in Fig-

ure 2.10. The most likely labeling – that is, the mode of the distribution

– is shown in Figure 2.11. The model is a factor graph consisting of

two different types of factors and has a total of 2400 parameters that

are learned from 108 annotated training images.

We now define the learning problem but postpone a detailed de-

scription of how to train conditional random fields and general factor

graph models to a later part of this work.

2.4.2 Learning Tasks

Learning graphical models from training data is a way to find among a

large class of possible models a single one that is best is some sense for

2.4. Inference and Learning Tasks 17

Fig. 2.8 Test image x to be classified,
384-by-256 pixels. (Image source: Dave

Conner, http://www.flickr.com/photos/

conner395/2182057020/)

Fig. 2.9 Ground truth annotation (24-by-16
blocks of 16-by-16 pixels). The ground truth

annotation of 108 images is used to learn a

2400-dimensional parameter vector w.

Fig. 2.10 Visualization of the marginal dis-

tribution p(Yi = 1|x,w), where Yi = 1 de-

notes a man-made structure. Probabilities
close to one are dark, probabilities close to

zero are white.

Fig. 2.11 Visualization of the MAP predic-

tion y∗ = argmaxy∈Y p(Y = y|x,w).

the task at hand. In general, the notion of learning in graphical models

is slightly ambiguous because each part of a graphical model – random

variables, factors, and parameters – can in principle be learned from

data. In this tutorial, as in most computer vision applications, we as-

sume that the model structure and parameterization are specified man-

ually, and learning amounts to finding a vector of real-valued parame-

ters. We will also only consider supervised learning, that is we assume

a set {(xn, yn)}n=1,...,N of fully observed independent and identically

distributed (i.i.d .) instances from the true data distribution d(X,Y) to

18 Graphical Models

be given to us, which we will use to determine w∗.

Problem 3 (Probabilistic Parameter Learning). Let d(y|x) be

the (unknown) conditional distribution of labels for a problem to be

solved. For a parameterized conditional distribution p(y|x,w) with pa-

rameters w ∈ RD, probabilistic parameter learning is the task of finding

a point estimate of the parameter w∗ that makes p(y|x,w∗) closest to

d(y|x) for every x ∈ X .

If for a specific prediction task we know which loss function ∆ to use

at prediction time, and if we decide on MAP-prediction as the decision

rule we will follow, we can alternatively aim at learning by expected

loss minimization.

Problem 4 (Loss-Minimizing Parameter Learning). Let d(x, y)

be the unknown distribution of data in labels, and let ∆ : Y × Y → R
be a loss function. Loss minimizing parameter learning is the task of

finding a parameter value w∗ such that the expected prediction risk

E(x,y)∼d(x,y)[∆(y, fp(x))] (2.30)

is as small as possible, where fp(x) = argmaxy∈Y p(y|x,w∗).

We will describe approaches to solve both learning problems

in Probabilistic Parameter Learning and Prediction-based Parameter

Learning. The first is probabilistic parameter learning based on the

principle of maximum likelihood estimation. The second is prediction-

based parameter learning here only the MAP predictions of the model

are used to learn the parameters.

3

Inference in Graphical Models

We now discuss popular methods used to solve the probabilistic infer-

ence problem in discrete factor graph models. For general factor graphs

this problem is known to be NP-hard, but for graphs that do not con-

tain cycles the problem can be solved efficiently.

For graphs with cycles a number of approximate inference methods

have been proposed that provide approximate answers. These approx-

imate inference methods can be divided into two groups, deterministic

approximations which are solved exactly, and Monte Carlo based ap-

proximations.

We start to explain the popular belief propagation method which is

exact for acyclic graphs and provides an approximation in the general

case.

3.1 Belief Propagation and the Sum-Product Algorithm

The sum-product algorithm [Kschischang et al., 2001; MacKay, 2003] is

a dynamic programming algorithm that given a discrete distribution in

the form (2.5) computes the normalizing constant Z and the marginal

distributions p(yi) and p(yF) for all variables i ∈ V and factors F ∈ F ,

19

20 Inference in Graphical Models

respectively.

The original algorithm is defined for tree-structured1 factor graphs

and provides the exact solution. When the algorithm is modified to

work with general factor graphs it is known as loopy belief propagation

and it provides only an approximation to Z and the marginals. We first

discuss the exact algorithm and then the extension to the general case.

For numerical reasons we describe the algorithm in terms of log-factors,

i.e. by using logψF = −EF . We will discuss implementation caveats

later.

The way the algorithm works is by computing vectors termed “mes-

sages” for each edge in the factor graph. In particular, each edge

(i, F) ∈ E has two such vectors associated with it,

(1) qYi→F ∈ RYi , the variable-to-factor message, and

(2) rF→Yi ∈ RYi , the factor-to-variable message.

When the algorithm has finished computing all these messages, then

the quantities of interest – Z and the marginal distributions p(yi) and

p(yF) – are simple to compute.

Let us first take a look how each individual message is computed,

then we will discuss the order of computing messages.

3.1.1 Computing the Messages

For computing the variable-to-factor message, we define the set M(i)

of factors adjacent to variable i as

M(i) = {F ∈ F : (i, F) ∈ E}, (3.1)

similar to how N(F) has been defined as set of variables adjacent to

F . Then, the variable-to-factor message is computed as

qYi→F (yi) =
∑

F ′∈M(i)\{F}

rF ′→Yi(yi). (3.2)

This computation is visualized in Figure 3.1: the incoming message

vectors rF ′→Yi , except the message rF→Yi coming from F , are added to

1A factor graph is tree-structured if it is connected and does not contain a cycle.

3.1. Belief Propagation and the Sum-Product Algorithm 21

yield the outgoing message qYi→F . If there is no term in the summation

the message is simply the all-zero vector.

Likewise the factor-to-variable message is computed as follows.

rF→Yi(yi) = log
∑

y′F∈YF ,
y′i=yi

exp

−EF (y′F) +
∑

j∈N(F)\{i}

qYj→F (y′j)

 .

(3.3)

Figure 3.2 illustrates the computation: the incoming variable-to-factor

messages from every edge except the one we are computing the mes-

sage for are combined to yield the outgoing factor-to-variable message.

Here the computation (3.3) is more complex than (3.2) because we

additionally sum over the states of all adjacent variables.

Yi

qYi→F

F
...

rA→Yi

rB→Yi
rF→Yi

A

B

Fig. 3.1 Visualization of the computation

of the variable-to-factor message qYi→F by
Equation (3.2).

rF→Yi

F
...

qYj→F

qYk→F
qYi→F

Yi

Yj

Yk

Fig. 3.2 Visualization of the computation

of the factor-to-variable message rF→Yi
by

Equation (3.3).

3.1.2 Message ordering

The equations (3.2) and (3.3) for computing the messages depend on

previously computed messages. The only messages that do not depend

on previous computation are the following.

• The variable-to-factor messages in which no other factor is

adjacent to the variable; then the summation in (3.2) is

empty and the message will be zero.
• The factor-to-variable messages in which no other variable

is adjacent to the factor; then the inner summation in (3.3)

will be empty.

For tree-structured factor graphs there always exist at least one such

message that can be computed initially. The computed message in turn

22 Inference in Graphical Models

enables the computation of other messages. Moreover, we can order all

message computations in such a way that we resolve all dependencies

and eventually have computed all messages.

For tree-structured graphs this corresponds to the scheme shown in

Figure 3.3 and 3.4. We first designate an arbitrary variable node – here

we chose Ym – as the “tree root”. Then we compute all messages di-

rected towards the root, starting with the leaf nodes of the factor graph

because these are the only messages we can initially compute. We com-

pute the remaining messages in an order that follows the leaf-to-root

structure of the tree. Let us therefore call this step the “leaf-to-root”

phase. From Figure 3.3 it is clear that for each message computation

we will always have previously computed the information it depends

upon.

Once we have reached the root Ym we reverse the schedule as shown

in Figure 3.4 and again we are sure to previously have computed the

information the message depends on. When we terminate this “root-to-

leaf” phase we have finished computing all messages. Moreover we have

not performed any duplicate computation. Let us now discuss how to

compute the partition function and marginals from the messages.

F

YjYi

YlYk

YmB

D E

C

A

1.

2.

3. 5.

4.

6. 8.

7.

9.

10.

Fig. 3.3 One possible leaf-to-root message

schedule in the sum-product algorithm.

Factor-to-variable messages are drawn as
arrows, variable-to-factor messages as dot-

ted arrows. The tree is rooted in Ym and

the node is marked with a dashed circle.

F

YjYi

YlYk

YmB

D E

C

A

10.

9.

8. 6.

7.

5. 3.

4.

2.

1.

Fig. 3.4 The root-to-leaf message sched-

ule, the reverse of the schedule shown in

Figure 3.3. Note that all edges now pass
the message of type opposite of what they

passed in the leaf-to-root phase. Thus, for

each edge both message types are available.

3.1. Belief Propagation and the Sum-Product Algorithm 23

3.1.3 Computation of the Partition Function and Marginals

The partition function Z can be computed as soon as the leaf-to-root

phase is finished. Because the value of Z can become very large we

usually work with the log-partition function logZ. We can compute it

by summing all factor-to-variable messages directed to the tree root Yr
as follows.

logZ = log
∑
yr∈Yr

exp

 ∑
F∈M(r)

rF→Yr(yr)

 . (3.4)

Once we have completed the root-to-leaf phase we can use the mes-

sages and the computed value of logZ to compute marginals for factors

and variables as follows. The factor marginals take the form

µF (yF) = p(YF = yF) = exp

−EF (yF) +
∑

i∈N(F)

qYi→F (yi)− logZ

 ,

(3.5)

for each factor F ∈ F and state yF ∈ YF . Equation (3.5) is visualized

in Figure 3.5. Likewise, the variable marginals are computed as

p(Yi = yi) = exp

 ∑
F∈M(i)

rF→Yi(yi)− logZ

 , (3.6)

for each variable Yi and value yi ∈ Yi. The computation is visualized

in Figure 3.6.

3.1.4 Implementation caveats

Having explained all the necessary ingredients, we are now able to give

the full belief propagation algorithm for tree-structured factor graphs,

shown in Algorithm 1 on page 44.

The algorithm is straight-forward to implement but requires some

care when computing (3.3), (3.4), (3.5), and (3.6): the naive computa-

tion of the log-sum-exp expression with large numbers leads to numer-

ical instabilities that quickly amplify across the recursive computation.

This problem is mitigated by using the identity

log
∑
i

exp(vi) = α+ log
∑
i

exp(vi − α), (3.7)

24 Inference in Graphical Models

qYi→F

F

Yi

YkYj

qYk→FqYj→F

...

.

Fig. 3.5 Visualization of the computation of

the marginal distribution at factor node F ,
Equation (3.5).

rA→Yi

...

.

. . .

rB→Yi rC→Yi

A

B C

Yi

Fig. 3.6 Visualization of the computation

of the marginal distribution at variable Yi,
Equation (3.6).

for all α ∈ R. By setting α = maxi vi for each log-sum-exp expression

in (3.3)-(3.6) and using the right hand side of the identity to evaluate

the left hand side expression we obtain a numerically stable method.

Example 3.1 (Pictorial Structures). The pictorial structures

model first proposed by Fischler and Elschlager [1973] models objects

as individual parts with pairwise relations between parts. For each

part an appearance model is used to evaluate an energy for each

possible position that part can take. The pairwise relations between

parts encourage parts to take pairwise likely configurations.

The example in Figure 3.7 and 3.8 shows a pictorial structures

model for a person taken from [Felzenszwalb and Huttenlocher, 2000].

It uses eleven different body parts and the pairwise relations roughly

follow the skeletal structure of the human body: the left and right arm

as well as the left and right leg are connected to the torso.

In order to use the model, we need to provide an appearance model

in the form of an energy E
F

(1)
top

(ytop;x) for each body part (top, head,

torso, etc.), where x is the observed image and y takes labels from a

large discretized pose space. In [Felzenszwalb and Huttenlocher, 2000]

the pose space is a four tuple (x, y, s, θ), where (x, y) are the abso-

lute image coordinates, s is a scale, and θ is the rotation of the part.

3.2. Loopy Belief Propagation 25

Furthermore we need to provide pairwise energies E
F

(2)
top,head

(ytop, yhead)

encoding which pairwise relations between pairs of parts are preferred.

Given a new test image, we can use the belief propagation algo-

rithm for tree-structured graphs to perform inference over the model

in time O(kL2) where k is the number of parts and L is the number

of possible labels for each part variable. Because the labels arise from

discretizing a continuous pose space, L is typically large (L = 500, 000

in the original model of Felzenszwalb and Huttenlocher) and therefore

computing (3.2) or (3.19) is too expensive to be practical.

Felzenszwalb and Huttenlocher [2000] make this computation

tractable by restricting the pairwise energy functions to be of the form

E
F

(2)
a,b

(ya, yb) = ‖Uab(ya)− Uba(yb)‖, (3.8)

where ‖ · ‖ is a norm and Uij , Uji are arbitrary maps, mapping the

labels into a fixed Euclidean space Rn. With this choice, Felzenszwalb

and Huttenlocher show that it is possible to compute (3.2) and (3.19)

in O(L), yielding an overall inference complexity of O(kL). Different

choices of Uij and norms allow for flexible pose relations. Details can be

found in the original paper. Andriluka et al. [2009] extend the original

model and discuss in detail the training of the model.

3.2 Loopy Belief Propagation

Belief propagation can be applied to tree-structured factor graphs and

provides an exact solution to the probabilistic inference problem. When

the factor graph is not tree-structured but contains one or more cycles,

the belief propagation algorithm is not applicable as no leaf-to-root

order can be defined. However, the message equations (3.2) and (3.3)

remain well-defined. Therefore, we can initializing all messages to a

fixed value and perform the message updates iteratively in a fixed or

random order to perform computations “similar” to the original ex-

act algorithm on trees. The resulting algorithm is named loopy belief

propagation.

The loopy belief propagation algorithm made approximate inference

possible in previously intractable models [Frey and MacKay, 1997]. The

empirical performance was consistently reported to be excellent across

26 Inference in Graphical Models

Fig. 3.7 Visualization of a labeling as

produced by pictorial structures (Image
source: http://www.flickr.com/photos/

lululemonathletica/3908348636/).

. . .

Ytop

Yhead

YtorsoYrarm

Yrhnd

Yrleg

Yrfoot Ylfoot

Ylleg

Ylarm

Ylhnd

X

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

F
(1)

top

F
(2)

top,head

Fig. 3.8 Pictorial structure model of Felzen-

szwalb and Huttenlocher [2000] for person
recognition. Each part-variable takes as la-

bel a discretized tuple (x, y, s, θ) of position,

scale, and rotation states.

a wide range of problems and the algorithm is perhaps the most pop-

ular approximate inference algorithm for discrete graphical models. In

practise, the algorithm does not always converge. If it fails to converge

then the beliefs are a poor approximations to the true marginals. The

convergence problem and the encouraging positive results remained

poorly understood and the theoretical analysis of loopy belief propa-

gation initially lagged behind until Yedidia et al. [2004] showed a close

connection between the so called Bethe free energy approximation in

physics and the loopy belief propagation algorithm [Mézard and Mon-

tanari, 2009]. It is now known that if the algorithm converges then it

converged to a fix-point of the Bethe free energy and this connection

has been fruitfully used to derive a family of similar algorithms [Heskes,

2006; Wainwright and Jordan, 2008; Werner, 2010], some of which can

ensure convergence to a fix point.

3.2. Loopy Belief Propagation 27

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Fig. 3.9 Passing factor-to-variable messages
rF→Yi

by equation (3.3).

Yi Yj Yk

Yl Ym Yn

Yo Yp Yq

A B

F G

K L

C D E

H I J

Fig. 3.10 Passing variable-to-factor mes-
sages qYi→F by equations (3.9)-(3.11).

3.2.1 Computing the Messages and Marginals

Compared to belief propagation on trees the equations used to com-

pute messages in loopy belief propagation change slightly. Whereas the

factor-to-variable messages rF→Yi are computed as before, the variable-

to-factor messages are normalized in every iteration as follows.

q̄Yi→F (yi) =
∑

F ′∈M(i)\{F}

rF ′→Yi(yi), (3.9)

δ = log
∑
yi∈Yi

exp(q̄Yi→F (yi)), (3.10)

qYi→F (yi) = q̄Yi→F (yi)− δ. (3.11)

The approximate marginals – often named beliefs in the loopy be-

lief propagation literature – are computed as before but now a factor-

specific normalization constant zF is used. The factor marginals can be

28 Inference in Graphical Models

computed at any point in time as follows.

µ̄F (yF) = −EF (yF) +
∑

j∈N(F)

qYj→F (yj), (3.12)

zF = log
∑

yF∈YF

exp(µ̄F (yF)), (3.13)

µF (yF) = exp(µ̄F (yF)− zF). (3.14)

In addition to the factor marginals the algorithm also computes the

variable marginals in a similar fashion.

µ̄i(yi) =
∑

F ′∈M(i)

rF ′→Yi(yi), (3.15)

zi = log
∑
yi∈Yi

exp(µ̄i(yi)), (3.16)

µi(yi) = exp(µ̄i(yi)− zi). (3.17)

In the original belief propagation algorithm the exact normalizing

constant Z is computed at the tree root and applied as normalization

constant throughout the tree. For loopy belief propagation this is not

possible because the local normalization constant zF differs at each

factor. Instead, an approximation to the log partition function logZ is

computed from the Bethe free energy interpretation as follows [Yedidia

et al., 2004].

logZ =
∑
i∈V

(|M(i)| − 1)

∑
yi∈Yi

µi(yi) logµi(yi)

 (3.18)

−
∑
F∈F

∑
yF∈YF

µF (yF) (EF (yF) + log µF (yF)) .

One possible implementation of loopy belief propagation is Algo-

rithm 2 on page 45. In each main iteration of the algorithm all factor-

to-variable messages and all variable-to-factor messages are computed

for all edges of the factor graph, as shown in Figure 3.9 and 3.10.

3.2.2 Max-product/Max-sum Algorithm

The belief propagation algorithm can also be used to perform MAP

inference. As for probabilistic inference it is exact in case the factor

3.2. Loopy Belief Propagation 29

graph is a tree. For graphs with cycles it provides an approximation.

The MAP inference version of belief propagation is also known as max-

product algorithm; the version working directly on the energies as the

max-sum algorithm and min-sum algorithm. We will describe the max-

sum version of the algorithm.

The basic idea to derive the max-sum algorithm is to replace the

marginalization performed in (3.3) by a maximization. Additionally

the messages are shifted to prevent numerical problems due to large

numbers forming from accumulation of messages, although this is not

essential to the algorithm. Together this yields the following messages.

The factor-to-variable message perform maximization over the

states of the factor as

rF→Yi(yi) = max
y′F∈YF ,
y′i=yi

−EF (y′F) +
∑

j∈N(F)\{i}

qYj→F (y′j)

 . (3.19)

The variable-to-factor message are identical to the sum-product version

but the normalization moves the mean of the message to zero.

q̄Yi→F (yi) =
∑

F ′∈M(i)\{F}

rF ′→Yi(yi), (3.20)

δ =
1

|Yi|
∑
yi∈Yi

q̄Yi→F (yi), (3.21)

qYi→F (yi) = q̄Yi→F (yi)− δ. (3.22)

The variable max-beliefs are no longer interpretable as marginals but

instead µi(yi) describes the maximum negative energy achievable when

fixing the variable to Yi = yi.

µi(yi) =
∑

F ′∈M(i)

rF ′→Yi(yi), (3.23)

To recover a joint minimum energy labeling, we select for each variable

Yi the state yi ∈ Yi with the maximum max-belief,

y∗i = argmax
yi∈Yi

µi(yi), ∀i ∈ V. (3.24)

The overall procedure is shown in Algorithm 3 on page 46. The

structure of the algorithm is the same as that of the sum-product ver-

30 Inference in Graphical Models

sion and both the sum-product and max-sum algorithms are typically

implemented as one algorithm, differing only in the message updates.

3.2.3 Further reading on Belief Propagation

For a more detailed review of the belief propagation algorithms and

proofs of its correctness for tree-structured factor graphs, see [Barber,

2011; Yedidia et al., 2004; MacKay, 2003; Kschischang et al., 2001].

Alternative message schedules are discussed in [Elidan et al., 2006].

Different message passing algorithms that are guaranteed to converge

have been proposed [Yuille, 2002; Kolmogorov, 2006], an overview of

different variants and recent results is available in [Meltzer et al., 2009].

A number of generalizations, including the expectation propagation al-

gorithm have been proposed, for a discussion, see [Heskes, 2006; Minka,

2005].

The max-sum version of loopy belief propagation performs well in

practice but its behavior remains poorly understood. For this reason

alternative algorithms such as tree-reweighted message passing [Kol-

mogorov, 2006], generalized max-product [Sontag et al., 2008b], and

max-sum diffusion [Werner, 2007] have been proposed. They come with

strong convergence guarantees and additionally provide not only an ap-

proximate MAP labeling but also a lower bound on the best achievable

energy.

An early work using belief propagation in computer vision for super-

resolution is [Freeman et al., 2000]. Felzenszwalb and Huttenlocher

[2006] showed that the efficiency of belief propagation can be increased

when using special types of factors. Then the messages (3.3) and (3.19)

can be computed using the fast Fourier transform or a specialized max-

imization algorithm, respectively. Similarly, Potetz [2007] has shown

how a flexible class of higher-order factors useful for low-level vision –

so called linear constraint nodes – can be used efficiently within belief

propagation.

3.3 Mean field methods

For general discrete factor graph models, performing probabilistic in-

ference is hard. Mean field methods perform approximate probabilistic

3.3. Mean field methods 31

inference by searching within a tractable subset of distributions for the

distribution which best approximates the original distribution [Jordan

et al., 1999; Wainwright and Jordan, 2008].

One way of finding the best approximating distribution is to pose

it as an optimization problem over probability distributions: given a

distribution p(y|x,w) and a family Q of tractable distributions q ∈ Q
on Y, we want to solve

q∗ = argmin
q∈Q

DKL(q(y)‖p(y|x,w)), (3.25)

where DKL is the Kullback-Leibler divergence between two probability

distributions.

If the set Q is rich enough to contain a close approximation to

p(y|x,w) and we succeed at finding it, then the marginals of q∗ will

provide a good approximation to the true marginals of p(y|x,w) that

are intractable to compute.2

Assume that the set Q is given. Then the relative entropy

DKL(q(y)‖p(y|x,w)) can be rewritten as follows.

DKL(q(y)‖p(y|x,w)) (3.26)

=
∑
y∈Y

q(y) log
q(y)

p(y|x,w)
(3.27)

=
∑
y∈Y

q(y) log q(y)−
∑
y∈Y

q(y) log p(y|x,w) (3.28)

= −H(q) +
∑
F∈F

∑
yF∈YF

µF,yF (q)EF (yF ;xF , w) + logZ(x,w), (3.29)

where H(q) = −∑y∈Y q(y) log q(y) is the entropy of the distribution

q and µF,yF =
∑

y∈Y,[y]N(F)=yF
q(y) is the marginal distribution of q

on the variables N(F). The exact form of this expression depends on

the family Q and we will see an example below for the so called naive

mean field approximation. The term logZ(x,w) is the log partition

function of p. Note that this term does not depend on q and there-

2The minimization direction DKL(q‖p) – the so called information projection – of the
KL-divergence is important: minimizing DKL(p‖q) – the so called moment projection is
desirable but intractable. The difference is explained in [Minka, 2005].

32 Inference in Graphical Models

fore it is not necessary to compute logZ(x,w) in order to minimize

DKL(q(y)‖p(y|x,w)).

Suppose we minimized the above expression. By the knowledge that

for any distribution q we are guaranteed to have DKL(q(y)‖p(y|x,w)) ≥
0, the so called Gibbs inequality, we obtain the following mean field

lower bound on the log partition function.

logZ(x,w) ≥ H(q)−
∑
F∈F

∑
yF∈YF

µF,yF (q)EF (yF ;xF , w). (3.30)

Therefore, the mean field method provides as inference results not only

approximate marginals µ but also a lower bound on the true log par-

tition function. Typically, the larger the approximating family Q, the

stronger this lower bound becomes. Let us take a look at the most

popular mean field method, the so called naive mean field method.

3.3.1 Naive mean field

In naive mean field, we take as the set Q the set of all factorial distri-

butions, in the form

q(y) =
∏
i∈V

qi(yi). (3.31)

This approximating distribution is visualized in Figure 3.11 and 3.12.

For factorial distributions the entropy H(q) decomposes as a sum over

per-variable entropies, i.e.

H(q) =
∑
i∈V

Hi(qi) = −
∑
i∈V

∑
yi∈Yi

qi(yi) log qi(yi). (3.32)

Likewise, the factor marginals µF,yF (q) decompose as the product of

the variable marginals with

µF,yF (q) =
∏

i∈N(F)

qi(yi). (3.33)

Plugging (3.32) and (3.33) into the divergence objective (3.29) yields

3.3. Mean field methods 33

Fig. 3.11 Original intractable factor graph

model p(y).

qe qf qg

qjqiqh

qk ql qm

Fig. 3.12 Factorial naive mean field approx-

imation q(y) =
∏
i∈V qi(yi).

the following variational inference problem.

argminq∈Q DKL(q(y)‖p(y|x,w)) (3.34)

= argmaxq∈Q H(q)−
∑
F∈F

∑
yF∈YF

µF,yF (q)EF (yF ;xF , w)− logZ(x,w) (3.35)

= argmaxq∈Q H(q)−
∑
F∈F

∑
yF∈YF

µF,yF (q)EF (yF ;xF , w) (3.36)

= argmaxq∈Q

[
−
∑
i∈V

∑
yi∈Yi

qi(yi) log qi(yi) (3.37)

−
∑
F∈F

∑
yF∈YF

(∏
i∈N(F)

qi(yi)
)
EF (yF ;xF , w)

]
.

Where we optimize over all qi ∈ ∆i, the probability simplex defined

for each i ∈ V as qi(yi) ≥ 0, and
∑

yi∈Yi qi(yi) = 1. This problem is a

maximization problem in which the entropy term is concave and the

second term is non-concave due to products of variables occurring in the

expression. Therefore solving this non-concave maximization problem

globally is in general hard. However, when we hold all variables fixed

except for a single block qi ∈ ∆i, then we obtain the following tractable

concave maximization problem.

q∗i = argmax
qi∈∆i

[
−
∑
yi∈Yi

qi(yi) log qi(yi)

−
∑
F∈F ,
i∈N(F)

∑
yF∈YF

(∏
j∈N(F)\{i}

q̂j(yj)
)
qi(yi)EF (yF ;xF , w)

]
, (3.38)

34 Inference in Graphical Models

where q̂j(yj) = qj(yj) is held fixed and all constant terms not affected by

qi have been dropped, so that we only need to consider the neighbors of

variable i within (3.38). This maximization problem can be analytically

solved to obtain the optimal solution q∗i as

q∗i (yi) = exp

1−
∑
F∈F ,
i∈N(F)

∑
yF∈YF ,
[yF]i=yi

(∏
j∈N(F)\{i}

q̂j(yj)
)
EF (yF ;xF , w) + λ

 ,

(3.39)

with normalizing constant λ derived as Lagrange multiplier of the con-

straint
∑

yi∈Yi q
∗
i (yi) = 1, chosen as the unique value guaranteeing

unity,

λ = − log

∑
yi∈Yi

exp

(
1−

∑
F∈F ,
i∈N(F)

∑
yF∈YF ,
[yF]i=yi

(∏
j∈N(F)\{i}

q̂j(yj)
)
EF (yF ;xF , w)

) ,

(3.40)

where we define the empty product to be 1 in case we have N(F)\{i} =

∅. The quantities involved in updating a single variable distribution

are visualized in Figure 3.13. For each i ∈ V the update of qi can be

carried out efficiently, effectively optimizing (3.37) by block coordinate

ascent. Because the objective (3.37) is differentiable the alternating

optimization is known to converge to a locally optimal solution.

The mean field approach has a long history for inference in sta-

tistical models in general and in computer vision in particular. It has

been used parameter estimation in Markov random fields in the early

1990’ies, [Geiger and Yuille, 1991], and more recently to learn the pa-

rameters of conditional random fields in image segmentation, [Vish-

wanathan et al., 2006], and stereo depth estimation, [Weinman et al.,

2008].

To improve the approximation of naive mean field we can take

factorial distributions where each component is a larger subgraph of

the original factor graph. This leads to the structured mean field ap-

proach [Saul and Jordan, 1995]. An example is shown in Figure 3.14

where three chain-structured subgraphs are used and the shaded fac-

tors are removed from the approximating distribution. The resulting

3.4. Sampling 35

q̂f

q̂jqiq̂h

q̂l

F

µF

Fig. 3.13 Updating a single variable dis-

tribution qi in naive mean field: the fac-

tor marginals µF are taken as product of
variable marginals q̂h and qi. By fixing q̂h
and the other involved variable distribu-

tions, the remaining distribution qi can be
optimized over analytically.

Fig. 3.14 Structured mean field approxima-

tion by taking larger tractable subgraphs

of the factor graph. Here three chains are
used and six factors are approximated using

mean field. For each component the mean

field update can be performed efficiently if
inference for the component is tractable.

family Q of distributions is richer and therefore the approximation is

improved. Optimizing (3.29) is still efficient but compared to the naive

mean field approximation the entropies H(q) now decompose over the

subgraphs instead of individual variables. Each subgraph distribution

can be updated by means of probabilistic inference on that subgraph.

For details, see [Wainwright and Jordan, 2008]. Further generalizations

of the mean field approach are made in [Xing et al., 2003] and [Winn

and Bishop, 2005].

3.4 Sampling

Given a graphical model defining a probability distribution, we can

use sampling methods to approximate expectations of functions under

this distribution. That is, given p(y|x,w) and an arbitrary function

h : X × Y → R we can compute approximately the expected value of

h,

Ey∼p(y|x,w)[h(x, y)]. (3.41)

The ability to approximate (3.41) is important both for inference and

parameter learning. For example, to perform probabilistic inference we

define hF,zF (x, y) = JyF = zF K for all F and zF ∈ YF , obtaining

36 Inference in Graphical Models

marginal probabilities over factor states as

Ey∼p(y|x,w)[hF,zF (x, y)] = p(yF = zF |x,w). (3.42)

For probabilistic parameter learning discussed in Conditional Random

Fields, h is a feature map ψ : X × Y → Rd and we evaluate the ex-

pectation of the feature map under the model distribution. While the

computation of (3.41) subsumes the computation of marginal distribu-

tions and gradients of the log-partition function, it does not directly

allow the computation of logZ(x,w), the log partition function itself.

3.4.1 Monte Carlo

The idea of evaluating (3.41) by sampling is to approximate the full

expectation by means of a set of samples y(1), y(2), . . . , y(S) generated

from p(y|x,w). This is referred to as Monte Carlo approximation. We

have, for a sufficiently large number S of samples that the sample mean

approximates the true expectation,

Ey∼p(y|x,w)[h(x, y)] ≈ 1

S

S∑
s=1

h(x, y(s)). (3.43)

By the law of large numbers the approximation (3.43) converges

arbitrarily close to the exact expectation if we use sufficiently many

samples. For S independent samples the approximation error is then of

the order O(1/
√
S), independent of the dimensionality of the problem.

There are two problems, however. The first problem is that although we

know the error decreases with more samples, for a given required ap-

proximation accuracy we do not know how many samples are sufficient.

The second problem is that for a general graphical model obtaining ex-

act samples y(s) ∼ p(y|x,w) is a difficult problem itself.

Both problems can be mitigated by the use of the Markov Chain

Monte Carlo (MCMC) method that we discuss now.

3.4.2 Markov chain Monte Carlo

The basic idea of Markov chain Monte Carlo (MCMC) is to further ap-

proximate the approximation (3.43) by taking as y(s) not independent

3.4. Sampling 37

and identically distributed samples from p(y|x,w), but instead to use

a sequence y(1), y(2), . . . of dependent samples coming from a Markov

chain. These samples can be produced by evaluating the unnormalized

value of p(y|x,w), i.e. we are no longer required to compute the log

partition function. We first discuss briefly what a Markov chain is and

then give two popular Markov chains for sampling from a graphical

model.

Markov chains. Let us first briefly revisit the definition of a Markov

chain as a memoryless random process whose future states depend only

on the present state.

Definition 3.1 (Markov chain). Given a finite set Y and a matrix

P ∈ RY×Y , then a random process (Z1, Z2, . . .) with Zt taking values

from Y is a Markov chain with transition matrix P , if

p(Zt+1 = y(j)|Z1 = y(1), Z2 = y(2), . . . , Zt = y(t)) (3.44)

= p(Zt+1 = y(j)|Zt = y(t)) (3.45)

= Py(t),y(j) . (3.46)

Further details on Markov chains can be found in [Häggström, 2000].

The above definition is for the case when Y is finite. An introduction

to general Markov chains and their application to statistical inference

is considered in [Robert and Casella, 2004; Geyer, 1992].

In the above definition the values of Py(t),y(j) are the transition prob-

abilities of moving from state y(t) to state y(j). We can imagine the

Markov chain as a walk on a directed graph that has as vertices all

states Y and a directed edge y(i) → y(j) whenever Py(i),y(j) > 0. When

a Markov chain defined by P has two additional properties, irreducibil-

ity and aperiodicity, then it has a unique stationary distribution3 p(y)

that satisfies
∑

y(i)∈Y p(y
(i))Py(i),y(j) = p(y(j)) for all y(j) ∈ Y. The sta-

tionary distribution is the distribution we converge to when performing

a random walk according to P .

3Also called equilibrium distribution of the Markov chain.

38 Inference in Graphical Models

The key idea of Markov chain Monte Carlo is to construct a Markov

chain that has as its stationary distribution the true distribution of

interest. By simulating the Markov chain for a number of time steps

an approximate sample from the stationary distribution – the very

distribution we are interested in – can be obtained. The advantage of

doing so is that even in cases when it is hard to sample from the true

distribution we can still efficiently simulate a Markov chain having this

distribution as its stationary distribution.

By simulating the Markov chain long enough we obtain a single sam-

ple distributed approximately as p(y|x,w). By repeating the procedure

we could obtain an additional sample, but this would clearly be ineffi-

cient. Instead, in practise a single Markov chain is run for a large num-

ber of steps, taking a sequence of dependent samples y(1), y(2), . . . , y(t)

after each step, or every k steps, where k is usually small, say k = 3

or k = 10. Taking dependent samples from a Markov chain to evalu-

ate (3.43) is still justified because of the ergodic theorem that guaran-

tees that the influence of the initial and earlier iterate vanishes as we

make keep making MCMC moves. A detailed discussion can be found

in [Robert, 2001, section 6.3.1].

Let us now discuss how a suitable Markov chain can be constructed.

We discuss only the two most popular methods, the generally applicable

Metropolis-Hastings method, and the special case of the Gibbs sampler.

Metropolis-Hastings chains. Originally proposed by Metropolis

et al. [1953] and extended by Hastings [1970], the Metropolis-Hastings

chain is widely applicable. Given the target distribution p̃(y|x,w) ∝
p(y|x,w) up to normalizing constants and given an additional pro-

posal distribution q(y′|y) the Markov chain is defined as shown in Al-

gorithm 4.

3.4. Sampling 39

Algorithm 4 Metropolis-Hastings Chain

1: MetropolisHastingsChain(p̃, q)

2: Input:

3: p̃(y|x,w) ∝ p(y|x,w), unnormalized target distribution

4: q(y′|y), proposal distribution

5: Output:

6: y(t), sequence of samples with approximately y(t) ∼ p(y|x,w)

7: Algorithm:

8: y0 ← arbitrary in Y
9: for t = 1, . . . , T do

10: y′ ∼ q(y′|y(t−1)) {Generate candidate}
11: Compute acceptance probability

σ ← min

{
1,

p̃(y′|x,w)q(y(t−1)|y′)
p̃(y(t−1)|x,w)q(y′|y(t−1))

}
(3.47)

12: Update

y(t) ←
{

y′ with probability σ (accept),

y(t−1) otherwise (reject).
(3.48)

13: output y(t)

14: end for

Given a sample y(t) the algorithm iteratively samples from the pro-

posal distribution q(y′|y(t)) and either accepts or rejects the candidate

y′. In the computation only ratios of probabilities are used and hence

the log partition function in p(y|x,w) cancels out – equivalently, the

unnormalized distribution p̃(y|x,w) can be used.

The proposal distribution q(y′|y(t)) can be constructed in a number

of ways. A common method is to use a uniform distribution over a small

set of variations of the current sample y(t), for example by allowing

a single variable in y(t) to change its value. The Metropolis-Hastings

method is so general that many variations have been proposed; for an

in-depth review see [Liu, 2001].

40 Inference in Graphical Models

Gibbs sampler. The Gibbs sampler, first proposed by Geman and

Geman [1984] is a special case of the Metropolis-Hastings chain in which

each proposal is always accepted. The basic idea is that while sam-

pling from p(y|x,w) is hard, sampling from the conditional distribu-

tions p(yi|yV \{i}, x, w) over small subsets of variables can be performed

efficiently. By iteratively sampling variables from these distributions,

conditioned on the state of the current sample, it is possible to show

that the process defines a Markov chain with p(y|x,w) as stationary

distribution.

Algorithm 5 Gibbs Sampler

1: GibbsSampler(p̃)

2: Input:

3: p̃(y|x,w) ∝ p(y|x,w), unnormalized target distribution

4: Output:

5: yt, sequence of samples with approximately y(t) ∼ p(y|x,w)

6: Algorithm:

7: y(0) ← arbitrary in Y
8: for t = 1, . . . , T do

9: y(t) ← y(t−1)

10: for i ∈ V do

11: Sample y
(t)
i ∼ p(yi|y

(t)
V \{i}, x, w) using (3.49)

12: end for

13: output y(t)

14: end for

In the algorithm, sampling from the conditional distribution is fea-

sible because it only requires the unnormalized distribution p̃ and nor-

malization over the domain of a single variable,

p(yi|y(t)
V \{i}, x, w) =

p(yi, y
(t)
V \{i}|x,w)∑

yi∈Yi p(yi, y
(t)
V \{i}|x,w)

=
p̃(yi, y

(t)
V \{i}|x,w)∑

yi∈Yi p̃(yi, y
(t)
V \{i}|x,w)

.

(3.49)

One possible Gibbs sampler using a fixed order on the variables is

shown in Algorithm 5. Performing the conditional sampling once on

each variable is called a sweep, and this sampler outputs a new sample

3.4. Sampling 41

y(t) after each sweep. An application of this simple implementation is

shown in Example 3.2. For discrete models the single site Gibbs sampler

can be improved by minor changes to become the metropolized Gibbs

sampler [Liu, 2001, section 6.3.2], that is provably more efficient.

Example 3.2 (Gibbs sampling). We revisit the probabilistic infer-

ence problem of Example 2.1 where we visualized the posterior node

marginals as shown in Figure 3.16 for the input image shown in Fig-

ure 3.15.

We run Algorithm 5 on the model distribution and visualize the

convergence of the marginal foreground probability of the marked pixel

in Figure 3.16. In particular, Figure 3.17 shows the cumulative mean

as more and more samples are collected from the Gibbs sampler. The

final probability is estimated to be 0.770. To get an idea of the behav-

ior of this estimate, we repeat this experiment 50 times and visualize

the different cumulative means in Figure 3.18. The estimated standard

deviation is shown in Figure 3.19.

Fig. 3.15 Input image for man-made struc-

ture detection.

Fig. 3.16 Estimated posterior foreground

marginals with marked pixel.

Examples of Monte Carlo sampling in computer vision. The

Marr prize-winning work of Tu et al. [2005] on hierarchical semantic

image parsing makes use of sophisticated Monte Carlo techniques to

jointly infer a hierarchical decomposition of a given image into compo-

nents such as text, faces, and textures. Sampling based inference is also

42 Inference in Graphical Models

0 500 1000 1500 2000 2500 3000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Cummulative mean

p
(f

o
re

g
ro

u
n

d
)

Gibbs sweep

Fig. 3.17 Running mean of the estimated foreground probability of the marked pixel, pro-

duced by a simple Gibbs sampler running for 3,000 Gibbs sweeps after a burn-in phase of

100 sweeps.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1
Gibbs sample means and average of 50 repetitions

E
s
ti
m

a
te

d
 p

ro
b

a
b

ili
ty

Gibbs sweep

Fig. 3.18 A collection of 50 sample traces. The mean of the traces is shown in red. Using

multiple sample traces allows an estimate of the sampler variance by the variance of the

sample traces. After 3,000 sweeps the probability is estimated to be 0.770 with one unit
standard deviation of 0.011.

popular in continuous random field models where exact inference is in-

tractable. An example is the influential FRAME texture model of Zhu

et al. [1998] and continuous MRF natural image models [Schmidt et al.,

2010]. An efficient sampler can also be used for approximate MAP in-

ference by means of simulated annealing, a point we elaborate on in the

next part.

Further reading. An introduction into MCMC methods for the use

in machine learning is given in [Murray, 2009]. Markov chains and

3.4. Sampling 43

0 500 1000 1500 2000 2500 3000
0

0.05

0.1

0.15

0.2

0.25
Estimated one unit standard deviation

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n

Gibbs sweep

Fig. 3.19 Estimated standard deviation of the sampler result, in the order of O(1/
√
n) for

n samples.

MCMC methods for discrete models such as the discrete factor graphs

are discussed in the tutorial [Häggström, 2000]. A broader view on

MCMC methods for general statistical models is provided in [Robert

and Casella, 2004]. A general introduction into Monte Carlo techniques

and their wide applicability in science as well as guidelines on designing

efficient samplers can be found in [Liu, 2001]. This reference also dis-

cusses importance sampling and sequential importance sampling, the

other main branch of sampling methods that we have not described.

Liang et al. [2010] summarizes more recent advances, including adap-

tive MCMC algorithms.

44 Inference in Graphical Models

Algorithm 1 Belief Propagation on Trees

1: (logZ, µ) = BeliefPropagation(V,F , E , E)

2: Input:

3: (V,F , E), tree-structured factor graph,

4: E, energies EF for all F ∈ F .

5: Output:

6: logZ, log partition function of p(y),

7: µ, marginal distributions µF for all F ∈ F .

8: Algorithm:

9: Fix an element of V arbitrarily as tree root

10: Compute leaf-to-root order R as sequence of directed edges of E
11: for i = 1, . . . , |R| do

12: if (v, F) = R(i) is variable-to-factor edge then

13: Compute qYi→F using (3.2)

14: else

15: (F, v) = R(i) is factor-to-variable edge

16: Compute rF→Yi using (3.3)

17: end if

18: end for

19: Compute logZ by (3.4)

20: Compute root-to-leaf order R′ = reverse(R)

21: for i = 1, . . . , |R′| do

22: if (v, F) = R′(i) is variable-to-factor edge then

23: Compute qYi→F using (3.2)

24: Compute µF using (3.5)

25: else

26: (F, v) = R′(i) is factor-to-variable edge

27: Compute rF→Yi using (3.3)

28: Compute p(yi) using (3.6)

29: end if

30: end for

3.4. Sampling 45

Algorithm 2 Loopy Belief Propagation (sum-product)

1: (logZ, µ) = SumProductLoopyBP(V,F , E , E, ε, T)

2: Input:

3: (V,F , E), factor graph,

4: E, energies EF for all F ∈ F ,

5: ε, convergence tolerance,

6: T , maximum number of iterations.

7: Output:

8: logZ, approximate log partition function of p(y),

9: µ, approximate marginal distributions µF for all F ∈ F .

10: Algorithm:

11: qYi→F (yi)← 0, for all (i, F) ∈ E , yi ∈ Yi
12: µF (yF)← 0, for all F ∈ F , yF ∈ YF
13: for t = 1, . . . , T do

14: for (v, F) ∈ F do

15: for yi ∈ Yi do

16: Compute rF→Yi(yi) using (3.3)

17: end for

18: end for

19: for (v, F) ∈ F do

20: for yi ∈ Yi do

21: Compute qYi→F (yi) using (3.9) to (3.11)

22: end for

23: end for

24: Compute approximate marginals µ′ using (3.12) to (3.17)

25: u← ‖µ′ − µ‖∞ { Measure change in beliefs }
26: µ← µ′

27: if u ≤ ε then

28: break { Converged}
29: end if

30: end for

31: Compute logZ using (3.18)

46 Inference in Graphical Models

Algorithm 3 Loopy Belief Propagation (max-sum)

1: y∗ = MaxSumLoopyBP(V,F , E , E, ε, T)

2: Input:

3: (V,F , E), factor graph,

4: E, energies EF for all F ∈ F ,

5: ε, convergence tolerance,

6: T , maximum number of iterations.

7: Output:

8: y∗, approximate MAP labeling y∗ ≈ argmaxy∈Y p(Y = y|x,w)

9: Algorithm:

10: qYi→F (yi)← 0, for all (i, F) ∈ E , yi ∈ Yi
11: µi(yi)←∞, for all i ∈ V, yi ∈ Yi
12: for t = 1, . . . , T do

13: for (v, F) ∈ F do

14: for yi ∈ Yi do

15: Compute rF→Yi(yi) using (3.19)

16: end for

17: end for

18: for (v, F) ∈ F do

19: for yi ∈ Yi do

20: Compute qYi→F (yi) using (3.20) to (3.22)

21: end for

22: end for

23: Compute variable max-beliefs µ′i using (3.23)

24: u← maxi∈V ‖µ′i − µi‖∞ { Measure change in max-beliefs }
25: µ← µ′

26: if u ≤ ε then

27: break { Converged}
28: end if

29: end for

30: Compute y∗ from max-beliefs using (3.24)

4

Structured Prediction

4.1 Introduction

In the previous parts of this tutorial we have discussed graphical models

and probabilistic inference. While graphical models are flexible, we can

generalize the way we make predictions using the setting of structured

prediction.

In structured prediction we have a prediction function f : X →
Y from an input domain X to a structured output domain Y. The

prediction function is defined in such a way that the actual prediction

f(x) for a given instance x ∈ X is obtained by maximizing an auxiliary

evaluation function g : X ×Y → R over all possible elements in Y, such

that

y∗ = f(x) := argmax
y∈Y

g(x, y). (4.1)

This is a generalization of the MAP inference task in graphical models.

For example, when the model of interest is the probabilistic model

p(y|x), we can view the problem of finding the element y∗ ∈ Y that

maximizes p(y|x) as an instance of (4.1) by defining g(x, y) = p(y|x).

Another example of (4.1) is the linear model g(x, y) = 〈w,ψ(x, y)〉
with parameter vector w and feature map ψ(x, y). Here, making a pre-

47

48 Structured Prediction

diction corresponds to maximizing 〈w,ψ(x, y)〉 over y.

Solving the maximization problem (4.1) efficiently is the topic of

this chapter. Because the pair (g,Y) defines the problem completely,

it is clear that all dependencies, constraints and relations of interest

are encoded in g or Y. As we will see, solving for y∗ exactly often

yields a hard optimization problem. Therefore, we will discuss is a set

of general approaches to approximate y∗ efficiently. A property shared

by all these approaches is that they make explicit and exploit certain

structure present in Y and g.

Although we highlight the successes of structured prediction meth-

ods within computer vision, at its core (4.1) is an optimization problem.

As such, we will also make connections to the relevant literature from

the optimization community.

4.2 Prediction Problem

We now formalize the above optimization problem and fix the notation

used throughout this chapter.

Definition 4.1 (Optimization Problem). Given (g,Y,G, x), with

feasible set Y ⊆ G over decision domain G, and given an input instance

x ∈ X and an objective function g : X ×G → R, find the optimal value

α = sup
y∈Y

g(x, y), (4.2)

and, if the supremum exists, find an optimal solution y∗ ∈ Y such that

g(x, y∗) = α.

We call G the decision domain and Y the feasible set. The reason for

separating the two sets is for convenience: we will usually have a set

G of simple structure – such as Rd – whereas Y will make explicit the

problem specific structure. We say that an optimization problem is

feasible if Y contains at least one element. In case we have Y = G, the

problem is said to be unconstrained.

If G is a finite set, then the optimization problem is said to be a

discrete optimization problem. Moreover, if G is the set of all subsets of

4.2. Prediction Problem 49

some finite ground set Σ, that is, we have G = 2Σ, then the optimization

problem is said to be a combinatorial optimization problem.

Clearly, if we are able to solve (4.2) we can evaluate f(x), the pre-

diction function of the model.

4.2.1 Parameterization and Feasible Sets

For a given structured prediction model there might exist different

ways of how the evaluation function g and the decision domain G can be

defined. To illustrate this point, consider the following classical example

used in image denoising.

Example 4.1 (Ising Model and Markov Random Field). The

Ising model is a popular physical model in statistical mechanics for

modeling interactions between particles. It has been used to model

image denoising tasks [Geman and Geman, 1984] and is the simplest

case of a Markov random field. The basic model is as follows.

Given an undirected connected graph G = (V,E), an interaction

matrix J ∈ RV×V with J = J>, and a vector h ∈ RV , the task is to

recover for each i ∈ V a binary state agreeing with the sign of hi as

well as the pairwise interaction terms.

In the original Ising model there are no observations x ∈ X .1 Two

possible formulations as structured prediction problem are given with

the following choices for G, Y, and g.

(1) Ising model with external field [Geman and Geman, 1984].

Y = G = {−1,+1}V , (4.3)

g(y) =
1

2

∑
(i,j)∈E

Ji,jyiyj +
∑
i∈V

hiyi, (4.4)

(2) Markov random field parameterization [Wainwright and Jor-

1We could introduce observational data into the model by making J and h functions of an
observation, i.e. J : X → RV×V and h : X → RV , such that in (4.4) and (4.5) we replace
J and h with J(x) and h(x), respectively.

50 Structured Prediction

dan, 2008].

G = {0, 1}(V×{−1,+1})∪(E×{−1,+1}×{−1,+1}), (4.5)

Y = {y ∈ G : ∀i ∈ V : yi,−1 + yi,+1 = 1, (4.6)

∀(i, j) ∈ E : yi,j,+1,+1 + yi,j,+1,−1 = yi,+1,

∀(i, j) ∈ E : yi,j,−1,+1 + yi,j,−1,−1 = yi,−1},

g(y) =
1

2

∑
(i,j)∈E

Ji,j(yi,j,+1,+1 + yi,j,−1,−1) (4.7)

−1

2

∑
(i,j)∈E

Ji,j(yi,j,+1,−1 + yi,j,−1,+1)

+
∑
i∈V

hi(yi,+1 − yi,−1)

Both formulations have the same optimal value and the same number

of elements in their feasible sets. While (1) is an unconstrained prob-

lem, its objective function is a quadratic function in the variables y.

In contrast, the parameterization chosen in (2) leads to an objective

function that is linear in y, at the cost of a more complicated feasible

set described by a collection of linear equality constraints.

The choice of parameterization is an important modeling decision

that affects the solution algorithm used to solve the prediction prob-

lem. As an example, in the above formulations, the prediction problem

resulting from the second formulation is an integer linear programming

problem that in turn lends itself to relaxation approaches. In contrast,

the first formulation could be used in a local search approach as it is

an unconstrained problem and its objective function can be evaluated

efficiently.

4.2.2 Objective Function

The objective function g(x, y) encodes everything relevant to judge the

quality of a solution y. In computer vision applications it is often the

case that a good prediction y shall satisfy multiple goals. For exam-

ple, if y corresponds to a segmentation of an image we would like y

to be aligned with image edges. But also we prefer solutions that are

4.3. Solving the Prediction Problem 51

smooth as measured for example by the mean curvature. Two or more

objectives might be contradicting each other and in order to perform

optimization as discussed in this chapter we need to use a single objec-

tive function.2

In general we often face the situation that we have multiple objective

functions g1 : X × Y → R, . . . , gK : X × Y → R and we define

g : X × Y → R as a linear combination

g(x, y) =

K∑
k=1

λkgk(x, y), (4.8)

where λk ≥ 0 are weights that determine the relative importance of

g1, . . . , gK . In practice the values of λ are often set manually. Another

popular method is to tune them on a hold-out set or by cross validation.

Another consideration when building an objective function is com-

putational complexity. During optimization the objective function is

evaluated repeatedly and therefore it should in general be efficient to

evaluate.

4.3 Solving the Prediction Problem

For many computer vision models, the prediction problem (4.1) is hard

to solve. Even conceptually simple models such as grid-structured bi-

nary state random fields give rise to NP-hard prediction problems. For

models that have prediction problems that are solvable in polynomial

time a naive enumeration approach might be computationally infeasible

and more efficient alternatives need to be developed to solve instances

of practical relevance.

For many hard prediction problem arising in computer vision there

has been considerable research effort in devising efficient solution al-

gorithms to obtain approximately optimal solutions. In all cases, the

hardness of the original problem remains but by giving up other algo-

rithmic properties a practical algorithm can be obtained.

We divide the existing approaches to solve the prediction problem

by what is being given up: generality, optimality, worst-case complexity,

2The field of multi-objective optimization deals with finding solutions of multiple objective
functions. The produced solutions satisfy a generalized notion of optimality.

52 Structured Prediction

integrality and determinism. Guarantees on all these properties are

desirable but for hard prediction problems cannot be achieved at the

same time.

Giving up generality refers to identifying from a given problem class

a subset of sufficiently rich problems that can be solved efficiently. The

hypothesis class is then restricted to only these prediction functions.

Giving up optimality means that the output of a solution algo-

rithm is no longer guaranteed to be optimal. Many iterative solution

approaches such as local search fall in this category.

Giving up worst-case complexity describes algorithms which might

be efficient and optimal for practical problem instances but lack a guar-

anteed worst-case complexity that is polynomial in the problem size.

Implicit enumeration methods such as branch-and-bound search belong

to this class of methods.

Giving up integrality subsumes all approaches in which the feasi-

ble set is enlarged in order to simplify the prediction problem, thereby

a relaxation to the original problem is obtained. We will discuss the

most common techniques to construct such relaxations, based on inte-

ger linear programming and mathematical programming decomposition

approaches.

By giving up determinism we mean algorithms that use random-

ness in order to obtain solutions that are optimal most of the times.

Classic techniques such as simulated annealing on distributions simu-

lated by Markov chains and recent randomized algorithms belong to

this category.

The above classification of algorithms is helpful in identifying ap-

proaches for a novel prediction problem. However, it is not a strict

classification and many methods used in computer vision fall in two or

more categories. We now discuss the five categories in detail and give

successful examples from computer vision for each.

4.4 Giving up Generality

Prediction problems that are hard in the general case often have special

cases that are tractable. For example, while MAP inference in general

graphical models is hard, we already mentioned the special case of tree-

4.4. Giving up Generality 53

structured graphical models that are solvable exactly. In this case the

special structural restriction makes the problem tractable. In contrast,

for some problems it is not the structure in the model but in the coef-

ficients that defines a tractable subclass.

One popular example in this category are binary random fields,

that are in general hard to optimize exactly. But for the special case in

which the pairwise interactions are restricted to be regular, the prob-

lem becomes efficiently solvable. The most efficient way to solve these

instances is by means of graph cuts, as we explain now.

4.4.1 Binary Graph Cuts

The binary graph cut method is able to globally minimize a restricted

class of energy functions on binary variables. To do this, an undirected

auxiliary graph is constructed from the energy function. This graph

contains two special nodes, the source s and the sink t, as well as a

non-negative weight for each edge. By solving for the minimum s–t cut

of the graph, that is, the cut separating the nodes s and t that has

the smallest overall weight, the optimal solution to the original energy

minimization problem can be obtained. Because the minimum s–t cut

problem can be solved very efficiently, the overall method scales to

millions of variables.

The class of binary energy functions amenable to graph cuts is of

the form

E(y;x,w) =
∑
F∈F1

EF (yF ;x,wtF) +
∑
F∈F2

EF (yF ;x,wtF), (4.9)

where F1 and F2 denote unary and pairwise factors, respectively. The

unary energies are restricted so as to satisfy

EF (yi;x,wtF) ≥ 0, (4.10)

and likewise for the pairwise energies it must hold that

EF (yi, yj ;x,wtF) = 0, if yi = yj , (4.11)

EF (yi, yj ;x,wtF) = EF (yj , yi;x,wtF) ≥ 0, otherwise. (4.12)

Therefore, the pairwise factors encourage their adjacent variables to

take the same state.

54 Structured Prediction

Given these assumptions, we construct the auxiliary graph as shown

in Figure 4.1. Each binary variable becomes one node in the graph, but

additionally we add a source node s and a sink node t. The variable

nodes are connected with pairwise undirected edges whenever there is

a pairwise factor in the factor graph. Additionally each variable node

is connected to both the source and sink nodes. To fully specify the

s–t min cut problem, we have to specify the edge weights for each edge

added. These are as shown in Table 4.1.

i j k

l m n

s

t

{i, s}

{i, t}

Fig. 4.1 Undirected graph cut construction of Boykov and Jolly [2001]. A source node (s)
and a sink node (t) are connected to all variable nodes. The undirected s-t cut of minimum

weight (shown in red) minimizes the energy (4.9). The optimal solution yi = yj = yl = 0,

yk = ym = yn = 1 is determined by the side of the cut each variable lies.

Edge Graph cut weight

{i, j} EF (yi = 0, yj = 1;x,wtF)

{i, s} EF (yi = 1;x,wtF)

{i, t} EF (yi = 0;x,wtF)

Table 4.1 Edge weights derived from the energy function (4.9). The graph construction
remains valid if negative energies are used in pairwise or unary factors, but in this case the

minimum s–t cut problem becomes NP-hard in general.

After solving the graph cut problem, we can reconstruct the mini-

mizing state of the energy (4.9) by determining which side of the cut

the variable lies on. Variable connected to the source s take the state 0,

and variables connected to the sink t have state 1. In case the solution

to (4.9) is not unique, we obtain only one of the minimizers.

4.4. Giving up Generality 55

The assumptions made on the energy function, (4.10) for the unary

energy terms, and (4.11)-(4.12) for the pairwise terms may appear quite

strict at first, but in fact a larger class of energy functions can be equiv-

alently transformed such as to satisfy them. For example, the unary

condition EF (yi;x,w) ≥ 0 can always be ensured by adding a constant

to both unary energies, that is, setting E′F (yi = 0;x,w) = EF (yi =

0;x,w) + C and E′F (yi = 1;x,w) = EF (yi = 1;x,w) + C, with a suf-

ficiently large constant C ≥ 0. Because this addition is made to both

states, only the value of the energy (4.9) is changed, but not the label-

ing minimizing it. Similar transformations can be made for the pairwise

energies, and a complete characterization of graph cut solvable binary

energy functions has been given by Kolmogorov and Zabih [2004] and

Freedman and Drineas [2005]. Their main results characterize general

energy functions involving interactions between two and three variables

with binary states by stating sufficient conditions such that a graph cut

problem can be constructed that has as minimizer the minimizer of the

energy function. In particular, for energy functions with only unary

and pairwise terms, Kolmogorov and Zabih [2004] show the following

theorem.

Theorem 4.1 (Regular Binary Energies). Let

E(y;x,w) =
∑
F∈F1

EF (yF ;x,wtF) +
∑
F∈F2

EF (yF ;x,wtF),(4.13)

be a energy function of binary variables containing only unary

and pairwise factors. The discrete energy minimization problem

argminy E(y;x,w) is representable as a graph cut problem if and only

if all pairwise energy functions EF for F ∈ F2 with F = {i, j} satisfy

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (4.14)

Such energies are called regular.

The conditions (4.14) can be understood as requiring that adjacent

nodes must have a lower energy if they are labeled with the same state

than when they have different states, a property often referred to as

“associative” or “attractive” potential. For interactions involving three

56 Structured Prediction

nodes, this holds if each projection onto two variables satisfies the above

condition. Details are given by Kolmogorov and Zabih [2004].

Once we have constructed the graph for an energy function, there

exist multiple algorithms to solve the corresponding min cut problem.

They have been reviewed in Boykov and Kolmogorov [2004]. Most im-

plementations rely on the fact that instead of the min cut one can solve

an equivalent max flow problem, which follows from linear program-

ming duality [Papadimitriou and Steiglitz, 1998].

Example 4.2 (Figure-ground image segmentation).

Foreground-background, or figure-ground, image segmentation can

naturally be formulated as MAP prediction of a binary energy func-

tion. We take X as the set of natural images and Y as the set of all

possible binary pixel labelings for the image where a predicted value

1 for a pixel indicates foreground and 0 indicates background. From

a suitably parametrized probability distribution p(y|x), we obtain a

prediction function

g(x, y, w) =
∑
i∈V

log p(yi|xi) + w
∑

(i,j)∈E

C(xi, xj)Jyi 6= yjK, (4.15)

where V is the set of pixels, E is the set of neighboring pixel pairs, w ≥ 0

is a scalar parameter, and p(yi|xi) is estimated using a color model of

the expected foreground class. The term C(xi, xj) ≥ 0 is a fixed penalty

function evaluating the intensity or color contrast between two adjacent

pixels i and j. A common choice is C(xi, xj) = exp(γ‖xi−xj‖2), where

γ is estimated from the mean edge strength in the image, as suggested

by Blake et al. [2004].

With this choice, the function (4.15) has only unary and pairwise

interactions between binary variables and the pairwise terms fulfill the

regularity conditions of Theorem 4.1. Consequently, we can find the

global maximizer of (4.15) by the graph cuts method.

Maximizing (4.15) strives to label each pixel with the preference

of the color model but also to not change the label unless there is an

edge in the image. Figures 4.2 and 4.3 show an example. By varying

the strength of the penalization one obtaines segmentations that are

smoother, but less detailed (Figure 4.4), or more detailed, but noisier

4.4. Giving up Generality 57

Fig. 4.2 A natural image to be segmented.

(Image source: http://pdphoto.org)
Fig. 4.3 Resulting foreground region.

Fig. 4.4 Left: heatmap of unary potential values. Right: segmentation masks for large w.

Fig. 4.5 Segmentation masks for medium and small w.

(Figure 4.5).

The identification of a tractable subclass of instances can be hard

in general. If the problem has a natural interpretation in terms of a

graph then structural properties of the graph could lead to tractable

classes. One example is in the context of MAP inference in graphical

models, where it is known that the MAP inference problem can be

solved with a complexity that is exponential in the so called treewidth

of the graph. Because tree-structured models have a treewidth of 1

58 Structured Prediction

these can be solved efficiently, but low treewidth graphs also remain

tractable.

Another example is graph planarity3. If a graph is planar many com-

binatorial optimization problems on the graph turn out to be tractable.

An efficient algorithm for a restricted class of binary planar MRFs has

been proposed by Schraudolph and Kamenetsky [2008a]. Outerplanar

MRFs have been used by Batra et al. [2010] to approximately solve

hard random field instances. Even in the case of polynomial-time solv-

able instances the computational complexity can be reduced by ex-

ploiting planarity, as shown by Schmidt et al. [2007, 2009]. Note that

planarity is distinct from treewidth in that a planar graph may have

high treewidth. For instance, an n-by-n grid graph has treewidth n but

is clearly planar.

Example 4.3 (Class-independent object hypotheses). The

computational complexity of object recognition in natural images can

often be reduced significantly, if one has a set of object hypothesis

regions available. Assuming that at least one of these will coincide well

with the object, learning and prediction need only consider a relatively

small number of reasonable candidate regions instead of having to

search the much larger set of all possible locations.

Carreira and Sminchisescu [2010] recently proposed the constrained

parametric min cuts (CPMC) method for generating class-independent

object hypotheses based on a collection of figure-ground segmentation

tasks. They define an energy function with contrast dependent pairwise

factors, Eij = wC(xi, xj)Jyi 6= yjK, for neighboring pixels i and j,

thereby making use of the class-independent assumption that object

boundaries should coincide with image edges. It is less clear how one

can construct unary factors without making a priori assumptions about

object appearance. CPMC’s solution to this problem consists of trying

many different choices, each one giving rise to one object hypothesis. It

defines a set of seed points by laying a coarse grid over the image and

iteratively picking the center points of the grid cells. For each seed, it

defines a unary factor that is strong enough to force the corresponding

3A graph is planar if it can be embedded in the plane without any crossing edges.

4.5. Giving up Optimality 59

pixel to lie in the foreground. Unary factors of opposite sign are used

to force some or all image boundaries to be labeled as background. For

all remaining pixels the unary factors are set identically as a variable

value that encodes a bias in favor of more or fewer pixels to be labeled

as foreground. Each parameter choice results in a submodular energy

function that is minimized by the graph cuts algorithm.

Even though CPMC requires many segmentation to be computed it

remains computationally tractable, because one only has to loop over

the seeds, whereas all minimizing solution for different values of the

unary factors can be found by a single call to a parametric min cut

solver [Picard and Queyranne, 1980].

Figure 4.6 shows examples of the resulting object hypotheses for

the image in Figure 4.2. As one can see, several object hypothesis do

in fact overlap strongly with the correct object locations.

4.5 Giving up Optimality

Solving the prediction problem optimally is hard but in many applica-

tions it is not necessary to obtain the optimal solution and instead any

close-to-optimal solution is sufficient. The set of good but suboptimal

solutions might be large and finding one element from it could be easy

compared to identifying the optimal solution.

Another reason why we might be satisfied with a good suboptimal

solution is model uncertainty resulting from both using a simplified

or wrong model and from the parameter estimation error [Bottou and

Bousquet, 2007]. Parameters of the prediction function are estimated

from a finite and usually small set of training data, leading to an estima-

tion error. If y∗ ∈ Y is the optimal prediction for a learned prediction

function, then the preference for y∗ might largely be due to this esti-

mation error. If we consider the set of prediction functions “nearby”

the learned predictor — that is, within range of the estimation er-

ror — then all prediction functions within this set are reasonable, yet

they produce different predictions. The set of optimal solutions from

all these prediction functions contains not only y∗ but many more solu-

tions, all considered suboptimal by the original prediction function but

by themselves being reasonable predictions. Typically the learned pre-

60 Structured Prediction

Fig. 4.6 CPMC object proposals for the image in Figure 4.2. Despite the method not

knowing what kind of objects are visible in the image, some of the segmentations coincide
well with how a human would partition the image into an object and a non-object regions.

4.5. Giving up Optimality 61

diction function will assign these solutions a value close to the optimal

value.

Local search methods are a popular class of algorithms in which op-

timality of the solution cannot be guaranteed. In a local search method

an initial feasible solution is improved iteratively by finding improved

solutions within a neighborhood of the current solution. The method

terminates when no further improvement can be made. For many struc-

tured prediction problems a simple and natural local search algorithm

can be formulated and we will discuss the general scheme in detail.

Giving up optimality does not imply that the methods used come

without theoretical guarantees. Approximation algorithms [Vazirani,

2001] offer worst-case a priori guarantees on the value of the returned

approximate solution with respect to the value of the true but unknown

optimal solution. For maximization problems such as (4.2) the guaran-

tee takes the form of a relative performance guarantee by means of a

scalar factor 0 < ρ < 1 such that when the approximation algorithm

returns a solution y, it holds that ρg(x, y∗) ≤ g(x, y) ≤ g(x, y∗).

In practice suboptimal prediction methods such as local search are

also used during training of a structured prediction system. Although

this often works well empirically, the interaction between the subop-

timal solutions provided and the training method are not well under-

stood. In fact, recent results suggest that the use of suboptimal predic-

tions during training can lead to prediction functions with bad perfor-

mance [Kulesza and Pereira, 2007; Finley and Joachims, 2008; Martins

et al., 2009], whereas alternative approaches based on relaxing the pre-

diction problem work well in training. Nevertheless, approaches such

as local search are among most popular approximations for test-time

prediction.

4.5.1 Local Search

Local search is an umbrella term for optimization methods that itera-

tively improve a feasible solution by optimizing with respect to subsets

of the feasible set. Even in case optimization over the original feasible

set is hard, by restricting the optimization problem to a much smaller

set the resulting local optimization problem can be solved efficiently.

62 Structured Prediction

Typically these smaller subsets are neighborhoods around the currently

best known feasible solution. This idea is illustrated in Figure 4.7.

y0 y1

N (y0) N (y1)

y2

N (y2)

y3

y∗

N (y3)

N (y∗)

Y

Fig. 4.7 Illustration of local search: an initial solution y0 is improved by finding the best

solution within a neighborhood N (y0), obtaining a new solution y1 ∈ N (y0). The process

is continued until a solution y∗ is reached such that no further improvement within its
neighborhood can be made.

Algorithm 6 Local Search

1: y∗ = LocalSearch(x, y0,Ns, S)

2: Input:

3: x ∈ X instance information

4: y0 ∈ Y initial solution

5: Ns : Y → 2Y neighborhood mapping at step s

6: S ∈ N, S ≥ 1 number of neighborhoods in each cycle

7: Output:

8: y∗ ∈ Y local optimal solution in Ns(y∗) for all s = 1, . . . , S

9: Algorithm:

10: t← 0

11: for t = 0, 1, . . . do

12: yt+1 ← yt

13: for s = 1, . . . , S do

14: yt+1 ← argmaxy∈Ns(yt+1) g(x, y) {Maximize within neighbor-

hood}
15: end for

16: if yt+1 = yt then

17: break {Local optima w.r.t. Ns(yt) for all s = 1, . . . , S}
18: end if

19: end for

20: y∗ ← yt

4.5. Giving up Optimality 63

A generic local search algorithm is given in Algorithm 6. The al-

gorithm takes as input an initial feasible solution and a set of neigh-

borhood relations. In general, a neighborhood relation does not need

to be fixed but can vary over time. In Algorithm 6 the neighborhood

is given as Ns : Y → 2Y , where the index s = 1, . . . , S indexes a set

of relations. In each iteration t, the algorithm attempts to improve the

currently best known solution yt by solving the restricted optimization

problem

argmax
y∈Ns(yt+1)

g(x, y). (4.16)

Because each neighborhood is assumed to contain the current solu-

tion, i.e. yt ∈ Ns(yt), the algorithm will never decrease the objective

function, and therefore produces a sequence of monotonically improv-

ing solutions. A solution y∗ is locally optimal if it can no longer be

improved with respect to any neighborhoods Ns(y∗). The neighbor-

hoods are typically chosen such that the restricted problem becomes

tractable. Let us illustrate this point by a classic example, the iterated

conditional modes (ICM) algorithm.

Example 4.4 (Iterated Conditional Modes). The iterated condi-

tional modes (ICM) algorithm is a local search method that can be

applied to any given discrete factor graph but has been originally pro-

posed for images by Besag [1986]. For the task of image denoising, the

factor graph often has a structure as shown in Figure 4.8, where the

dependent variables are located on the 2D pixel grid lattice.

If all but one variable were observed, then solving for the MAP

state of the single dependent variable would be easy. Such situation is

shown in Figure 4.9. The iterated conditional modes (ICM) method uses

this property to iteratively update one variable at a time, keeping all

other variables fixed. This is a local search method with neighborhood

relation

Ns(y) = {(y1, . . . , ys−1, zs, ys+1, . . . , yS)|zs ∈ Ys}, (4.17)

where s = 1, . . . , S and S = |V | indexes the dependent variables of

the model. When we iterate over all the neighborhoods in Algorithm 6,

64 Structured Prediction

Fig. 4.8 Factor graph for a simple random field model with observation variables (shaded
gray) and dependent variables (white) to be inferred.

Fig. 4.9 ICM update for one variable as local search: keeping all dependent variables but

the first fixed effectively treats them as observed. The single remaining variable can be

optimized efficiently. The figure on the right shows an ICM update at a different site.

we effectively optimize the values of variables ys one-by-one, improving

the overall objective function.

The solution returned by the local search method guarantees local

optimality with respect to the neighborhoods. Clearly, the larger the

neighborhood, the stronger this local optimality guarantee becomes.

The largest possible neighborhood – the original set Y itself – recov-

ers the original problem. In general, we would like to select the largest

neighborhood relation that still allows for efficient optimization. Suc-

cessful local search approaches use neighborhoods that exploits problem

structure.

In the ICM example local search becomes a coordinate descent

4.5. Giving up Optimality 65

method where in each iteration a subset of the optimization vari-

ables are fixed and optimization is restricted to the remaining vari-

ables. This is a common way to construct search neighborhoods and in

this sense local search generalizes coordinate descent methods. There

are at least two other common names for local search methods, move-

making methods [Kohli et al., 2009a], and very large-scale neighborhood

search [Ahuja et al., 2002].

We first discuss a generalization of the ICM method, the block ICM

method, before we explain the most popular local search method in

computer vision, the class of multilabel graph cut methods.

Example 4.5 (Block Iterated Conditional Modes). The previ-

ous ICM method selects one variable at a time and optimizes within

the neighborhood by explicitly evaluating the energy for all values this

variables takes. In the block ICM method the neighborhood is enlarged

by allowing a larger subset of variables to change [Kelm et al., 2006;

Kittler and Föglein, 1984].

Fixing a subset of variables to their current values corresponds

to conditioning the probability distribution. Optimization within the

neighborhood defined by the resulting conditioned distribution re-

mains efficiently solvable as long as the subset of variables form a

tree-structured subgraph in the original factor graph. Then, the max-

product belief propagation algorithm can be used to solve (4.16).

Whereas the original ICM method neighborhood is as large as the

number of labels the variable can take, the search space used by the

block ICM neighborhoods is exponential in the number of variables

optimized over. For grid-structured graphs a typical subset of variables

induced by chains is shown in Figure 4.10.

4.5.2 Graph Cuts

The most popular local search method in computer vision is the α-

expansion graphcut method for multi-label discrete MAP inference

problems [Boykov et al., 2001]. A decade since their introduction they

remain popular because they are both efficient and provide high-quality

solutions.

66 Structured Prediction

Fig. 4.10 Tractable chain-structured subgraphs used in block ICM: optimization over tree-

structured subgraphs remains efficiently solvable. The figure on the right shows another

chain-structured subgraph inducing a neighborhood with size exponential in the number of
variables, i.e. |Yi × Yj × Yk|.

Boykov et al. [2001] proposed two neighborhoods, the “α-

expansion” neighborhood Nα : Y ×N→ 2Y and the “α-β-swap” neigh-

borhood Nα,β : Y × N × N → 2Y . We will discuss both neighbor-

hoods separately, starting with the simpler α-β-swap. Let us first make

some assumptions. We are interested in maximizing g(x, y) = −E(y;x),

where the energy function

E(y;x) =
∑
i∈V

Ei(yi;x) +
∑

(i,j)∈E

Ei,j(yi, yj ;x)

decomposes into unary and pairwise terms. We require for both the

α-expansion and the α-β-swap neighborhoods that the pairwise energy

terms are a semi-metric, satisfying for all (i, j) ∈ E , (yi, yj) ∈ Yi × Yj
the conditions

Ei,j(yi, yj ;x) = 0 ⇔ yi = yj , (4.18)

Ei,j(yi, yj ;x) = Ei,j(yj , yi;x) ≥ 0. (4.19)

The first condition (4.18) is the identity of indiscernibles, the second

condition (4.19) is symmetry. Moreover, the α-expansion additionally

requires the pairwise energies to be a true metric, i.e. to satisfy (4.18),

(4.19) and for all (i, j) ∈ E , for all (yi, yj) ∈ Yi×Yj , for all yk ∈ Yi∩Yj
that

Ei,j(yi, yj ;x) ≤ Ei,j(yi, yk;x) + Ei,j(yk, yj ;x), (4.20)

4.5. Giving up Optimality 67

which is the well known triangle inequality. We are now ready to con-

sider the definition of the neighborhoods.

4.5.2.1 α-β swap

The α-β-swap neighborhood is defined as follows.

Nα,β : Y × N× N→ 2Y ,

Nα,β(y, α, β) := {z ∈ Y : zi = yi if yi /∈ {α, β}, (4.21)

otherwise zi ∈ {α, β}}.
Therefore the neighborhood Nα,β(y, α, β) contains the solution y it-

self as well as all variants in which the nodes labeled α or β are free

to change their label to either β or α, respectively. Finding the mini-

mizer becomes a binary labeling problem because the only two states

of interest are α and β. We can decompose the following minimization

problem.

yt+1 = argmin
y∈Nα,β(yt,α,β)

E(y;x) (4.22)

= argmin
y∈Nα,β(yt,α,β)

∑
i∈V

Ei(yi;x) +
∑

(i,j)∈E

Ei,j(yi, yj ;x)

= argmin
y∈Nα,β(yt,α,β)

[∑
i∈V,

yti /∈{α,β}

Ei(y
t
i ;x)

︸ ︷︷ ︸
constant

+
∑
i∈V,

yti∈{α,β}

Ei(yi;x)

︸ ︷︷ ︸
unary

+
∑

(i,j)∈E,
yti /∈{α,β},ytj /∈{α,β}

Ei,j(y
t
i , y

t
j ;x)

︸ ︷︷ ︸
constant

+
∑

(i,j)∈E,
yti∈{α,β},ytj /∈{α,β}

Ei,j(yi, y
t
j ;x)

︸ ︷︷ ︸
unary

+
∑

(i,j)∈E,
yti /∈{α,β},ytj∈{α,β}

Ei,j(y
t
i , yj ;x)

︸ ︷︷ ︸
unary

+
∑

(i,j)∈E,
yti∈{α,β},ytj∈{α,β}

Ei,j(yi, yj ;x)

︸ ︷︷ ︸
pairwise

]
.

When dropping the constant terms and combining the unary terms,

problem (4.22) is simplified and can be solved as a network flow prob-

68 Structured Prediction

α

β

i j k. . .

tαi
tαj

tαk

ni,j

ni,j

tβi

tβj tβk

Fig. 4.11 Directed edge-weighted auxiliary

graph construction. The linear min-cut in

this graph corresponds to the optimal en-
ergy configuration in Nα,β(y, α, β).

α

β

i j k. . .

C

Fig. 4.12 A minimum α-β-cut C and its di-

rected edge cutset (shown dotted, in red).

lem Bertsekas [1998] on a specially constructed auxiliary graph, with

structure as shown in Figure 4.11.

The directed graph G′ = (V ′, E ′) with non-negative edge weights

tαi , tβi and ni,j is constructed as follows.

V ′ = {α, β} ∪ {i ∈ V : yi ∈ {α, β}},
E′ = {(α, i, tαi) : ∀i ∈ V : yi ∈ {α, β}} ∪

{(i, β, tβi) : ∀i ∈ V : yi ∈ {α, β}} ∪
{(i, j, ni,j) : ∀(i, j), (j, i) ∈ E : yi, yj ∈ {α, β}}.

The edge weights are calculated as follows.

ni,j = Ei,j(α, β;x), (4.23)

tαi = Ei(α;x) +
∑

(i,j)∈E,
yj /∈{α,β}

Ei,j(α, yj ;x), (4.24)

tβi = Ei(β;x) +
∑

(i,j)∈E,
yj /∈{α,β}

Ei,j(β, yj ;x). (4.25)

Finding a directed minimum α-β-cut, that is, a cut which separates

α and β in the graph G′, solves (4.22). To see how this is possible,

consider the cut shown in Figure 4.12. The value f(C) of a cut C is the

sum of the directed edge weights it cuts. For the example graph this

4.5. Giving up Optimality 69

would be

f(C) = tαi + ni,j + tβj + tβk

= Ei(α;x) +
∑

(i,s)∈E,
yts /∈{α,β}

Ei,s(α, y
t
s;x) + Ei,j(α, β;x)

+ Ej(β;x) +
∑

(i,s)∈E,
yts /∈{α,β}

Ei,s(β, y
t
s;x)

+ Ek(β;x) +
∑

(k,s)∈E,
yts /∈{α,β}

Ek,s(β, y
t
s;x),

which corresponds exactly to (4.22) for yi = α, yj = β and yk = β.

This holds in general and Boykov et al. [2001] showed that the optimal

labeling can be constructed from the α-β-mincut C as

yi =

{
α if (α, i) ∈ C,
β if (i, β) ∈ C.

Because exactly one of the edges must be cut for C to be an α-β-cut,

the min-cut exactly minimizes (4.22).

Solving the min-cut problem on the auxiliary graph G′ can be done

efficiently by using linear max-flow algorithms. For graphs such as the

one shown in G′ where all nodes are connected to the source- and sink-

node, specialized max-flow algorithms with superior empirical perfor-

mance have been developed, see Boykov and Kolmogorov [2004]. The

best known algorithms for linear max-flow problems have a compu-

tational complexity of O(|V |3) and O(|V ||E| log(|V |)), see Bertsekas

[1998].

The α-β-swap neighborhood depends on two label parameters α and

β and each combination of α and β induces a different neighborhood.

Therefore, we typically cycle through all pairwise label combinations

until no further improvement can be made, that is, the solution is

optimal with respect to all α-β swap neighborhoods.

Because the min-cut problem is solvable efficiently only if all edge

weights are non-negative, it is now clear why the pairwise energies have

to be semi-metric: this property guarantees non-negativity of all edge

weights in the auxiliary graph G′.

70 Structured Prediction

4.5.2.2 α-expansion

While the α-β-swap neighborhood was defined on label pairs, the α-

expansion neighborhood is defined on a single label. For a given label

α, the α-expansion neighborhood Nα(y, α) allows every node to either

remain in its current state or to change its state to α. Finding the

optimal solution within the neighborhood of the current solution is

again a binary labeling problem. However, in order to work it requires

Ei,j to satisfy the triangle inequality for all (i, j) ∈ E and is thus more

limited, compared to the α-β-swap.

Formally, the α-expansion neighborhood is defined as follows.

Nα : Y × N→ 2Y ,

Nα(y, α) := {z ∈ Y : ∀i ∈ V : zi ∈ {yi, α}}.

As for the α-β-swap neighborhood, Boykov et al. [2001] showed that

the minimizer within Nα(y, α) can be found by solving a network flow

problem on a auxiliary graph whose edge weights can be derived by

decomposing the energy function within the neighborhood.

yt+1 = argmin
y∈Nα(yt,α)

E(y;x) (4.26)

= argmin
y∈Nα(yt,α)

∑
i∈V

Ei(yi;x) +
∑

(i,j)∈E

Ei,j(yi, yj ;x)

= argmin
y∈Nα(yt,α)

[∑
i∈V,
yi=α

Ei(α;x) +
∑
i∈V,
yi 6=α

Ei(y
t
i ;x)

+
∑

(i,j)∈E,
yi=α,yj=α

Ei,j(α, α;x) +
∑

(i,j)∈E,
yi=α,yj 6=α

Ei,j(α, y
t
j ;x)

+
∑

(i,j)∈E,
yi 6=α,yj=α

Ei,j(y
t
i , α;x) +

∑
(i,j)∈E,

yi 6=α,yj 6=α

Ei,j(y
t
i , y

t
j ;x)

]
.

The graph structure of the auxiliary graph depends on the current

solution yt and is illustrated in Figure 4.13.

Formally, given G = (V, E) and a current solution yt ∈ Y, the

auxiliary directed, edge-weighted graph G′ = (V ′, E ′) is constructed as

4.5. Giving up Optimality 71

α

ᾱ

i j k

tαi
tαj tαk

ni,j

ni,j

tᾱi

tᾱj

jk kl l

tαl

tᾱk
tᾱl

tᾱjk tᾱkl

ni,jk

ni,jk

nk,jk

nk,jk

nk,kl

nk,kl

nl,kl

nl,kl

Fig. 4.13 Alpha expansion graph construction: all pixels i,j,k and l are embedded into a

graph and connected to a source node “α” and a sink node “ᾱ” (drawn in gray). For pairs

of pixels (i, j) ∈ E which are currently labeled with different labels, yti 6= ytj a new node

“ij” is introduced (drawn squared). The minimum directed α-ᾱ cut on this graph is the

minimum energy solution in Nα(yt, α).

follows.

V ′ = {α, ᾱ} ∪ V ∪ {ij : ∀(i, j) ∈ E : yti 6= ytj},
E′ = {(α, i, tαi) : ∀i ∈ V } ∪ {(i, ᾱ, tᾱi) : ∀i ∈ V }

∪ {(i, j, ni,j), (j, i, ni,j) : ∀(i, j) ∈ E : yti = ytj}
∪ {(ij, ᾱ, tᾱ

ij
) : ∀(i, j) ∈ E : yti 6= ytj}

∪ {(i, ij, ni,ij), (ij, i, ni,ij), (j, ij, nj,ij), (ij, j, nj,ij) : ∀(i, j) ∈ E :

yti 6= ytj},

with non-negative edge weights calculated from the current solution yt

as follows.

tαi = Ei(α;x),

tᾱi =

{ ∞ if yti = α,

Ei(y
t
i ;x) otherwise,

ni,j = Ei,j(y
t
i , α;x)

(
= Ei,j(α, y

t
j ;x)

)
,

tᾱ
ij

= Ei,j(y
t
i , y

t
j ;x),

ni,ij = Ei,j(y
t
i , α;x).

The min-cut on G′ corresponds to the minimum in (4.26) by con-

72 Structured Prediction

α

ᾱ

j kjk

C
C′

Fig. 4.14 A cut C of the shown type (drawn dashed, in red) can never be a minimal cut in

G′. The cut C′ (drawn dotted, in blue) always has an energy no greater than C, due to the

triangle inequality assumption on the pairwise energy terms Ei,j .

structing yt+1 from the minimum weight edge cutset C of G′ as

yt+1
i =

{
α if (α, i) ∈ C
yti otherwise

,

for all i ∈ V . The analysis and proof can be found in Boykov et al.

[2001]. The requirement that Ei,j must satisfy the triangle inequality

is needed to show that cuts like the one shown in Figure 4.14 cannot

be minimal. If the triangle inequality holds, then the cut cannot be

minimal as cutting (jk, ᾱ) directly gives a lower energy:

E(C) = nj,jk + nk,jk + tᾱj + tᾱk

= Ej,k(y
t
j , α;x) + Ej,k(y

t
k, α;x) + tᾱj + tᾱk

≥ Ej,k(y
t
j , y

t
k;x) + tᾱj + tᾱk

= tᾱ
jk

+ tᾱj + tᾱk

= E(C′;x).

As already done for the α-β-swap, the parameter α in the α-

expansion is iterated over to obtain a solution that is optimal with

respect to all α-expansion neighborhoods. In practice the α-expansion

is often preferred over the α-β-swap because it converges faster and

Boykov established a worst case bound on the energy with respect to

the true optimal energy.4

4One advantage of the α-β-swap algorithm besides its generality is that it can be easily

4.5. Giving up Optimality 73

Example 4.6 (Stereo Disparity Estimation with Graph Cuts).

Given two color images that are taken from slightly shifted positions, it

is possible to estimate the left-right disparity for each pixel. Together

with a camera model this allows us to estimate for each pixel the

distance from the observer. Two example input images are shown in

Figures 4.15 and 4.16, and the ground truth per-pixel disparities to be

predicted are shown in Figure 4.18.

Birchfield and Tomasi [1998] proposed to perform a simple per-pixel

disparity estimation by locally matching a block of pixels between the

two images. Each variable yi takes values from a set of disparities,

typically chosen to be {0, 1, . . . ,K − 1,K}. As this local estimate will

in general be very noisy, Boykov et al. [1998] use a MRF to encourage

a piecewise smooth estimate of disparity values. The resulting energy

has unary energy terms from the local pixel cost, as well as pairwise

energies that encourage a smooth solution. The pairwise energies can

be constructed as to fit the metric assumption made by graph cut

methods.

Two studies comparing graph cuts with other MAP inference meth-

ods, Tappen and Freeman [2003] and Szeliski et al. [2008], found that

for this problem and energies, the graph cut solutions are among the

most accurate, and moreover the graph cut method is computationally

efficient. An example of the output produced by α-expansion is shown

in Figures 4.17.

4.5.2.3 Limitations and Extensions of Graph Cut Inference

The efficiency of graph cut based energy minimization algorithms has

lead to a flurry of research into this direction. We give a brief overview

of the main results and research directions.

Ishikawa [2003] gives a characterization of energies representable

as graph cut problems for the case of multilabel states, i.e., where

|Yi| > 2 for some i ∈ V . In general, to characterize solvable energies

with high-order interactions is ongoing research. Kohli et al. [2007,

parallelized by processing disjoint pairs (α1, β1), (α2, β2), α2, β2 /∈ {α1, β1} at the same
time.

74 Structured Prediction

Fig. 4.15 Left input image. Fig. 4.16 Right input image.

Fig. 4.17 Approximate MAP state

from α-expansion.

Fig. 4.18 Ground truth disparity

map.

2008] gave an example of an energy term with simple structure, called

the Pn generalized Potts potential which can be optimized using graph

cuts. Ramalingam et al. [2008] applied these Pn interactions to improve

image segmentation results.

For energies which do not satisfy regularity conditions, Kolmogorov

and Rother [2007] give a graphcut-based iterative algorithm, QPBO,

that uses probing techniques from combinatorial optimization, produc-

ing an approximate minimizer. In case the nodes have only binary

states, the algorithm enjoys a favorable partial optimality property:

all node states determined by the algorithm are either certain or un-

certain with the guarantee that there exists an optimal solution which,

when considering the certain nodes only, is identical to the solution

provided by the algorithm.

Another research direction has been to improve the efficiency of

graphcut based minimization algorithms. For planar graph structures

common in computer vision progress has been made by using efficient

network flow algorithms specific to planar graphs, see Schraudolph and

Kamenetsky [2008b] and Schmidt et al. [2009]. For general graphs with

4.5. Giving up Optimality 75

multilabel states, the most efficient current graph cut algorithms are

due to Alahari et al. [2008] and Komodakis et al. [2007b]. Both algo-

rithms reuse computations from previous iterations.

4.5.3 Model Reduction

A natural and widely applicable technique to reduce the complexity of

the prediction problem is to view the optimization problem as making

many inter-dependent decisions. By fixing a subset of these decisions

a priori the problem size is reduced and the remaining problem can be

solved exactly.

A simple method to reduce the model is to fix two or more decisions

to be equal, representing them by only a single variable. Superpixels

introduced in [Ren and Malik, 2003; Mori, 2005] are a common example

of this reduction for image labeling tasks: by representing large sets of

pixels as a single superpixel, a set of decisions – assigning one label to

each pixel – is reduced to the single decision of assigning a label to the

superpixel, as shown in Figure 4.19 and 4.20.

By grouping individual decisions into joint decisions we effectively

constrain the feasible set Y to a subset Y ′ ⊂ Y. Therefore the optimal

solution y∗ ∈ Y might no longer be identifiable and we have given up

optimality.

Fig. 4.19 Input image: 500-by-375 pixels,

for a total of 187,500 labeling decisions.

Fig. 4.20 The same image with 149 super-

pixels and hence 149 decisions.

The idea of grouping variables to obtain a smaller inference problem

has been explored further by Kim et al. [2011].

76 Structured Prediction

4.6 Giving up Worst-case Complexity

The worst-case complexity of solving a problem exactly is inherently

pessimistic: from the set of all possible problem instances only the

most difficult ones determine the worst-case complexity. Real problem

instances might not at all show the special properties that make the

problem difficult or at least show them only to a smaller extend. As an

example, although exact MAP inference in many image segmentation

models is NP-hard, most often the unary interactions are strong enough

to leave only very few local contradictions that have to be resolved.

Therefore an exact algorithm that is efficient on practical instances

and exhibits the worst-case complexity only on the truly difficult in-

stances can be acceptable. A possible disadvantage is that a priori the

runtime of such an algorithm is hard to predict.

4.6.1 Branch-and-Bound

Branch and bound is a general scheme for constructing algorithms to

solve exactly hard optimization problems in case Y is finite.5 A branch

and bound algorithm performs an implicit enumeration of Y and is

guaranteed to find the optimal solution y∗ ∈ Y. The worst case com-

plexity of a branch and bound algorithm is typically the same as an

exhaustive enumeration of Y and therefore usually exponential in the

problem size.

Despite having a bad worst case complexity, well designed branch

and bound algorithms can be very efficient on relevant problem in-

stances. Moreover, the general scheme makes few assumptions, such

that considerable flexibility remains for incorporating problem-specific

knowledge into the algorithm.

Branch and bound is a divide and conquer algorithm and can be

described as follows [Bertsekas, 1995; Korte and Vygen, 2008; Clausen,

1999]. At all times, the algorithm maintains a partitioning of Y into

active and closed nodes. The closed nodes cover parts of Y that we have

proven not to contain a solution better than the currently best known

5Branch and bound is a more general idea and is also applied for global optimization of
continuous functions. The case of finite Y simplifies the description of the algorithm.

4.6. Giving up Worst-case Complexity 77

solution. In contrast, for the parts of Y covered by the active nodes we

are not yet sure and infact they may contain the optimal solution. The

partitioning is of the form Y = (A1∪· · ·∪Ak)∪(C1∪· · ·∪Cl), as shown

in Figure 4.21. Let A = {A1, . . . , Ak} be the set of active nodes, and

C = {C1, . . . , Cl} be the set of closed nodes, such that A∪C partitions

Y. Initially we have A = {Y} and C = ∅, but during the course of

the algorithm subsets of Y will be moved from the set of active nodes

to the set of closed nodes. Eventually all elements have been moved

and at the termination of the algorithm we have A = ∅, C = {Y}, the

reverse of the initial assignment. During the course of the algorithm

this is done in such a way that the optimal solution y∗ is identified.

C1

C2

C3

A1

A2

A3

A4
A5

Y

Fig. 4.21 Partitioning

maintained by branch-and-

bound: the overall set Y
is represented by active

subsets Ai (drawn in white)
and closed subsets Ci
(drawn shaded).

A2

Fig. 4.22 Branching step:

partitioning an active subset

A into two or more subsets.
Here the partitioning is into

three subsets.

C4

C5

A6

Fig. 4.23 Bounding step:

some of the new subsets Ai
can be closed by evaluating
g(Ai).

To achieve this, the algorithm applies as two operations a branching

and a bounding step. The bounding step maintains for each element

A ∈ A an upper and lower bound on the optimal solution restricted to

A, as

g(x,A) ≤ max
y∈A

g(x, y) ≤ g(x,A). (4.27)

The branching step takes an element A ∈ A and removes it from A.

The element A is partitioned into two or more nonempty subsets, which

are added to A, as shown in Figure 4.22. Additionally for each subset

78 Structured Prediction

a new lower and upper bound is computed. Typically, when evaluated

on smaller sets the bounds become stronger and eventually if A = {y}
the bounds becomes exact, i.e. we have g(x, {y}) = g(x, y) = g(x, {y}).
A strong enough bound for a subset A ⊆ Y allows pruning the entire

set A: in case g(A) is smaller than or equal to the value of a known

solution, then it can safely be moved from A to C as it cannot contain

a better solution than the one we already know. This is shown in Fig-

ure 4.23. This above informal description is summarized in Algorithm 7

on page 111.

The algorithm is an abstract scheme and requires the definition

of a problem-dependent selection, branching and bounding function.

In general, computing a bound efficiently might be feasible only for

certain kinds of partitionings of Y.

The selection step of the algorithm picks an A ∈ A to be parti-

tioned. Ideally A is chosen such that it contains y∗ but generally this

information is not available and therefore the choice is based on avail-

able data such as the lower bound g(x,A) or the upper bound g(x,A).

A common practise is to choose A as the element from A with the high-

est lower bound g(x,A) because an increase in L allows us to prune

nodes from A.

When designing the branching function it is important to partition

a given subset of Y in such a way that the lower and upper bounds can

be evaluated efficiently for the resulting disjoint subsets. Typically the

lower and upper bounds can be evaluated only for some subsets of Y
which we denote by B ⊆ 2Y . The branching function will therefore only

output sets A1, . . . , Ak that are elements of B. In the examples below

we will illustrate this point.

The bounding functions provide upper and lower bounds on the

value of the optimal solution within a subset of Y. The lower bound

function g(x,A) additionally provides an element y ∈ A realizing

g(x,A) = g(x, y). Because any element in A is a lower bound on

maxy∈A g(x, y), the construction of a trivial lower bounding function by

picking a random element from A is valid. A stronger lower bound over

A can be provided by choosing a better solution y according to g(x, y).

Therefore solution methods such as local search or other heuristics can

be used for constructing the lower bound.

4.6. Giving up Worst-case Complexity 79

In contrast, the construction of a valid upper bound that

can be evaluated efficiently is more difficult. In case the problem

maxy∈A g(x, y) can be formulated as a mathematical programming

problem, principled relaxation and decomposition techniques can be

applied to obtain an upper bound, some of which we discuss in Sec-

tion 4.7. An alternative approach to produce an upper bound is to

analyze g(x, y) over y ∈ A, developing an upper bound that can be

computed in closed form. Below we will discuss one example for each

approach.

Example 4.7 (Efficient Subwindow Search). The efficient sub-

window search (ESS) procedure proposed by Lampert et al. [2008, 2009]

is a branch-and-bound method to locate within a given image x ∈ X a

rectangle y∗ that achieves a maximum classification score as measured

by an arbitrary classification function g : X × Y → R. Therefore, the

set Y consists of all possible rectangles within the image.

Lampert and Blaschko use B ⊂ 2Y , that is, all sets of rectangles that

can be selected by specifying four min-max intervals for each respec-

tive four coordinates: top, bottom, left, right. One element B ∈ B is

visualized in Figure 4.24. The set B includes as elements all individual

rectangles, i.e. {y} ∈ B for all y ∈ Y.

Fig. 4.24 An ESS rectangle set specified by four intervals for the top, bottom, left, and

right coordinates of a rectangle.

80 Structured Prediction

For any element in B the branching step is realized by selecting one

interval and splitting it into two halves.

Lampert et al. [2008] show that for certain classification functions

g(x, y) an efficient upper bound g(x, y) can be constructed. One such

case is where the classification function is the sum of weighted scores

of the local image features falling into the rectangle, as is the case for

the popular bag-of-visual-words representation. For the binary case we

have

g(x, y) = β +
∑

xi within y

w(xi), (4.28)

where xi ∈ {1, 2, . . . ,H} is a set of quantized local image features and

xi within y is true if xi falls into the image region specified by y. For

any B ∈ B an upper bound on this score can be constructed as

g(x,B) = β +
∑
xi

within
Bmax

max{w(xi), 0}+
∑
xi

within
Bmin

min{0, w(xi)} (4.29)

≥ max
y∈B

g(x, y), (4.30)

where Bmax, Bmin is the largest and smallest possible rectangle in B,

respectively. The use of max{w(xi), 0} and min{0, w(xi)} effectively

sums only over the positive and negative terms, respectively. If B = {y}
we have Bmax = Bmin = B and therefore the bound becomes exact:

g(x,B) = g(x, y).

Branch-and-bound with the above bound on a learned classifica-

tion function allows us to find the optimal rectangle y∗ ∈ Y efficiently,

despite having a worst case complexity of O(u4) where u is the num-

ber of possible coordinate values along one rectangle dimension. Some

example results are shown in Figure 4.25.

Example 4.8 (Branch-and-mincut). Lempitsky et al. [2008] con-

sider binary image segmentation tasks where an energy function de-

pends on the value of a non-local parameter y ∈ Y, where Y is a large

finite set. For any fixed y ∈ Y, an energy to be minimized over binary

4.6. Giving up Worst-case Complexity 81

Fig. 4.25 Bounding boxes found using the efficient subwindow search branch-and-bound
procedure on the dog class of the PASCAL VOC 2007 benchmark data set.

segmentation masks x ∈ {0, 1}V is used, which has the following form.

E(x, y) = C(y)+
∑
p∈V

F p(y)xp+
∑
p∈V

Bp(y)(1−xp)+
∑
{i,j}∈E

P pq(y)|xp−xq|,

(4.31)

where C(y) is a constant, F p and Bp are unary energies for labeling

pixel p as foreground (xp = 1) or background (xp = 0), respectively.

A pairwise energy P pq for pairs of pixels {p, q} ∈ E gives the cost

for assigning p and q to different classes (xp 6= xq). For a fixed y the

energy (4.31) is submodular in x and can be efficiently minimized.

All energy terms depend on y, allowing non-local interactions such

as shape priors. Lempitsky et al. demonstrate this by using Y = ∆×Θ,

where ∆ is a small set of prototype shapes and Θ is a discretized set

of translation parameters. By defining

g(x, y) = max
x∈{0,1}V

−E(x, y), (4.32)

finding y∗ ∈ Y effectively identifies simultaneously the best matching

global shape and image segmentation mask, as shown in Figures 4.26

to 4.28.

For finding y∗ Lempitsky et al. use the branch-and-bound frame-

work, deriving an upper bound g(x,A) ≥ maxy∈A g(x,A) for any A by

82 Structured Prediction

Fig. 4.26 An input image
with shape prior mask over-

lay.

Fig. 4.27 Optimal element
y∗ ∈ Y.

Fig. 4.28 Another element
y ∈ Y.

showing that

max
y∈A

g(x, y) (4.33)

= max
y∈A

max
x∈2V

−E(x, y) (4.34)

= max
y∈A

max
x∈2V

−

C(y) +
∑
p∈V

F p(y)xp +
∑
p∈V

Bp(y)(1− xp) (4.35)

+
∑
{i,j}∈E

P pq(y)|xp − xq|


≤ max

x∈2V

(max
y∈A
−C(y)

)
+
∑
p∈V

(
max
y∈A
−F p(y)

)
xp (4.36)

+
∑
p∈V

(
max
y∈A
−Bp(y)

)
(1− xp) +

∑
{i,j}∈E

(
max
y∈A
−P pq(y)

)
|xp − xq|


=: g(x,A). (4.37)

The active node is chosen to be the node with the largest upper bound

in each iteration. Branching is fixed by means of a pre-determined

clustering in the parameter space.

Due to its popularity and flexibility, many variations and improve-

ments to the branch-and-bound procedure exist. A popular modifica-

tion is to use a fast heuristics algorithm to obtain a feasible solution for

each node. Because any feasible solution bounds the objective of the

4.7. Giving up Integrality: Relaxations and Decompositions 83

optimal solution this can lead to substantial pruning of the search tree.

If a suboptimal solution is sufficient, the branch-and-bound efficiency

can be further improved by replacing the pruning step with

E ← {A ∈ A : g(x,A) ≤ (L+ δ) or g(x,Ai) = g(x,Ai)}, (4.38)

where δ ≥ 0 is the accepted loss in optimality, i.e. the optimal solution

y′ returned by the new algorithm may no longer be optimal but is

guaranteed to satisfy g(x, y′) ≥ g(x, y∗)−δ. A more extensive discussion

of branch-and-bound methods can be found in [Clausen, 1999; Wolsey,

1998].

The QPBO-P algorithm of Rother et al. [2007] is similar in spirit

to giving up worst-case complexity: although its worst-case runtime is

still bounded by a polynomial, it depends on the problem instance.

The QPBO-P method is an iterative energy minimization algorithm

for binary pairwise random fields. For submodular pairwise energies the

method requires only a single iteration, whereas in the non-submodular

case only a partial solution is recovered. The labeled part of this in-

complete partial solution is known to be optimal and therefore the

problem is reduced to an optimization problem over the remaining un-

labeled variables. By fixing each of these variables individually and

observing the effect on the remaining unlabeled variables – a technique

called probing – the set of labeled variables is grown until no further

progress can be made and either the full optimal solution is recovered

or a partial optimal labeling is returned.

4.7 Giving up Integrality: Relaxations and Decompositions

The techniques described in this section are based on the fact that some

hard optimization problems of the form (4.2) become easier when the

feasible set is enlarged or the objective function is replaced by a bound.

The resulting modified problem is called relaxation because it is

guaranteed to have a solution of no lower objective value – as measured

by the original objective function – than the original problem. Formally,

we define a relaxation as follows. The definition is due to Geoffrion

[1974].

Definition 4.2 (Problem Relaxation). Given two optimization

84 Structured Prediction

problems (g,Y,G) and (h,Z,G) as by Definition 4.1, the problem

(h,Z,G) is said to be a relaxation of (g,Y,G) if,

(1) Z ⊇ Y, i.e. the feasible set of the relaxation contains the

feasible set of the original problem, and

(2) ∀y ∈ Y : h(x, y) ≥ g(x, y), i.e. over the original feasible set

the objective function h achieves no lower values than the

objective function g.

An immediate consequence from the above definition is that

by solving the relaxed problem (h,Z,G), thus obtaining z∗ =

argmaxz∈Z h(x, z), we also obtain an upper bound h(x, z∗) on the ob-

jective g(x, y∗) of the true problem, that is we have h(x, z∗) ≥ g(x, y∗).

The construction and solution of a relaxation is in contrast to the

previous solution strategy in which we gave up optimality, leading us

to find a minimizer over a subset Y ′ ⊆ Y of the true feasible set Y.

Now we instead find the global maximizer over an enlarged set Z ⊇ Y.

The relaxation approach has some unique advantages and draw-

backs compared to other approaches. One advantage is that the re-

laxed problem is usually in a problem class for which polynomial-

time complexity bounds can be given and hence the relaxed problem

can be solved optimally and efficiently. The latter property typically

ensures that the optimal solutions of the relaxation are stable with

respect to perturbations in learned model parameters [Nowozin and

Jegelka, 2009]. This stability is particularly important when the relax-

ation is used for solving prediction problems during parameter learn-

ing [Kulesza and Pereira, 2007; Finley and Joachims, 2008; Martins

et al., 2009] and other approximate solution approaches do not come

with this guarantee.

One disadvantage of solving a relaxation instead of the original

problem is that the obtained solution z∗ might be outside the origi-

nal feasible set, i.e. we have z∗ ∈ Z \ Y. Depending on the particular

problem, the meaning of z∗ might then be unclear and heuristics have

to be used to obtain a solution y ∈ Y that is “similar” to z∗.

We now discuss three principled techniques how relaxations can

4.7. Giving up Integrality: Relaxations and Decompositions 85

be constructed: integer programming, Lagrangian relaxation and La-

grangian decomposition.

4.7.1 Linear Programming Relaxations

A general method for constructing a relaxation is to start from an exact

formulation to the problem in which the feasible set Y is specified by

a set of constraints. By removing one or more constraints which make

solving the problem difficult we can enlarge the feasible set and obtain

a simplified problem.

For the case of linear programming relaxations the problem is first

formulated as integer linear program (ILP) of the following form.

max
y

c>y (4.39)

sb.t. Ay ≤ b, (4.40)

y is integer. (4.41)

In the above formulation we have a continuous decision domain G = Rd

and – if the polyhedron specified by Ay ≤ b is bounded – a finite feasible

set Y = {y ∈ G : Ay ≤ b, y is integer}.
Because integer linear programs [Wolsey, 1998] are a very general

model class, formulating a problem as integer program is often possible

even for non-linear objective functions and complicated finite feasible

sets by introducing additional “auxiliary” variables [Williams, 1999].

By removing the integer constraint (4.41) from problem (4.39) we

obtain the following linear programming relaxation.

max
y

c>y (4.42)

sb.t. Ay ≤ b. (4.43)

The effect of the relaxation is illustrated in Figure 4.29 and 4.30.

In general the feasible set of the relaxation is a polyhedron and

therefore a continuous set. When optimizing a linear function c>y over

a bounded polyhedron, it is enough to consider the vertices because at

least one optimal solution to (4.42) is guaranteed to be a vertex. The

vertices of (4.43) are shown in Figure 4.30. Some or all of the solutions

of (4.39) might remain as vertices of the relaxed feasible set, some

86 Structured Prediction

y1

y2

Ay ≤ b

1

1
Fig. 4.29 The integer program solution set

is given as the intersection of a polyhe-
dron {y ∈ R2 : Ay ≤ b} and the inte-

ger lattice, resulting in a finite feasible set

{(1, 0), (0, 1), (1, 1)}.

y1

y2

Ay ≤ b

1

1
Fig. 4.30 The linear programming relax-

ation retains the polyhedral set {y ∈ R2 :
Ay ≤ b} but does not require the solutions

to be integral. The vertices of the polyhe-

dron are shown.

might be lost and there might be new vertices that do not lie on the

integer lattice. These solutions are said to be fractional. The number

of integral solutions cannot increase when relaxing the problem.

Example 4.9 (MAP-MRF Linear Programming Relaxation).

In earlier chapters discrete Markov random fields have been discussed

as popular model for interdependent variables. We now discuss a

linear programming relaxation for obtaining an approximate MAP

configuration of a given random field model. Linear programming

problems can be solved in polynomial time [Bertsimas and Tsitsiklis,

1997].

The following linear programming relaxation has first been proposed

by Schlesinger in the 1970s [Schlesinger, 1976] and has been extensively

analyzed by Wainwright and Jordan [2008] and Werner [2007]. In the

example below we only consider unary and pairwise factors, but there

also exist straightforward extensions of the linear program to higher

order factors, such as the one given in [Werner, 2008].

The Markov random field is defined by means of a factor graph

and we define for each factor node one vector of binary variables. In

Figure 4.31 we have µ1 ∈ {0, 1}Y1 , µ2 ∈ {0, 1}Y2 and µ1,2 ∈ {0, 1}Y1×Y2 .

For each labeling of the variables Y1 = y1 and Y2 = y2, we can set

4.7. Giving up Integrality: Relaxations and Decompositions 87

Y1 Y2

Y1 Y1 × Y2 Y2

y1 = 2

y2 = 3

(y1, y2) = (2, 3)

θ1 θ1,2

θ2

Fig. 4.31 A discrete Markov random field defined through a factor graph. Each factor node

(drawn as �) is defined over the product set of its adjacent variables node (drawn as©). In

the figure, |Y1| = 4 and |Y2| = 3, hence the pairwise factor connecting to both variables Y1
and Y2 is a table of energy values indexed by elements from Y1×Y2. In the shown example,

the overall energy of a configuration (Y1 = 2, Y2 = 3) is the sum over three selected energy

values (gray-shaded cells), one from each factor: E(y1, y2) = θ1(y1) + θ1,2(y1, y2) + θ2(y2).

µ1(y1) = 1, µ2(y2) = 1 and µ1,2(y1, y2) = 1, and all other variables to

zero. The energy values for each factor are given by means of tables

θ1 ∈ RY1 , θ2 ∈ RY2 , and θ1,2 ∈ RY1×Y2 . For any configuration y ∈ Y,

the energy E(y) can then be computed as

E(y) = 〈µ, θ〉 (4.44)

=
∑
y1∈Y1

θ1(y1)µ1(y1) +
∑
y2∈Y2

θ2(y2)µ2(y2) (4.45)

+
∑

(y1,y2)∈Y1×Y2

θ1,2(y1, y2)µ1,2(y1, y2),

where we denote by µ and θ the concatenation of all variables and

energy values, respectively. Not all possible assignments of µ1, µ2 and

µ1,2 are possible, in fact, µ1,2 is completely determined by the choice

of µ1 and µ2. Vice verse, given µ1,2, we can determine µ1 and µ2 as the

column- and row-sum, respectively. This yields the two conditions

µ1(y1) =
∑
y2∈Y2

µ1,2(y1, y2), ∀y1 ∈ Y1, (4.46)

µ2(y2) =
∑
y1∈Y1

µ1,2(y1, y2), ∀y2 ∈ Y2. (4.47)

88 Structured Prediction

By finding among all feasible configurations of variable settings the one

that minimizes the energy 〈µ, θ〉 we can solve the MAP-MRF problem.

This is exactly what the following integer linear programming problem

does for general factor graphs with unary and pairwise factors.

min
µ

∑
i∈V

∑
yi∈Yi

θi(yi)µi(yi) +
∑
{i,j}
∈E

∑
(yi,yj)∈
Yi×Yj

θi,j(yi, yj)µi,j(yi, yj) (4.48)

sb.t.
∑
yi∈Yi

µi(yi) = 1, ∀i ∈ V, (4.49)

∑
yj∈Yj

µi,j(yi, yj) = µi(yi), ∀{i, j} ∈ E,∀yi ∈ Yi (4.50)

µi(yi) ∈ {0, 1}, ∀i ∈ V,∀yi ∈ Yi, (4.51)

µi,j(yi, yj) ∈ {0, 1}, ∀{i, j} ∈ E,∀(yi, yj) ∈ Yi × Yj . (4.52)

It is known that if the factor graph is tree-structured or if all pairwise

interactions are submodular, then the linear programming relaxation

obtained by relaxing (4.51) and (4.52) is tight, that is, it has an inte-

gral optimal solution as shown in [Wainwright and Jordan, 2008]. One

such case is given in Example 4.2, where the pairwise terms are all

submodular.

In some cases, multiple integer linear programming formulations can

be combined to obtain tractable relaxations, as the following example

shows.

Example 4.10 (Random Fields with Connectivity Constraint).

In [Nowozin and Lampert, 2009] the problem of binary image segmen-

tation with side constraints is addressed. The constraint of interest

is to ensure that the segmentation mask is topologically connected.

This is a meaningful constraint if a single unoccluded object is to

be segmented. Unfortunately it is not possible to decompose the

constraint into low-order factors. Instead, the authors propose an

integer linear programming formulation with exponentially many

linear inequality constraints of the form

µi(1) + µj(1)−
∑
k∈S

µk(1) ≤ 1, (4.53)

4.7. Giving up Integrality: Relaxations and Decompositions 89

where i and j are two image locations and S is any set of vertices whose

removal disconnect i and j. Therefore, if i and j are labeled with the

foreground label, then at least one pixel k ∈ S must also be labeled

foreground. This is illustrated in Figure 4.32. Although the number of

constraints is exponential in the number of pixels, it is still possible to

optimize a relaxation.

i j

S

.

Fig. 4.32 Effect of the inequality (4.53): if pixel i is labeled foreground and pixel j is labeled

foreground, then at least one pixel in every separating set S must also be labeled foreground.

By combining this tractable relaxation with the above MAP-MRF

LP relaxation the authors approximate the constrained image segmen-

tation problem.

Related approximations to the connectivity constrained segmenta-

tion problem have been proposed by Vicente et al. [2008] and Chen

et al. [2011] using graph cuts, and Lempitsky et al. [2009] using linear

programming relaxations.

4.7.2 Lagrangian Relaxation

Instead of dropping a constraint completely in order to construct a re-

laxation – as done when relaxing an integer linear program to a linear

program, an alternative method is Lagrangian relaxation [Guignard,

2003; Lemaréchal, 2001]. In Lagrangian relaxation, one or more of the

constraints are incorporated into a new parameterized objective func-

tion. For each parameter setting, solving for the maximum of the new

objective function under the remaining constraints provides an upper

bound on the optimal solution value of the original problem. By chang-

ing the parameter, another, possibly better bound can be obtained.

Finding the smallest upper bound finds the strongest possible relax-

90 Structured Prediction

ation.

Formally, Lagrangian relaxation is applicable in case the feasible set

is the intersection of two sets, i.e. Y = D∩C, resulting in the following

problem.

max
y

g(x, y) (4.54)

sb.t. y ∈ D, (4.55)

y ∈ C. (4.56)

The assumption made is that optimizing g(x, y) over D is “easy”, ei-

ther because the solution could be constructed trivially or because an

efficient method is available, but that optimizing over D∩C is difficult.

To apply Lagrangian relaxation to problem (4.54) the set C needs to

be expressed in terms of equality and inequality constraints as

C = {y ∈ G : ui(y) = 0,∀i = 1, . . . , I, vj(y) ≤ 0, ∀j = 1, . . . , J},
(4.57)

where ui : G → R are the equality constraint functions and vj : G → R
are the inequality constraint functions. All functions ui, vj must be

differentiable. One typical additional assumption made is that each ui
is an affine function on G and each vj is a convex function on G. Together

these assumptions guarantee that C is a convex subset of G. With the

expression of C, problem (4.54) can be equivalently reformulated as the

problem

max
y

g(x, y) (4.58)

sb.t. y ∈ D, (4.59)

ui(y) = 0, i = 1, . . . , I, (4.60)

vj(y) ≤ 0, j = 1, . . . , J. (4.61)

We introduce Lagrange multipliers λi ∈ R, µj ∈ R+ associated to each

constraint (4.60) and (4.61), respectively. This allows us to form the

following partial Lagrangian problem in which the constraint y ∈ D is

retained, but the constraints associated to y ∈ C are dualized.

q(λ, µ) := max
y

g(x, y) + λ>u(y) + µ>v(y) (4.62)

sb.t. y ∈ D. (4.63)

4.7. Giving up Integrality: Relaxations and Decompositions 91

The following theorem justifies the relaxation and the importance of

problem (4.62).

Theorem 4.2 (Weak Duality of Lagrangian Relaxation). For

differentiable functions ui : G → R and vj : G → R, and for any λ ∈ RI

and any non-negative µ ∈ RJ , µ ≥ 0, we have that the optimal value of

problem (4.62) is greater than or equal to the optimal value of (4.54).

For a proof, see [Bertsekas, 1995, Section 5.5.3].

For each pair of Lagrangian multipliers (λ, µ), solving prob-

lem (4.62) gives a different bound. Finding the lowest possible bound is

itself an optimization problem, the so called dual problem. Let q(λ, µ)

denote the value of (4.62) for a given pair (λ, µ). Then, solving

min
λ,µ

q(λ, µ) (4.64)

sb.t. µ ≥ 0 (4.65)

yields the strongest upper bound. In case q(λ, µ) can be evaluated ef-

ficiently, problem (4.64) can be solved optimally using the following

result.

Theorem 4.3 (Lagrangian Dual Function). The function q is

convex in λ and µ, such that problem (4.64) is a convex, not nec-

essarily differentiable minimization problem. In case q is unbounded

below, then the original problem (4.54) is infeasible.

For any given λ, µ ≥ 0, let y(λ, µ) = argmaxy∈D(g(x, y) +λ>u(y) +

µ>v(u)) denote the maximizer obtained when evaluating q(λ, µ). Then,

a subgradient of q can be constructed by evaluating the constraint func-

tions at y(λ, µ) as

u(y(λ, µ)) ∈ ∂

∂λ
q(λ, µ), and v(y(λ, µ)) ∈ ∂

∂µ
q(λ, µ), (4.66)

where ∂
∂λq(λ, µ) and ∂

∂µq(λ, µ) denote the subdifferentials of q(λ, µ).

The subgradient result in Theorem 4.3 is a special case of Danskin’s

theorem [Bertsekas, 1995, Proposition B.25].

92 Structured Prediction

Theorem 4.3 allows us to use standard optimization methods for

non-differentiable convex minimization [Bonnans et al., 2003] to solve

for an optimal (λ∗, µ∗) that minimizes the upper bound. One simple and

popular method is a generalization of gradient descent known as sub-

gradient method, shown in Algorithm 8 and originally proposed by Shor

[1985]. The notation [·]+ projects a vector on the non-negative orthant

by setting all its negative elements to zero.

Algorithm 8 Subgradient Method

1: (λ∗, µ∗) = SubgradientMethod(λ0, µ0, T)

2: Input:

3: λ0 ∈ RI initial Lagrange multiplier related to u

4: µ0 ∈ RJ initial Lagrange multiplier related to v

5: T ∈ N number of iterations

6: Output:

7: (λ∗, µ∗) ∈ RI × RJ+ approximate solution to (4.64)

8: Algorithm:

9: for t = 0, 1, . . . , (T − 1) do

10: Obtain q(λt, µt) and y(λt, µt) by solving (4.62)

11: Choose step size αt > 0

12: λt+1 ← λt − αtu(y(λt, µt))

13: µt+1 ← [µt − αtv(y(λt, µt))]+
14: end for

15: (λ∗, µ∗)← (λT , µT)

There are multiple options in how the step size αt can be chosen

in each iteration, and we only mention two popular choices. Further

discussion can be found in [Bertsekas, 1995, Section 6.3.1]. For step sizes

satisfying the diminishing step size conditions, αt → 0 and
∑∞

t=0 α
t →

∞, convergence is guaranteed. The common step size choices are

(1) Simple diminishing step size,

αt =
1 +m

t+m
, (4.67)

where m > 0 is an arbitrary constant. This step size is simple

to implement and reasonably effective when m is tuned to the

4.7. Giving up Integrality: Relaxations and Decompositions 93

problem.

(2) Polyak’s step size,

αt = βt
q(λt, µt)− q̂

‖u(y(λt, µt))‖2 + ‖v(y(λt, µt))‖2 , (4.68)

where 0 < βt < 2 is a diminishing step size (such as the first

choice), and q̂ ≤ q(λ∗, µ∗) is a lower bound on the optimal

dual objective. Often a simple valid bound can be established

by constructing a suboptimal y ∈ Y and taking q̂ = g(x, y)

because by Theorem 4.2 we have g(x, y) ≤ q(λ∗, µ∗). In case

no bound is (yet) available, the numerator of (4.68) can be

set to a constant, as is done in the simple diminishing step

size.

Before we give a practical example how Lagrangian relaxation can

be fruitfully applied, let us discuss one more issue: primal solution re-

covery. Solving for (λ∗, µ∗) of (4.64) provides us with an upper bound

q(λ∗, µ∗) ≥ g(x, y∗) on the value of the solution y∗ to (4.54), but un-

fortunately does not provide us with y∗ itself. During the course of

the subgradient method many candidates y(λt, µt) are produced, but

they might violate the requirement y ∈ C or might be suboptimal. The

following theorem provides a sufficient condition to identify whether a

candidate is indeed an optimal solution.

Theorem 4.4 (Sufficient Optimality Conditions). If for a given

λ, µ ≥ 0, we have u(y(λ, µ)) = 0 and v(y(λ, µ)) ≤ 0 (primal feasibility)

and further we have

λ>u(y(λ, µ)) = 0, and µ>v(y(λ, µ)) = 0, (4.69)

(complementary slackness), then y(λ, µ) is an optimal solution to (4.54)

and (λ, µ) is an optimal solution to (4.64). See [Bonnans et al., 2003].

Theorem 4.4 is only a sufficient condition and does not guarantee Al-

gorithm 8 will produce an optimal solution. This is only guaranteed in

case there is no duality gap and we have q(λ∗, µ∗) = g(x, y∗).

94 Structured Prediction

For the special case of integer linear programs we have considered

earlier, the above result can be strengthened [Frangioni, 2005]. In par-

ticular, let D = {y ∈ G : Ay ≤ b, y is integer} be a finite subset of the

integer lattice. Then, solving the Lagrangian dual problem (4.64) is

identical to solving the dual of the following modified primal problem.

max
y

g(x, y) (4.70)

sb.t. y ∈ conv(D), (4.71)

y ∈ C. (4.72)

Furthermore, in the special case when we have conv(D) = {y ∈ G :

Ay ≤ b} such that {y ∈ G : Ay ≤ b} is an integral polytope, there is

no duality gap and Lagrangian relaxation is exact. In all cases, we

can recover a primal solution y∗ to (4.70) from the iterates of the

subgradient method due to a result of Shor [Anstreicher and Wolsey,

2009], that guarantees

lim
T→∞

1

T

T∑
t=1

y(λt, µt)→ y∗. (4.73)

In practise another popular method originally proposed by Barahona

and Anbil [2000] to obtain an approximate primal solution is to take the

average of all primal iterates as a geometric series and thus obtaining

a moving average ȳt as approximate primal solution,

ȳt = γy(λt, µt) + (1− γ)ȳt−1, (4.74)

where 0 < γ < 1 is a small constant such as γ = 0.1, and ȳt might be

slightly primal infeasible.

Example 4.11 (MAP-MRF Message Passing). In Example 4.9

we have formulated the MAP-MRF problem as an integer linear pro-

gramming problem. In this example we will apply Lagrangian relax-

ation to (4.48), obtaining as a byproduct a “message-passing” algo-

rithm to solve the linear programming relaxation of (4.48). This deriva-

tion is similar to recently proposed efficient MAP inference algorithms,

such as in [Johnson et al., 2007; Wainwright and Jordan, 2008; Ko-

modakis et al., 2007a; Werner, 2007].

4.7. Giving up Integrality: Relaxations and Decompositions 95

To do this, we first augment the original formulation with the fol-

lowing implied constraint.∑
(yi,yj)∈Yi×Yj

µi,j(yi, yj) = 1, ∀{i, j} ∈ E. (4.75)

The constraint is superfluous in the original formulation because sum-

ming over (4.50) and substituting by (4.49) implies (4.75). It is, how-

ever, necessary to make it explicit. We now have the following formu-

lation of the MAP-MRF problem.

min
µ

∑
i∈V

∑
yi∈Yi

θi(yi)µi(yi) +
∑
{i,j}∈E

∑
(yi,yj)∈
Yi×Yj

θi,j(yi, yj)µi,j(yi, yj) (4.76)

sb.t.
∑
yj∈Yj

µi,j(yi, yj) = µi(yi), ∀{i, j} ∈ E,∀yi ∈ Yi (4.77)

(4.49), (4.51), (4.52), (4.75).

Note that if constraint (4.77) were absent, then the problem could be

solved trivially in linear time by setting µi(yi) = 1 for the yi ∈ Yi
that minimizes the energy among all θi, and likewise for µi,j . There-

fore (4.77) is a complicating constraint and this is the structure La-

grangian relaxation can be beneficially applied to.

Therefore, we apply Lagrangian relaxation to the constraint (4.77)

by introducing Lagrange multipliers λi,j(yi) ∈ R, one for each con-

straint (4.77). We obtain the dual function q(λ) as the following par-

tially dualized problem.

q(λ) := min
µ

∑
i∈V

∑
yi∈Yi

θi(yi)µi(yi) +
∑
{i,j}
∈E

∑
(yi,yj)
∈Yi×Yj

θi,j(yi, yj)µi,j(yi, yj)

+
∑
{i,j}∈E

∑
yi∈Yi

λi,j(yi)

∑
yj∈Yj

µi,j(yi, yj)− µi(yi)

 (4.78)

sb.t. (4.49), (4.51), (4.52), (4.75).

If we group the terms in the objective according to the variables, we

see that for a given λ we can evaluate q(λ) by separately finding the

96 Structured Prediction

minimizing state for each variable and factor.

q(λ) := min
µ

∑
i∈V

∑
yi∈Yi

θi(yi)− ∑
j∈V :{i,j}∈E

λi,j(yi)

µi(yi) (4.79)

+
∑
{i,j}
∈E

∑
(yi,yj)
∈Yi×Yj

(θi,j(yi, yj) + λi,j(yi) + λj,i(yj))µi,j(yi, yj)

sb.t. (4.49), (4.51), (4.52), (4.75).

The optimal solution depending on λ is the following.

µ∗i (yi) =

{
1 if yi = argminyi∈Yi (θi(yi)−

∑
j∈V :{i,j}∈E λi,j(yi)),

0 otherwise.

µ∗i,j(yi, yj) =

{
1 if (yi, yj) = argmin(yi,yj)∈Yi×Yj (θi,j(yi, yj) + λi,j(yi) + λj,i(yj)),

0 otherwise.

The above decomposition makes it very efficient to evaluate q(λ). Dur-

ing the evaluation, a λ-subgradient of q can be obtained efficiently

using the result of Theorem 4.3. We can therefore apply the subgra-

dient method to maximize q(λ) iteratively. A typical behavior of the

objective is shown in Figure 4.33. The above simple method is simi-

lar in structure to the max-sum diffusion method reviewed in [Werner,

2007] and to max-product belief propagation. By using a subgradient

method the above method always converges to an optimal dual solution

λ∗ that provides the exact MAP-MRF linear programming solution

value q(λ∗).

4.7.3 Lagrangian Decomposition, Dual Decomposition

Lagrangian relaxation is a versatile and powerful tool to derive re-

laxations whenever the problem has a subset of constraints that pre-

vent applying an efficient solution method. With Lagrangian relaxation

these constraints can be treated implicitly.

If the problem does not contain such a complicating constraint set,

then it turns out Lagrangian relaxation may still be applied if there is

an additive structure as follows. Consider a special case of the prediction

4.7. Giving up Integrality: Relaxations and Decompositions 97

0 50 100 150 200 250
−50

−40

−30

−20

−10

0

10

Iteration

O
b

je
c
ti
v
e

Dual objective

Primal objective

Fig. 4.33 Subgradient iterations when maximizing q(λ) for a small submodular grid-

structured MRF problem. The primal objective evaluated on µ∗(λ) always upper bounds
the dual objective q(λ) and in every iteration but the last the solution µ∗(λ) violates the

dualized constraint (4.77). In this case there is no duality gap and eventually the primal

and dual objectives are equal, proving optimality of the achieved objective value. A few
more subgradient iterations are needed to prove solution optimality through Theorem 4.4.

problem where the objective is a sum of a set of functions,

max
y

K∑
k=1

gk(x, y) (4.80)

sb.t. y ∈ Yk, ∀k = 1, . . . ,K,

where problem (4.80) is hard to solve, but in which the maximization

of a single function is feasible, i.e. we could solve or approximate for

any k = 1, . . . ,K the problem

max
y

gk(x, y) (4.81)

sb.t. y ∈ Yk. (4.82)

As an example, each (4.81) could be a specially structured problem for

which efficient algorithms exist. Then, we cannot directly apply these

algorithms to jointly maximize (4.80).

Lagrangian decomposition allows one to solve a relaxation of (4.80)

by means of iteratively solving problems of the form (4.81). The basic

idea is as follows. We introduce duplicate variables yk into the prob-

lem but add equality constraints y = yk, transforming (4.80) into the

98 Structured Prediction

following equivalent problem.

max
y,y1,...,yK

K∑
k=1

gk(x, yk) (4.83)

sb.t. yk = y, ∀k = 1, . . . ,K, (4.84)

yk ∈ Yk, ∀k = 1, . . . ,K, (4.85)

y ∈ Y ′. (4.86)

In (4.86) the set Y ′ can be any set containing all sets Yk, for example

the decision domain Y ′ = G. Clearly, the solution to problem (4.83) is

the same as to (4.80).

Problem (4.83) is amenable to Lagrangian relaxation of the com-

plicating constraints (4.84), for if these constraints would be absent

the problem would decouple into separate tractable problems of the

form (4.81). We therefore introduce Lagrange multiplier vectors λk,

one for each constraint, and dualize (4.84) to obtain the following par-

tial dual function.

q(λ) := max
y,y1,...,yK

K∑
k=1

gk(x, yk) +

K∑
k=1

λ>k (yk − y) (4.87)

sb.t. yk ∈ Yk, ∀k = 1, . . . ,K, (4.88)

y ∈ Y ′. (4.89)

For a given λ, the Problem (4.87) is decomposed. The optimal solution

can be obtained by separately solving for each k = 1, . . . ,K the problem

maxyk∈Yk gk(x, yk)+λ
>
k yk. For the maximization over y ∈ Y ′ we first see

that (4.83) remains valid for unbounded Y ′. Then, whenever
∑K

k=1 λk 6=
0, we have q(λ) = ∞ in (4.87). The set of λ on which q(λ) remains

finite defines the domain of q, see [Bertsekas, 1995]. However, when∑K
k=1 λk = 0, then y does not influence the value of (4.87) and we do

not have to optimize over y. The dual problem of minimizing q can

therefore be restricted to the domain of q and this yields the following

convex minimization problem.

min
λ

q(λ) (4.90)

sb.t.

K∑
k=1

λk = 0. (4.91)

4.7. Giving up Integrality: Relaxations and Decompositions 99

This problem is a linearly constrained convex minimization problem

and can be solved by means of the projected subgradient method that

first projects the subgradient onto (4.91) and then takes a subgradient

step as usual. In our case we only have a single linear equality constraint

and can provide the projected subgradient directly as follows.

∂

∂λk
q(λ) 3 yk(λ)− 1

K

K∑
`=1

y`(λ). (4.92)

In case we initialize λ such that it satisfies (4.91) the subgradient

method will then continue to satisfy the constraint.

Because we first transformed the original problem into an equivalent

one and then applied Lagrangian relaxation, we retain the strong theo-

retical guarantees provided by the Lagrangian relaxation approach. In

particular, (4.90) yields an upper bound on (4.80) and we can recognize

optimality by means of the duality gap between any primal solution

value and the dual value.

For the special case where Yk are finite sets – as is the case for

discrete models – and we have a linear cost function g(x, y) = c(x)>y,

the following theorem providing a simple interpretation of Lagrangian

decomposition was proven by Guignard and Kim [1987].

Theorem 4.5 (Lagrangian Decomposition Primal). Let a prob-

lem of the form (4.80) be given, where Yk are finite sets and g(x, y) =

c(x)>y is a linear objective function. Then the optimal solution of the

Lagrangian dual (4.90) obtains the value of the following relaxed primal

optimization problem.

max
y

K∑
k=1

gk(x, y) (4.93)

sb.t. y ∈ conv(Yk), ∀k = 1, . . . ,K. (4.94)

Therefore, optimizing the Lagrangian decomposition dual is equivalent

to optimizing the primal objective on the intersection of the convex

hulls of the individual feasible sets.

Note that the Lagrangian decomposition method is still sound when

100 Structured Prediction

the assumptions of Theorem 4.5 do not hold, it is just the primal in-

terpretation of (4.90) that is less clear.

In the above discussion we have assumed that the subproblems are

tractable. Lagrangian decomposition can be applied without this as-

sumption if we are able to solve a relaxation of the subproblem. In that

case, we are still guaranteed to obtain a relaxation to the original prob-

lem, but the relaxation is weaker – its optimal value yields a weaker

upper bound – than if we could solve the subproblem exactly. The geo-

metric interpretation of what happens when such weaker relaxation is

used is depicted in Figure 4.34. Although the Lagrangian decomposi-

tion method is often applicable, in some problems different choices of

subproblems are possible and each choice produces one decomposition.

conv(Y2)
conv(Y1)

conv(Y1)∩
conv(Y2)

yD yR

y∗

c>y

Y ′1 ⊇ conv(Y1)

Fig. 4.34 Schematic interpretation of the geometry of Lagrangian decomposition, follow-
ing [Guignard and Kim, 1987]. Here we have two subproblems over finite sets Y1 and
Y2, respectively. The cost function g(x, y) = c>y is linear and the optimal solution to

maxy∈Y1∩Y2 c
>y is y∗ (marked with a square). In case each subproblem can be solved

exactly, Lagrangian decomposition produces the solution yD, that is, the maximizing so-

lution within conv(Y1) ∩ conv(Y2). We therefore obtain a relaxation, i.e. we always have
c>yD ≥ c>y∗. In case exact optimization over Y1 is intractable and we use a relaxation
Y ′1 ⊇ conv(Y1), then this weakens the relaxation and we obtain the solution yR which
satisfies c>yR ≥ c>yD ≥ c>y∗.

Lagrangian decomposition is also called “dual decomposition” in

the computer vision community; another name is “variable splitting”.

For the original paper, see [Guignard and Kim, 1987], for an up to date

4.7. Giving up Integrality: Relaxations and Decompositions 101

textbook covering other problem decomposition techniques, see [Conejo

et al., 2006].

Lagrangian/Dual Decomposition in computer vision. La-

grangian decomposition has been successfully applied to a number of

computer vision problems. The connectivity constrained segmentation

problem has been used by Vicente et al. [2008] in a dual decomposition

approach to obtain strong lower bounds on an objective; the decom-

position approach turned out to be slow and a fast primal heuristic

is used instead. Feature matching between images has been addressed

using graph matching in [Torresani et al., 2008], where dual decompo-

sition provided strong relaxations. The following example is a typical

situation in which the decomposition can be applied.

Example 4.12 (Segmentation with Global Appearance Models).

In [Vicente et al., 2009] the authors derive an approach to binary

image segmentation incorporating a global appearance model of the

object to be segmented. The model is similar to the one in Example 4.2

but the function g(x, y) to be maximized incorporates a term hk(·)
that takes as argument the number of pixels labeled as foreground.

Because this function is nonlinear it does not decompose and finding

the maximizer of g(x, y) is NP-hard.

For the simplest model in [Vicente et al., 2009] with binary label

set L = {0, 1}, the function g(x, y) is given as follows.

g(x, y) = −
∑
b∈B

hb

(∑
i∈V

Ji ∈ VbK
)
−
∑

(i,j)∈E

wi,jJyi 6= yjK︸ ︷︷ ︸
g1(x,y)

−h
(∑
i∈V

Jyi = 1K

)
︸ ︷︷ ︸

g2(x,y)

,

(4.95)

where hb(·) is a concave function and h(·) is a convex function. These

functions are derived from a global histogram-based color model. In

this model, a set B of fixed histogram bins a priori partitions the pixel

set V , i.e. we have
⋃
b∈B Vb = V . The set Vb ⊂ V contains the set

of nodes that have a pixel color mapped to the histogram bin b. The

functions hb and h make the model prefer labelings whose foreground

and background pixels are forming a consistent color model. For details

102 Structured Prediction

on these models, see [Vicente et al., 2009]. Optimizing (4.95) is NP-hard

but when suitably decomposed a relaxation can be optimized efficiently.

In order to apply the Lagrangian decomposition scheme to the two

parts g1 and g2 we split the variable y into y1 and y2 and obtain the

two problems,

• maxy1∈Y
[
g1(x, y1) + λ>1 (y1 − y)

]
, and

• maxy2∈Y
[
g2(x, y2) + λ>2 (y2 − y)

]
.

Both subproblems can be solved in polynomial time: the first problem

is known to be solvable by reducing it to a linear s−t min-cut problem,

as shown by Kohli et al. [2009b], but Vicente et al. [2009] propose a

more efficient procedure. The second subproblem has a simple structure

and can also be solved efficiently. Applying the subgradient method

to minimize the dual problem solves a relaxation and provides lower

and upper bounds on the optimal objective. The authors empirically

observe that in most cases the relaxation is in fact integral and provides

the optimal solution y∗. An example segmentation using a global color

model is shown in Figure 4.35 to 4.37.

Fig. 4.35 Input image to be

segmented.

Fig. 4.36 User annotation of

foreground and background.

Fig. 4.37 Final segmented

image.

The above ideas have been generalized to the so called marginal

probability field model in [Woodford et al., 2009].

The Lagrangian decomposition method was applied to the MAP-

MRF problem by Johnson et al. [2007] and Komodakis et al. [2007a]

to approximately solve the linear programming relaxation by iterat-

ing MAP inference on tree-structured subgraphs. The family of pos-

sible decompositions for MAP inference in graphical models has been

further studied by Werner [2009]; Franc et al. [2011] and efficiently

4.7. Giving up Integrality: Relaxations and Decompositions 103

solvable higher-order decompositions yielding stronger bounds are pro-

posed in [Batra et al., 2010]. Sontag et al. [2011] provides a detailed

introduction to dual decomposition and dual ascent methods for infer-

ence.

Decomposing the original problem into smaller instances naturally

allows for parallel and distributed computation. This is used by Strand-

mark and Kahl [2010] in a straightforward approach to decompose large

discrete MAP inference problems with more than 600 million voxels

onto multiple machines, each solving only a smaller subproblem.

A number of recent works have improved on the subgradient method

used to optimize the Lagrangian decomposition dual (4.90). Jojic et al.

[2010] and also Savchynskyy et al. [2011] applied Nesterov’s smooth-

ing technique [Nesterov, 2005] to (4.90). This improves the asymptotic

convergence rate at the cost of modifying the subproblem (4.87) by

the addition of a strictly concave proximal regularization term. For

the case of discrete graphical models the resulting subproblem can still

be solved by replacing the energy minimization step with probabilistic

inference. In the same spirit, but from the perspective of augmented

Lagrangian optimization, Martins et al. [2010] augment the subprob-

lems by a strictly convex proximal term stabilizing the iterations. This

complicates the subproblems slightly but leads to a large decrease in

the number of outer iterations.

4.7.4 General MAP-MRF Linear Programming Relaxations

The pairwise LP relaxation (4.48), also known as the LOCAL

relaxation [Wainwright and Jordan, 2008], was initially proposed

in Schlesinger [1976] but has since been extended to models with factors

of higher-order. In the following we describe the most general known

family of cluster-based relaxations, as proposed by Werner [2008] and

described in detail in Franc et al. [2011]. This family of relaxations is

so large that it contains both the LOCAL relaxation and the exact

marginal polytope as special cases. As such, not all relaxations in this

family are tractable.

The construction of this family has close ties to region graphs and

free energy approximations used for probabilistic inference, see Yedidia

104 Structured Prediction

et al. [2004] and Heskes [2006]. The basic idea of enforcing marginal-

ization consistency over larger groups of variables can be dated back

to Kikuchi [1951].

For a given factor graph (V,F , E), each relaxation instance is defined

by means of a set of triplets, J = {(A,B, yB)|A,B ⊆ V, ∅ 6= B ⊂ A},
the so called pencil set [Werner, 2008]. For each factor F ∈ F present

in the model, there must exist at least one pencil (A, ·, ·), where A =

N(F) is the set of variables in the scope of the factor. The construction

is visualized for higher-order factors in Figure 4.38. For brevity, we

write A ∈ J if there exists one element (A,B, yB) ∈ J or one element

(C,A, yA) ∈ J . For any such set J we can now obtain a valid relaxation

L(J) of the MAP-MRF problem by formulating a linear program as

shown in Figure 4.39. The coefficients θA(yA) are defined as

θA(yA) =
∑

F∈F :N(F)=A

EF (yA), (4.96)

and we can have θA(yA) = 0 if the set A does not correspond to the

scope of any factor in the model.

Y1

Y2 Y4

Y3 Y5

Y6

A B C
G H

Fig. 4.38 Constructing a linear programming relaxation for higher-order factors. The model

contains two factors, that is, F = {G,H}. We define two sets of pencils by (A,B, xB), and
(C,B, xB), where A = N(G) = {Y1, Y2, Y3, Y4}, B = N(G) ∩ N(H) = {Y3, Y4}, and
C = N(H) = {Y3, Y4, Y5, Y6}. This introduces the marginal vector µB that ensures the

marginal vectors µA and µC are consistent with each other when marginalized onto B,
their common set of variables.

For example, we can obtain the LOCAL relaxation for a factor graph

with pairwise factors by setting

JLOCAL = {(A,B, xB)|F ∈ F , |N(F)| = 2, A = N(F), B ⊂ A, yB ∈ YB}.

4.8. Giving up Determinism 105

min
µ

〈θ,µ〉 (4.97)

sb.t.
∑
yA

µA(yA) = 1, ∀A ∈ J, (4.98)∑
yA\B

µA(yA) = µB(yB), ∀(A,B, yB) ∈ J, (4.99)

µA(yA) ≥ 0, ∀A ∈ J, yA. (4.100)

Fig. 4.39 Primal linear program of the cluster-based relaxation L(J).

In this case, (4.97-4.100) reduces to the earlier linear relaxation (4.48)

of Schlesinger [1976]. If instead we take the largest possible set

JALL = {(A,B, yB)|A ∈ 2V , B ⊂ A, yB ∈ YB},

then for each factor F ∈ F the corresponding marginals µN(F) are

globally consistent due to (4.99), and the solution of (4.97) is the exact

minimum energy solution. Unfortunately, JALL grows exponentially in

the model size and is therefore impractical.

Therefore, one typically starts with the LOCAL relaxation and it-

eratively enforces consistency over larger groups of variables. For any

given particular relaxation, most algorithms solve (4.97) by means of

the dual linear program (4.101). The reason is that ensuring dual fea-

sibility for (4.104) is straightforward. The algorithms of Sontag et al.

[2008b,a], Werner [2008], and Komodakis and Paragios [2008] are all

based on the dual optimization problem (4.101).

The selection of groups of variables and pencils to use in a relax-

ation remains an open issue. For a discussion of the problems involved,

see Franc et al. [2011] and Batra et al. [2011].

4.8 Giving up Determinism

Giving up the determinism in computation leads to algorithms whose

output are random variables. Alternatively, the algorithm might give a

deterministic result but its runtime is random.

We have already seen the usefulness of sampling techniques in Monte

106 Structured Prediction

max
h,z

∑
A∈J

hA (4.101)

sb.t. hA ∈ R, ∀A ∈ J, (4.102)

zA→B(yB) ∈ R, ∀(A,B, yB) ∈ J, (4.103)

hA ≤ θA(yA) +
∑

Z|(Z,A,yA)∈J

zZ→A(yA)−
∑

B|(A,B,yB)∈J

zA→B(yB), ∀A ∈ J, yA. (4.104)

Fig. 4.40 Dual linear program of the cluster-based relaxation L(J).

Carlo, now we consider solving optimization problems using random-

ized algorithms.

4.8.1 Simulated Annealing

Simulated annealing [Kirkpatrick et al., 1983; Aarts et al., 1997] is a

well-known method to approximately solve problems of the form (4.2).

It consists of two steps, i) constructing a family of probability distri-

butions p(y;T) on Y, and ii) a method to approximately generating

samples from these distributions.

For the first step, the distributions p(y;T) are constructed in such a

way that most of the probability mass is concentrated on states y ∈ Y
with high values g(x, y). The distribution p(y;T) is constructed as a

Boltzmann distribution, defined as follows.

Definition 4.3 (Boltzmann Distribution). For a finite set Y, a

function g : Y → R and a temperature parameter τ > 0, let

p(y; τ) =
1

Z(τ)
exp

(
g(x, y)

τ

)
, (4.105)

with Z(τ) =
∑

y∈Y exp(g(x,y)
τ) be the Boltzmann distribution for g over

Y at temperature τ . The Boltzmann distribution is also known as the

Gibbs measure or Gibbs distribution.

Figures 4.41 to 4.46 illustrate the behavior of the Boltzmann distribu-

tion with different values of τ for a simple case where Y = {1, 2, . . . , 40}.
The smaller the temperature becomes, the more probability mass is put

4.8. Giving up Determinism 107

on the state y∗ that attains the maximum value g(x, y∗), and we have

limτ→0 p(y
∗; τ) = 1.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

Function g

F
u
n
c
ti
o
n
 v

a
lu

e

State y

Fig. 4.41 Function g to be maximized.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution P(T=100.0)

P
ro

b
a

b
ili

ty
 m

a
s
s

State y

Fig. 4.42 Distribution p(y; τ) for τ = 100.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution P(T=10.0)

P
ro

b
a

b
ili

ty
 m

a
s
s

State y

Fig. 4.43 Distribution p(y; τ) for τ = 10.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution P(T=4.0)

P
ro

b
a

b
ili

ty
 m

a
s
s

State y

Fig. 4.44 Distribution p(y; τ) for τ = 4.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution P(T=1.0)

P
ro

b
a

b
ili

ty
 m

a
s
s

State y

Fig. 4.45 Distribution p(y; τ) for τ = 1.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distribution P(T=0.1)

P
ro

b
a

b
ili

ty
 m

a
s
s

State y

Fig. 4.46 Distribution p(y; τ) for τ = 0.1.

108 Structured Prediction

For this example, finding the maximizer is of course trivial by enu-

merating all elements in Y. In general we are interested in problems

where Y is large and therefore such enumeration is intractable. Like-

wise, naively drawing samples from p(y; τ) by computing (4.105) for

all y ∈ Y is intractable. However, drawing approximate samples is pos-

sible by constructing Markov chain on Y as discussed in Inference in

Graphical Models. Drawing a sample at a low temperature makes it

more likely that the obtained iterate is the maximizer of g. Simulated

annealing achieves this by starting with a high temperature and low-

ering it gradually.

Before we show how a Markov chain simulating p(y; τ) can

be constructed, we first discuss the simulated annealing algo-

rithm, as shown in Algorithm 9. The algorithm takes a sequence

τ (1), τ (2), . . . , τ (K) of monotonically decreasing temperatures and a se-

quence η(1), η(2), . . . , η(K) of steps to simulate at each temperature. For

each temperature τ (k) a Markov chain is simulated for the given num-

ber of steps η(k), hopefully improving on the solution objective. Any

Markov chain with p(y; τ (k)) as stationary distribution can be used,

such as the Metropolis-Hastings chain or the Gibbs sampler discussed

before. Throughout the algorithm the best solution observed so far is

kept.

Finally, the choice of temperatures τ (k) and number of simulations

η(k) over time, the so called annealing schedule must be set. In case the

temperature decreases slowly enough, the following theoretical result

is known due to Geman and Geman [1984].

Theorem 4.6 (Guaranteed Optimality Annealing). If there ex-

ist a k0 ≥ 2 such that for all k ≥ k0 the temperature τ (k) satisfies the

lower bound

τ (k) ≥ |Y| · (maxy∈Y g(x, y)−miny∈Y g(x, y))

log k
, (4.106)

then the probability of seeing the maximizer y∗ of g tends to one as

k →∞. For the original proof, see [Geman and Geman, 1984].

The above bound (4.106) goes to zero too slowly to be useful in practise.

4.8. Giving up Determinism 109

Instead, the so called exponential schedule

τ (k) = τ (0) · αk, (4.107)

is popular, where τ (0) > 0 is a fixed constant and α is set to a number

close to one, e.g. α = 0.999. The simulation intervals are often fixed

such as setting η(k) = 10 for all k.

Example 4.13 (Image Restoration). The influential paper of Ge-

man and Geman [1984] proposed the Gibbs sampler for obtaining ap-

proximate samples from otherwise intractable distributions. The au-

thors also used the newly proposed sampler to perform approximate

MAP inference by simulated annealing. The following experiment is an

exact replication of the first experiment in that paper.

We assume a 128-by-128 pixel image with each pixel taking one out

of five possible intensity values. We define the Gibbs distribution

p(y) =
1

Z
exp(−E(y)), (4.108)

where the energy is a sum of pairwise terms, i.e. E(y) =∑
(i,j)∈E Vi,j(yi, yj), with Vi,j taking the Potts form6

Vi,j(yi, yj) =

{ −1
3 if yi = yj ,

1
3 otherwise.

There are no unary factors. We obtain an approximate sample y∗ from

the distribution by Gibbs sampling, the result of which is shown in

Figure 4.47. The task is to denoise a noisy version of this image.

To this end, we use independent additive Gaussian noise to obtain

the noisy image y′ shown in Figure 4.48. Geman and Geman show that

the posterior distribution p(y|ynoisy) is again of the form (4.108) with

the modified energy EP (y) as

EP (y) = E(y) +
1

2σ2

∑
i

(y′i − yi)2. (4.109)

This simply adds unary factors to the previous model and we can min-

imize EP (y) by simulated annealing, using a Gibbs sampler to sample

6The original form given in [Geman and Geman, 1984, Page 12] contains a sign error.

110 Structured Prediction

from the intermediate distributions. The results of two different runs

using 25 and 300 simulated annealing sweeps is shown in Figure 4.49

and 4.50, respectively.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 4.47 Sample y∗ from prior distri-
bution with five labels, obtained using

200 Gibbs sampler sweeps.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 4.48 Sample y′ with independent
additive Gaussian noise, σ = 1.5.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 4.49 Reconstruction with 25 sim-
ulated annealing sweeps.

20 40 60 80 100 120

20

40

60

80

100

120

Fig. 4.50 Reconstruction with 300 sim-
ulated annealing sweeps.

Simulated annealing can be particularly effective if a problem-

specific sampler is used. For example, in [Barbu and Zhu, 2005] image

segmentation is performed by simulated annealing, but the simulation

is carried out using an efficient sampler for partitionings, giving rise

to a hundredfold speedup over naive single-variable Gibbs sampling. A

good general reference on simulated annealing is [Aarts et al., 1997].

4.8. Giving up Determinism 111

Algorithm 7 Branch and Bound

1: y∗ = BranchAndBound(Y, g, g, g)

2: Input:

3: x ∈ X input data (observation)

4: Y finite feasible set

5: g : X × Y → R objective function

6: g : X × B → R upper bound with g(x,B) ≥ max
y∈B

g(x, y)

7: g : X × B → R lower bound with g(x,B) ≤ max
y∈B

g(x, y)

8: Output:

9: y∗ ∈ Y global optimal solution with y∗ = argmaxy∈Y g(x, y)

10: Algorithm:

11: (L,U)← (g(x,Y), g(x,Y)) {Initialize global bounds on g(x, y∗)}
12: (A, C)← ({Y}, ∅)
13: while L < U do

14: Select an element A ∈ A
15: A ← A \ {A}
16: Branch: partition A into k ≥ 2 nonempty sets A1, . . . , Ak
17: for i = 1, . . . , k do

18: Bound : compute upper bound g(x,Ai)

19: Bound : compute lower bound g(x,Ai) and yi with g(x, yi) =

g(x,Ai)

20: if g(x,Ai) > L then

21: (y∗, L)← (yi, g(x,Ai)) {Increase global lower bound}
22: end if

23: A ← A∪ {Ai}
24: end for

25: U ← max
A∈A

g(x,A) {Update global upper bound}
26: E ← {A ∈ A : g(x,A) ≤ L or g(x,Ai) = g(x,Ai)} {Prune

nodes}
27: (A, C)← (A \ E , C ∪ E)

28: end while

112 Structured Prediction

Algorithm 9 Simulated Annealing

1: y∗ = SimulatedAnnealing(Y, g, τ,N)

2: Input:

3: Y finite feasible set

4: g : Y → R objective function

5: τ ∈ RK sequence of K decreasing temperatures

6: η ∈ NK sequence of K step lengths

7: Output:

8: y∗ ∈ Y solution

9: Algorithm:

10: y ← y0

11: y∗ ← y0

12: for k = 1, . . . ,K do

13: for i = 1, . . . , η(k) do

14: y ← run Markov chain simulating p(y; τ (k)) for one step

15: if g(x, y) > g(x, y∗) then

16: y∗ ← y {Improved solution}
17: end if

18: end for

19: end for

5

Conditional Random Fields

We now turn to the problem of probabilistic parameter learning. For

this we assume a fixed underlying graphical model with parameterized

conditional probability distribution

p(y|x,w) =
1

Z(x,w)
exp(−E(x, y, w)), (5.1)

where Z(x,w) =
∑

y∈Y exp(−E(x, y, w)). The only unknown quantity

is the parameter or weight vector w, on which the energy E(x, y, w) =

〈w,ϕ(x, y)〉 depends linearly.

As introduced in Problem 3 of Graphical Models, probabilistic learn-

ing aims at identifying a weight vector w∗ that makes p(y|x,w∗) as close

to the true conditional label distribution d(y|x) as possible. The label

distribution itself is unknown to us, but we have an i.i.d . sample set

D = {(xn, yn)}n=1,...,N from d(x, y) that we can use for learning.

5.1 Maximizing the Conditional Likelihood

The most common principle for probabilistic training is (regularized)

conditional likelihood maximization that we define and discuss in this

section. Training a graphical model in this way is generally called con-

113

114 Conditional Random Fields

ditional random field (CRF) training.

Definition 5.1. (Regularized Maximum Conditional Likeli-

hood Training). Let p(y|x,w) = 1
Z(x,w) exp(−〈w,ϕ(x, y)〉) be a

probability distribution parameterized by w ∈ RD, and let D =

{(xn, yn)}n=1,...,N be a set of training examples. For any λ > 0, reg-

ularized maximum conditional likelihood (RMCL) training chooses the

parameter as

w∗ = argmin
w∈RD

λ‖w‖2 +

N∑
i=n

〈w,ϕ(xn, yn)〉+

N∑
n=1

logZ(xn, w). (5.2)

For λ = 0 the simplified rule

w∗ = argmin
w∈RD

N∑
n=1

〈w,ϕ(xn, yn)〉+
N∑
n=1

logZ(xn, w) (5.3)

is called maximum conditional likelihood (MCL) training.

To understand the objective behind Equations (5.2) and (5.3) let us

try to solve Problem 3 in a straight-forward way, i.e. derive a weight

vector w∗ that makes p(y|x,w∗) closest to d(y|x). First we define what

we mean by ”closeness“ between conditional distributions: for any x ∈
X , we measure the dissimilarity between p(y|x,w) and d(y|x) by their

Kullback-Leibler (KL) divergence: KL(p‖d) =
∑

y∈Y d(y|x) log d(y|x)
p(y|x,w) .

From this we obtain a total measure of how much q differs from d by

their expected dissimilarity over all x ∈ X :

KLtot(p‖d) =
∑
x∈X

d(x)
∑
y∈Y

d(y|x) log
d(y|x)

p(y|x,w)
. (5.4)

We solve Problem 3 by choosing the parameter w∗ that minimizes this

measure, i.e.

w∗ = argmin
w∈Rd

KLtot(p‖d) (5.5)

= argmax
w∈Rd

∑
x∈X

d(x)
∑
y∈Y

d(y|x) log p(y|x,w) (5.6)

= argmax
w∈Rd

E(x,y)∼d(x,y)

[
log p(y|x,w)

]
. (5.7)

5.1. Maximizing the Conditional Likelihood 115

Unfortunately, we cannot compute this expression directly, because

d(x, y) is unknown to us. However, we can approximate it using the

given sample set D.

≈ argmax
w∈Rd

∑
(xn,yn)∈D

log p(yn|xn, w). (5.8)

Inserting the parametric form of p, we see that Equation (5.8) is equiv-

alent to Equation (5.3). Making use of p(y1, . . . , yN |x1, . . . , xN , w) =∏N
n=1 p(y

n|xn, w), because D is sampled i.i.d ., and the monotonicity of

the logarithm, we obtain

= argmax
w∈Rd

p(y1, . . . , yN |x1, . . . , xN , w). (5.9)

from which the name maximum conditional likelihood (MCL) stems.

MCL training has been applied successfully to many learning tasks

where the dimensionality of the weight vector is small and the number

of training examples is large. However, when the number of training

instances is small compared to the number of degrees of freedom in

w then MCL training is prone to overfitting. An explanation is that

the approximation leading to Equation (5.8) becomes unreliable in this

situation, and w∗ will vary strongly with respect to the training set D.

It is possible to overcome this limitation by treating w not as a

deterministic parameter but as yet another random variable1. For any

prior distribution p(w) over the space of weight vectors, one can derive

the posterior probability of w for given observations D:

p(w|D) =
p(w)p(y1, . . . , yN |x1, . . . , xN , w)

p(y1, . . . , yN |x1, . . . , xN)

= p(w)

N∏
n=1

p(yn|xn, w)

p(yn|xn)
(5.10)

where in the first step we have made use of Bayes’ rule, and in the

second step of the i.i.d . assumption on D. Having to choose a single

1This view makes a lot of sense, since our choice of w∗ depends on D, which itself is
randomly sampled.

116 Conditional Random Fields

weight vector it makes sense to use the maximum a posteriori estimate,

w∗ = argmax
w∈Rd

p(w|D) (5.11)

= argmin
w

[
− log p(w)−

N∑
n=1

log p(yn|xn, w)
]
. (5.12)

The second term is the negative logarithm of the conditional likeli-

hood, which we have already encountered in MCL training. In the first

term, p(w) expressed our prior assumptions on w. We have to specify it

as a design choice, because as a prior it cannot be estimated from data.

Assuming a zero-mean Gaussian prior2, p(w) ∝ exp(−‖w‖2
2σ2), the first

term in Equation (5.12) becomes 1
2σ2 ‖w‖2. In combination we recover

Equation (5.2) with λ = 1
2σ2 .

The name regularized maximum conditional likelihood (RMCL) re-

flects that for λ > 0 very large positive and very large negative values

in the weight vector are penalized by the prior term. Consequently,

the parameter λ is generally considered as a free hyper-parameter that

determines the regularization strength.

In the remainder of the chapter, we will only study regularized con-

ditional likelihood maximization, as the unregularized situation can be

seen as the limit case for λ→ 0.

5.2 Gradient Based Optimization

Writing the negative of the logarithm of the regularized conditional

likelihood (called negative log-likelihood) as a function of w,

L(w) = λ‖w‖2 +

N∑
n=1

〈w,ϕ(xn, yn)〉+

N∑
n=1

logZ(xn, w), (5.13)

one sees that the first two terms are relatively simple, with only a

quadratic and linear dependence on w. The third term, however, con-

tains the partition function Z(x,w) which depends in a non-linear and

non-obvious way on the typically high-dimensional vector of unknowns

2Other priors are possible but less common. See, e.g., [Goodman, 2004] for an overview of
exponential family priors.

5.3. Numeric Optimization 117

w. Because of this term the optimization problem (5.2) does not have

a closed form solution, and we need to rely on numerical optimization

techniques to find its minimum. Figure 5.1 illustrates the contour lines

of L(w) for different values of λ.

High dimensional non-linear optimization can be difficult, but L(w)

is a smooth convex function as we can see from the Jacobian vector

∇wL(w) and Hessian matrix ∆wL(w):

∇w L(w) = 2λw +
N∑
n=1

[
ϕ(xn, yn)− Ey∼p(y|xn)

[
ϕ(xn, y)

]]
(5.14)

and

Hw L(w) = 2λI +

N∑
n=1

Ey∼p(y|xn)Ey′∼p(y|xn)

[
ϕ(xn, y)ϕt(xn, y′)

]
(5.15)

Because the last term is a covariance matrix it is positive semi-definite

and this proves the convexity of L. For non-zero λ, HwL is even strictly

positive definite, which ensures strong convexity of L. Because the con-

vexity of L guarantees that every local maximum will also be a global

maximum, we can use local optimization techniques to minimize L. In

particular, because L is differentiable, we can use gradient descent.

5.3 Numeric Optimization

Steepest Descent Optimization. The most straight-forward tech-

nique to numerically solve the optimization problem (5.3) is the steepest

descent algorithm for which pseudo-code is shown in Algorithm 10.

Starting with an arbitrary estimate of the weight vector, typically

w = 0 (line 7), one iteratively approaches the minimum. In each step,

one computes a descent direction, which is the negative of the gradient

∇wL at the current estimate wcur (line 9). The next estimate for the

weight vector is obtained by adding a multiple of the negative gradi-

ent to wcur (line 11). Using a line search the step width that leads to

the strongest decrease of the objective function is determined (line 10).

These steps are repeated until a convergence criterion is met, e.g . the

magnitude of the gradient is below a given threshold (line 12), indi-

cating that we have reached, approximately, a local minimum. Because

118 Conditional Random Fields

3 2 1 0 1 2 3 4
2

1

0

1

2
32

.0
00

6
4
.0

0
0

128.000

2
5
6
.0

0
0

51
2.

00
0

1
0
2
4
.0

0
0

1024.000

10
24

.0
00

2
0
4
8
.0

0
0

(a) λ = 100

3 2 1 0 1 2 3 4
2

1

0

1

2

4.
00

0

8
.0

0
0

16
.0

00

32
.0

00

64
.0

00

12
8.

00
0

2
5
6
.0

0
0

(b) λ = 10

3 2 1 0 1 2 3 4
2

1

0

1

2

1.
00

0

2.0
00

4.
00

0

8.
00

0
16

.0
00

32
.0

00

64
.0

00

12
8.

00
0

(c) λ = 1

3 2 1 0 1 2 3 4
2

1

0

1

2

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

0

0.
00

1

0.
00

2

0.
00

4

0.
00

8

0.
01

6

0.
03

1

0.
06

2

0.
12

5

0.
25

0

0.
50

0

1.
00

0

2.
00

0

4.
00

0

8.
00

0

16
.0

0032
.0

00

64
.0

00

(d) λ = 0

Fig. 5.1 Objective function of simplest CRF (one output node, no pairwise terms) for a

training set {(−10,+1), (−4,+1), (6,−1), (5,−1)} with ϕ(x,+1) = (x, 0) and ϕ(x,−1) =
(0, x). For large λ, contours are nearly circular and centered at the origin. With λ decreasing

the regularizer loses influence and the data dependent terms start to dominate the objective

function.

the objective function is convex, we know that this local minimum is

automatically the global minimum.

First order steepest descent is very easy to implement, and it is

guaranteed to find the minimum of the objective function. However, for

functions with many parameters whose contours differ strongly from a

circular shape, oscillations can occur and the convergence rate is often

unsatisfactory. As a consequence, many iterations are required until

convergence, and overall runtime is high. Unfortunately, the situation

of conditional log-likelihood optimization with small λ value is exactly

the problematic case of non-quadratic objective, as can also be seen in

5.3. Numeric Optimization 119

Algorithm 10 Steepest Descent Minimization

1: w∗ = SteepestDescentMinimization(ε)

2: Input:

3: ε > 0 tolerance

4: Output:

5: w∗ ∈ RD learned weight vector

6: Algorithm:

7: wcur ← 0

8: repeat

9: d← −∇w L(wcur) {descent direction}
10: η ← argminη>0 L(wcur + ηd) {univariate line search}
11: wcur ← wcur + ηd

12: until ‖p‖ < ε

13: w∗ ← wcur

Figure 5.1.

Second-Order Gradient Descent. Second-order gradient descent

methods offer a powerful alternative to the steepest descent procedure,

as they have provably better convergence rates. The most straight-

forward second-order gradient descent method is Newton’s method

[Bertsekas, 1995]. Like the steepest descent method it performs an iter-

ative descent, computing in each step a descent direction by multiply-

ing the gradient vector with the inverse of the Hessian matrix. If the

function to be minimize is quadratic, then the resulting descent vec-

tor points to the exact analytic minimizer. For non-quadratic functions

the Newton’s methods can be interpreted as forming a local quadratic

approximation, which is a better model that the linear approximation

used in first order methods.

Second-order algorithms typically requires fewer iterations to con-

verge compared the first order method, especially. However, this ad-

vantage comes at the expense of increased computational cost for each

iteration: computing and inverting the Hessian matrix are expensive

operations, and the increase in runtime of each iteration often more

than outweighs the benefit one has from the reduction in the number

120 Conditional Random Fields

of iterations.

To overcome the drawbacks of Newton’s method, hybrid techniques

have been developed that try to find similarly good descent directions

without the need for storing and inverting the Hessian matrix. The cur-

rently most successful second-order methods are of the quasi-Newton

type. Instead of computing and inverting the full Hessian in every step,

they estimate the inverse matrix H−1
w itself, thereby saving the expen-

sive step of inverting a d × d matrix. This estimation is possible by

iterative updates during the course of the optimization (line 15) make

use only of information available from the gradient vector, such that

the step of computing Hw is avoided as well. Algorithm 11 contains

pseudo-code for the frequently used Broyden-Fletcher-Goldfarb-Shanno

(BFGS) [Fletcher, 1987] procedure.

Algorithm 11 Broyden-Fletcher-Goldfarb-Shanno Procedure

1: w∗ = BFGS(ε)

2: Input:

3: ε > 0 tolerance

4: Output:

5: w∗ ∈ RD learned weight vector

6: Algorithm:

7: wnew ← 0

8: Bnew ← IKd
9: repeat

10: (wold, Bold)← (wnew, Bnew)

11: d← B−1
old∇wL(wold)

12: η ← argminη∈R L(wold + η d)

13: wnew ← wold + η d

14: y ← ∇wL(wnew)−∇wL(wold)

15: Bnew ←
(
I − d yt

yt d

)
Bold

(
I − d yt

yt d

)
+ η d d

t

yt d

16: until ‖d‖ < ε

17: w∗ ← wnew

BFGS shows the same super-linear convergence speed as the Newton

method does, but it requires much fewer operations in each iteration. It

does, however, not overcome the problem of having to store a d×d ma-

5.4. Faster Training by Use of the Output Structure 121

trix. More advanced algorithms have been developed for this purpose,

e.g . the L-BFGS method (limited memory BFGS) [Liu and Nocedal,

1989] that stores a sequence of vector operations instead of the ma-

trix Bk. Conjugate gradient [Hestenes and Stiefel, 1952] optimization

has also successfully been applied to conditional log-likelihood mini-

mization. A detailed discussion of these general purpose optimization

techniques is beyond the scope of this tutorial. Instead we refer the

interested reader to the many textbooks on non-linear optimization,

e.g . [Nocedal and Wright, 1999].

5.4 Faster Training by Use of the Output Structure

Conditional random fields can be seen as a form a logistic regression

classifiers (see [Neter et al., 1996]), as both share the objective of max-

imizing the conditional log-likelihood of the observed training pairs.

However, a fundamental difference between CRFs and the ordinary

multi-class logistic regression is the large size of the output space Y. For

CRFs it is typically exponentially sized in the number of output nodes

of the graphical model, and it does not allow explicit enumeration. Be-

cause the closed form expression (5.14) includes a summation over all

y ∈ Y, a straight-forward computation of the conditional log-likelihood

or its gradient is typically computationally infeasible. In order to train

a CRF using gradient descent techniques, we need to overcome this

problem, typically by making use of structure in the output space, as

it given, e.g ., through the graphical model framework.

For tree-structured models, the sum-product algorithm (Algo-

rithm 2) provides can be used to efficiently compute the expected value

of a function over all output labels, including vector-valued functions

such as ϕ(x, y). Computing the gradient ∇wL is therefore computa-

tionally as costly as performing probabilistic inference. For graphical

model that are not tree structured, we can run loopy belief propagation

to approximate the expectation in Equation (5.14) and thereby obtain

an approximation to the gradient. Using this approximation in a gra-

dient descent algorithm does not guarantee convergence to the global

minimum of the negative conditional log-likelihood. Nevertheless, it is

a commonly used training technique for CRFs, and often yields good

122 Conditional Random Fields

practical results.

5.5 Faster Training by Stochastic Example Selection

Stochastic Gradient Descent. Computing the gradient of L by

means of Equation (5.14) require summation over all training instances,

and each instance we have to perform a costly inference step. When

a lot of training data is available this dependence on the number of

training instances has a significant impact on the overall training time.

A naive solution would be to subsample the training set before starting

the optimization, but this would ignore the information contained in

the discarded sample, likely reducing the prediction accuracy. Instead,

one can introduce the idea of subsampling the data only into the step of

computing the gradient ∇w L, and compute a descent directions using

formula (5.14) with only a small batch of samples, typically not more

than 10. In the extremal case one can also estimate the gradient from

just a single, randomly selected, training example (xn, yn) which yield

the stochastic gradient approximation

∇̃(xn,yn)
w L(w) = 2λw + ϕ(xn, yn)− Ey∼p(y|xn)

[
ϕ(xn, y)

]
. (5.16)

Because we want to avoid summing over all training examples, we also

cannot evaluate L(w) and thus we cannot do a line search to deter-

mine the optimal gradient step length. Also, second-order methods like

BFGS do not work well when the gradient direction is only approxi-

mate, such that we have to rely on simple first-order descent, typically

with a fixed sequence of learning rates, η1, . . . , ηT that decays over

time, for example ηt = η
t with constant η > 0. Algorithm 12 gives

pseudo-code for this Stochastic Gradient Descent (SGD) algorithm.

SGD typically require many more iteration to converge than op-

timization techniques that make use of the exact gradient. However,

because each iteration is several orders of magnitudes faster, stochastic

training is often able to solve the training problem faster in terms of ab-

solute runtime. The success of SGD has let to the development of many

extended and improved algorithms, e.g . to avoid the need for an a priori

choice of the parameters η by automatic gain adaption [Vishwanathan

et al., 2006], and the integration of second-order information [Bordes

5.6. Faster Training by Stochastic Gradient Approximation 123

et al., 2009].

Algorithm 12 Stochastic Gradient Descent

1: w∗ = StochasticGradientDescent(T, η)

2: Input:

3: T number of iterations

4: η1, . . . , ηT sequence of learning rates

5: Output:

6: w∗ ∈ RD learned weight vector

7: Algorithm:

8: wcur ← 0

9: for t=1,. . . ,T do

10: (xn, yn)← randomly chosen training pair

11: d← −∇̃(xn,yn)
w L(wcur)

12: wcur ← wcur + ηtd

13: end for

14: w∗ ← wcur

5.6 Faster Training by Stochastic Gradient Approximation

When other approaches fail, sampling methods often still offer a viable

alternative, as they provide a universal tool for evaluating expectations

over random variables. From Equation (5.14) we know that the compu-

tationally hard part in computing the gradient ∇wL has the form of the

expectation of ϕ(x, y) with respect to the distribution p(y|x,w). If we

have a method to obtain i.i.d . samples S = {y(1), . . . , y(S)} from this

distribution, we can form an unbiased estimator of Ey∼p(y|xn)[ϕ(xn, y)]

by 1
S

∑S
i=1 ϕ(x, y(i)). Inserting this into Equation (5.16) we obtain an

unbiased estimator of ∇wL(x,w), where the law of large numbers guar-

antees convergence of the approximation to the exact gradient with a

rate of 1√
S

. Consequently, any procedure to sample from p(y|xn) for

n = 1, . . . , N provides us with a tool for estimating ∇wL(x,w). In

particular, we can use Markov chain Monte Carlo (MCMC) sampling

that we had introduced in Section 3.4.1. However, the computational

cost of this setup is still very high, since we need a full MCMC run for

124 Conditional Random Fields

each training example for each gradient computation. One also has to

consider that even after the MCMC sampler has converged to its equi-

librium distribution, we obtain only approximations of the gradient

∇wL. This is an inherent limitation of all sampling-based approaches,

not a problem of a specific MCMC sampler.

As we had seen before, inexact gradient directions pose problems for

most second-order gradient descent methods, such that one has to rely

on first-order gradient descent to optimize the conditional log-likelihood

with sampling based methods. Consequently, one will likely need many

iterations, which justified additional effort to accelerate each iteration

as much as possible. This is possible because of a crucial insight by Hin-

ton [2002]: instead of waiting for the Markov chain to converge against

its equilibrium distribution before computing a gradient approxima-

tion, we can use samples from the very beginning of the Markov chain.

This will results in a worse approximate gradient, but strongly reduced

runtime to compute it.

An algorithm that takes this observation to the extreme is con-

trastive divergence training as stated in Algorithm 13. It performs

Gibbs sampling without burn-in, estimating the gradient from only

a single sample. This provides a very noise estimate of the best descent

direction, and consequently very many iterations might be required un-

til convergence. However, this drawback is more than compensated by

the fact that the computation time of each iteration is reduced. Con-

trastive divergence training has proved a competitive training technique

for large scale CRFs [He et al., 2004]. Despite the many simplifications

compared to a complete sampling approach, there are theoretic results

that guarantee convergence to the global minimum under certain con-

ditions [Yuille, 2005], and that characterize the role of the sampling

scheme used in the contrastive divergence procedure [Asuncion et al.,

2010].

5.7 Faster Training by Two-Stage Training

The feature maps ϕf (yf , x) used in CRFs for computer vision tasks

play different role depending on whether the factors are unary, pairwise

or of higher order. Unary factors have typically high-dimensional fea-

5.7. Faster Training by Two-Stage Training 125

Algorithm 13 Contrastive Divergence (CD) Training

1: w∗ = ContrastiveDivergence(T, η1, . . . , ηT)

2: Input:

3: T number of iterations

4: η1, . . . , ηT sequence of learning rates

5: Output:

6: w∗ ∈ RD learned weight vector

7: Algorithm:

8: wcur ← 0

9: for t=1,. . . ,T do

10: (xn, yn)← randomly chosen training pair

11: ŷ ← Gibbs sample from p(y|xn, wcur) initialized at yn

12: d← λwcur + ϕ(xn, yn)− ϕ(xn, ŷ).

13: wcur ← wcur + ηtd

14: end for

15: w∗ ← wcur

tures maps. In combination with their weight vectors, they give strong

cues about what labels are likely for each individual node. Pairwise

and higher order factors have typically low-dimensional or even scalar

feature maps, such as the Potts feature ϕ(yi, yj) = Jyi 6= yjK that is

commonly used to encode label smoothness for image segmentation. In

combination, CRF training is a high-dimensional optimization prob-

lem, but most of the free parameters encode only per-node informa-

tion, which might as well be learned by a simpler per-node training

technique.

We can utilize the above observation by training CRFs in computer

vision in a two-stage procedure: first, we train independent per-node

classifiers fyi , e.g . by logistic regression or a support vector machine.

The output of these classifiers we use as one-dimensional feature map

for unary factors, ϕi(yi, x) = fyii (x). Pairwise and higher order feature

maps are chosen as for conventional CRF training, and a standard

CRF training technique is applied. The main advantage of such two-

stage training is a significant reduction in training time, because the

number of free parameters in the structured training step is reduced.

126 Conditional Random Fields

A further advantage is a gain in flexibility in the first stage: we can

use arbitrary classifiers to learn the per-node features fyi , whereas a

probabilistically trained CRF selects the weights of the unary features

always as the result of probabilistically training a log-linear model,

which resembles a logistic regression classifier.

The disadvantage of pretraining is a loss of expressive power for

the second stage: only the magnitude of importance of the unary fea-

tures can be adjusted, while the high-dimensional weight vector remains

fixed.

Example 5.1 (Figure-Ground Image Segmentation). Fulkerson

et al. [2009] introduce a conditional random field on the superpixels

level for the classical problem of figure-ground segmentation, i.e.

distinguishing which pixels in an image belong to an object and which

belong to the background. To reduce the number of model parameter

they set up the model for two-stage learning: for the unary potentials,

they first train a support vector machine with χ2-RBF kernel using

a bag of visual word representation of the superpixels and their

neighbors as inputs. The SVM outputs are normalized into the range

[0, 1] by Platt-scaling [Platt, 1999b] and become one-dimensional

features. The pairwise terms are Potts potentials weighted by the

image gradient and therefore also one-dimensional. By giving all nodes

a constant weight and letting all edges of the graphical model share

weights, the CRF can be written with only a single free parameter: a

tradeoff between unary and pairwise terms. This value is learned by

cross-validation on the training set.

5.8 Latent Variables

Some prediction tasks are easier to model by introducing latent vari-

ables, i.e. quantities that are observed neither at training nor at test

time. For example, part-based object detection makes us of the fact

that the decision where an object, such as a car, is located is much

easier once we know the location of its characteristic parts, e.g . its

wheels. Part locations are typically not specified in the training data

and therefore is therefore modeled most adequately by latent variables.

5.8. Latent Variables 127

In a probabilistic model, latent variables do not pose a principled

problem, one simply treats them as additional output variables z ∈
Z which are not specified in the training set. The CRF models the

joint conditional probability distribution of observable and unobserved

outputs p(y, z|x,w). Regularized conditional likelihood maximization

for a training set, D = {(xn, yn)}n=1,...,N still consists of minimizing

L(w) = λ‖w‖2 −
N∑
n=1

log p(yn|xn, w). (5.17)

Using the marginalization rule p(y|x,w) =
∑

z p(y, z|x,w) we can ex-

press this in terms of the CRF distribution

= λ‖w‖2 −
N∑
n=1

log
∑
z∈Z

exp
(
− 〈w,ϕ(xn, yn, z)〉

)
+

N∑
n=1

log
∑
z∈Z
y∈Y

exp
(
− 〈w,ϕ(xn, y, z)〉

)
, (5.18)

and we can compute the gradient

∇wL(w) = 2λw +
N∑
n=1

Ez∼p(z|x,y,w)

[
ϕ(xn, yn, z)

]
−

N∑
n=1

E(y,z)∼p(y,z|x,w)

[
ϕ(xn, y, z)

]
. (5.19)

In contrast to the fully observed situation, p(y|x,w) is not log-linear,

but a mixture of many log-linear models. This has the effect that solving

Equation (5.17) is not convex, and it is no longer guaranteed that

gradient-descent optimization will find the global optimum.

Expectation maximization. In searching alternative optimization

strategies it has been observed that the classical expectation maximiza-

tion (EM) algorithm can be applied to latent variable CRFs if certain

independence conditions between observed and latent variables hold

(see [Koller and Friedman, 2009, Chapter 19] for details). EM-based

128 Conditional Random Fields

training iterates two steps: for a current parameter ŵ it forms expres-

sions qn(z) that is the distribution p(z|xn, yn, ŵ) seen as only a function

of z (E-step). Subsequently, it computes a new estimate ŵ by solving

the auxiliary problem ŵ = argminw∈RD LEM (w) with

LEM (w) = λ‖w‖2 −
N∑
n=1

∑
z∈Z

qn(z) log p(yn, z|xn, w). (5.20)

(M-step). Although formulated in a different way, direct gradient de-

scent on Equation (5.17) and EM-based training are very related, as

can be seen by computing the gradient of Equation (5.20)

∇wLEM (w) = 2λw +
N∑
n=1

Ez∼p(z|x,y,ŵ)

[
ϕ(xn, yn, z)

]
−

N∑
n=1

Ez∼p(z|x,y,ŵ)Ey∼p(y|z,x,w)

[
ϕ(xn, y, z)

]
. (5.21)

It differs from the log-likelihood gradient (5.19) only in the fact that

the expectations of the latent variables z are taken with respect to

a distribution parameterized by the weight vector ŵ of the previous

iteration.

An interesting aspect of both, gradient-based and EM-based train-

ing, is that they can be expressed using only expectation operations

over the feature functions. This allows easy integration of sampling

based approximations, such as contrastive divergence. Nevertheless, la-

tent variable CRFs have found relatively little application in computer

vision tasks so far, possibly because of the increased computational

cost of marginalizing out potentially many latent variables, and be-

cause the non-convexity of the problem requires a good initialization

to avoid convergence to a suboptimal local minimum.

Example 5.2 (Gesture Recognition). Morency et al. [2007] per-

form gesture recognition using a conditional random with chain-

structured latent variables, see Figure 5.2. The inputs consist of a se-

quence of images, and each of these also has an output variable that

indicates the presence of a certain gesture, e.g . nod or smile. Input and

5.9. Other Training Objectives 129

. . .

Fig. 5.2 Gesture recognition with a chain-structured latent variable conditional random
field [Morency et al., 2007]. (Image Source: Stanford University)

output nodes are connected through a layer of latent nodes. Because

these have a larger state-space than the output nodes, they can reflect

sub-stages of a gesture, e.g . the down and up part of a nod. The model

is trained using gradient based BFGS optimization, which is possible

efficiently because the model is loop-free.

5.9 Other Training Objectives

As we have seen in the previous sections, maximizing the conditional

likelihood for loopy graphical models is a computationally expensive

task. In particular, computing the exact gradient of the conditional

log-likelihood is often infeasible, and even finding good approximations

can be computationally expensive, even when making use of all avail-

able acceleration possibilities. Since the time available for training is

limited, it is common stop gradient based conditional likelihood max-

imization before convergence, and one settles for a weight vector that

only approximately minimizes the posterior distribution p(w|D).

It stands to reason to look for other training objectives that also

approximate to the conditional likelihood, but could be more efficient

to compute. In particular we can approximate p(y|x,w) itself with a

simpler distribution papprox(y|x,w), for which the gradient can be com-

puted more efficiently and therefore the global optimum of papprox(w|D)

can be found. A popular technique of this kind is pseudo-likelihood

training (PL) [Besag, 1975].

130 Conditional Random Fields

Definition 5.2 (Pseudo-Likelihood Training). Let p(y|x,w) =
1

Z(x,w) exp〈w,ϕ(x, y)〉 be a probability distribution parameterized by

w ∈ RD, and let D = {(xn, yn)}n=1,...,N be a set of training examples.

Pseudo-Likelihood (PL) training chooses the parameter as

w∗
PL

= argmin
w∈RD

λ‖w‖2 +
N∑
n=1

M∑
s=1

[
〈w,ϕ(xn, yn)〉+ logZs(x

n, yn¬s, w)
]

(5.22)

with yn¬s = (yn1 , . . . , y
n
s−1, y

n
s+1, . . . , y

n
M) and

Zs(x, y
n
¬s, w) =

∑
ys∈Ys

exp
(
− 〈w,ϕ(x, yn¬s, ys)〉

)
(5.23)

Pseudo-likelihood training is inspired by the observation that max-

imizing p(y|x) can easily be solved if every output site ys depended

only on observed quantities and not on any other unknowns, because

under this assumption the optimal value of each output node can be

found by an independent maximization. During training, one can sim-

ulate this situation, because x and y are both observed and define the

pseudo-likelihood of an input-output pair (x, y) as the product of the

conditional likelihoods of all individual output nodes conditioned on

the remaining nodes:

pPL(y|x,w) :=

M∏
s=1

pPL(ys|y¬s, x, w), (5.24)

where pPL(ys|y¬s, x, w) is given by the loglinear CRF model

pPL(ys|y¬s, x, w) =
1

Zs(x, y¬s, w)
exp

(
〈w,ϕ(x, y)〉

)
, (5.25)

where Zs(x, y¬s, w) has the form of Equation (5.23).

Rule (5.22) follows from this by demanding that w∗
PL

should maxi-

mize the regularized pseudo-likelihood of the training set D. Denoting

by LPL(w) the objective function of Equation (5.22) and calculating its

5.9. Other Training Objectives 131

gradient, we obtain

∇wLPL(w) = (5.26)

2λw +
N∑
n=1

M∑
s=1

ϕ(xn, yn)− Eys∼pPL(ys|y¬s,x,w)

[
ϕ(xn, yn¬s, ys)

]
which is much easier to compute than the full log-likelihood gradi-

ent (5.14), because the expectations in the last term are only over a

single random variable at a time. Consequently, pseudo-likelihood is

nearly as efficient as training a model with independent outputs nodes.

For prediction, we cannot rely on the same trick of conditioning on

parts of the output, because no component of y is observed at that

time. Instead, one uses the learned weight vector w∗
PL

in combination

with the previously introduced (approximate) inference techniques, e.g .

(loopy) belief propagation.

Despite this mismatch between training objective and test setup,

pseudo-likelihood training has been shown to be consistent under cer-

tain conditions, i.e. given infinite amounts of training data, it leads

to the same weight vector as exact conditional likelihood maximiza-

tion [Besag, 1975]. Even for the realistic case of finite data, PL training

has been used successfully for different computer vision tasks. However,

it has been observed that pseudo-likelihood training tends to lead to

low generalization performance when there are strong dependencies be-

tween the output sites.

5.9.1 Piecewise Training

Piecewise (PW) training [Sutton and McCallum, 2009] has been de-

veloped as an alternative way to make the maximization of the condi-

tional likelihood manageable while avoiding the statistical inefficiency

of pseudo-likelihood training.

Definition 5.3 (Piecewise Training). Let p(y|x,w) =
1

Z(x,w) exp〈w,ϕ(x, y)〉 be a probability distribution parameterized

by w ∈ RD, and let D = {(xn, yn)}n=1,...,N be a set of training exam-

ples. Let F be the set of factors in a graphical model representation

132 Conditional Random Fields

of p, such that ϕ(x, y) = (ϕF (xF , yF))F∈F . Piecewise training chooses

the parameters as w∗
PW

= (w∗F)F∈F with

w∗F = argmin
w∈RD

λ‖w‖2 +
N∑
n=1

〈wF , ϕF (xnF , y
n
F)〉+ logZF (xnF , y

n
F , wF),

(5.27)

with

ZF (x) =
∑

yF∈YF

exp
(
−
〈
wF , ϕF (xF , yF)

〉)
. (5.28)

The piecewise training rule is justified by approximating p(y|x,w)

by a distribution that is a product over the factors

pPW(y|x,w) :=
∏
F∈F

p(yF |xF , wF), (5.29)

where

p(yF |x) =
1

ZF (x,wF)
exp

(
−
〈
wF , ϕF (xF , yF)

〉)
. (5.30)

If we maximize this expression with regularization over the training

set D, one observes that the optimization problem decouples over the

factors and one obtains Equation (5.27).

The piecewise approximation does not suffer from the same prob-

lems as pseudo-likelihood, because it does not condition on the output

variables during training. At the same time, it retains more expressive

power than a model with completely independent label sites, because it

can model the dependence between output sites by making use of fac-

tors that contain more than one output variable. Comparing pPW(y|x,w)

with the exact expression for p(y|x,w), we see that both models dif-

fer only in their expression for the partition function. While the exact

Z(w) does not factorize into a product of simpler terms, its piecewise

approximation ZPW(w) factorizes over the set of factors.

Consequently, we can perform gradient based training of Equa-

tion (5.27) for each factor as long as the individual factors remain small,

5.9. Other Training Objectives 133

i.e. contain not more than 2 to 5 output sites. Note that the possibility

of independent training holds in particular also for the unary factors.

This means that the simplification made by piece-wise training of CRFs

resemble two-stage training of Section 5.7.

Similar to pseudo-likelihood training, the situation at evaluation

time differs from the training setup, because we cannot enforce a fac-

torization there. Instead, we concatenate the learned weight vectors

w∗F into a joint vector w∗
PW

and apply a standard inference technique

to the ordinary conditional distribution p(y|x,w∗
PW

). However, practical

experiments suggest that, in computer vision tasks, two-stage training

does not incur a significant loss in prediction accuracy [Nowozin et al.,

2010].

6

Structured Support Vector Machines

Besides probabilistically trained conditional random fields, margin-

based parameter learning has recently gained a lot of popularity in

computer vision. It aims at solving Problem 4 of Graphical Models.

Throughout this chapter we assume that the learning task we try to

solve has a fixed (but unknown) probability density d(x, y) from we

have an i.i.d . sample set D = {(x1, y1), . . . , (xn, yn)} ⊂ X ×Y that we

will use for training. Furthermore, we assume that we fixed a loss func-

tion ∆ : Y ×Y → R+, where ∆(y, y′) specifies the cost of predicting y′

for a sample when the correct label is y. For convenience in notation,

we assume that a correct prediction incurs no loss, i.e. ∆(y, y) = 0.

6.1 Structural Risk Minimization

In trying to solve Problem 4, we aim at finding a prediction function

f : X → Y which minimizes the Bayes risk, i.e. the expected ∆-loss

E(x,y)∼d(x,y)∆(y, f(x)). As in Structured Prediction we will assume that

f has the form f(x) = argmaxy g(x, y, w) for an auxiliary evaluation

function g : X × Y → R, which is parameterized by w ∈ RD. This

is an increase in flexibility over Conditional Random Fields, where we

134

6.1. Structural Risk Minimization 135

considered only the case of g(x, y, w) = log p(y|x,w) for a conditional

probability distribution p approximating d.

Because d(x, y) is unknown, minimizing the Bayes risk directly is

not possible, but structural risk minimization [Vapnik and Chervo-

nenkis, 1974] offers an indirect way to identify a function with good

predictive qualities. It chooses a prediction function f that minimizes

the regularized empirical risk functional

R(f) +
C

N

N∑
n=1

∆(yn, f(xn)), (6.1)

where the second term is an empirical estimate of the expected risk,

and the first term is chosen as a regularizer that prevents overfitting

by penalizing functions depending on how complex they are. For struc-

tured prediction functions of the form f(x) = argmaxy g(x, y, w) min-

imizing the expression (6.1) numerically with respect to w is typically

infeasible, because the term ∆(yn, f(x)) is piece-wise constant and this

renders gradient-based techniques useless. However, results from sta-

tistical learning theory show that it can be sufficient to minimize a

convex upper bound to (6.1) and still achieve an optimal prediction ac-

curacy in the limit of infinite data [Zhang, 2004]1. This forms the basis

of structured support vector machine (S-SVM) training.

Definition 6.1 (Structured Support Vector Machine). Let

g(x, y, w) = 〈w,ϕ(x, y)〉 be a compatibility function parameterized by

w ∈ RD. For any C > 0, structured support vector machine (S-SVM)

training chooses the parameter

w∗ = argmin
w∈RD

1

2
‖w‖2 +

C

N

N∑
n=1

`(xn, yn, w), (6.2)

with

`(xn, yn, w) = max
y∈Y

∆(yn, y)− g(xn, yn, w) + g(xn, y, w). (6.3)

1Unfortunately, the most satisfactory consistency property does not hold for the general
multi-class or structured prediction situations [Lee et al., 2004]. Optimizing a convex upper
bound nevertheless makes sense, see [McAllester, 2007] for an in-depth discussion.

136 Structured Support Vector Machines

Equation (6.2) is derived from Equation (6.1) by choosing R(f) =
1
2‖w‖2 as a regularizer and replacing the ∆-loss by its convex upper

bound `. To show the bounding property we observe that for any f(x) =

argmaxy g(x, y, w) we have

∆(yn, f(xn)) ≤ ∆(yn, f(xn))− g(xn, yn, w) + g(xn, f(xn), w) (6.4)

≤ max
y

∆(yn, y)− g(xn, yn, w) + g(xn, y, w) (6.5)

= `(xn, yn, w). (6.6)

The convexity follows because ` is the maximum over many functions

that are affine in w.

Equation (6.3) generalizes the Hinge loss to multiple outputs la-

bels [Taskar et al., 2003]2. As a result, Equation (6.2) can be interpreted

as a maximum margin training procedure that extends the popular sup-

port vector machine classifiers to structured output spaces. The name

structured support vector machine learning [Tsochantaridis et al., 2005]

stems from this observation.

As for conditional random fields, training structured output support

vector machines is a computationally expensive task, and it often only

becomes feasible by a careful analysis of the problem components and

the exploitation of domain knowledge. Before we study these aspects

of S-SVM training in more detail we introduce some structured loss

functions that are commonly used in computer vision problems.

Example 6.1 (Structured Loss Functions). Different structured

prediction tasks come with different loss functions to judge whether

the prediction made for a training input is good, or similar enough to

the training output. See Figures 6.2 and 6.1 for illustrations.

Zero-one loss: ∆(y, y′) = Jy 6= y′K. This is the most common

loss for multi-class problems but less frequently used for structured

2This extension is generally called the margin-rescaled Hinge loss. As an alternative upper
bound the slack-rescaled Hinge loss

`(xn, yn, w) =
[

max
y∈Y

∆(yn, y)
(
1− g(xn, yn, w) + g(xn, y, w)

)]
+
.

has been proposed by Tsochantaridis et al. [2005], but this has found less use in computer

vision as it leads to a more complicated optimization problem, see [Sarawagi and Gupta,

2008].

6.1. Structural Risk Minimization 137

Zero-One loss:

∆0/1(cat, cat) = 0

∆0/1(cat, dog) = 1

∆0/1(cat, bus) = 1

Hierarchical loss:

∆H(cat, cat) = 0

∆H(cat, dog) = 1

∆H(cat, bus) = 2

Fig. 6.1 Multi-class loss functions. Zero-one loss ∆0/1 penalizes all mistakes equally. Hi-
erarchical loss ∆H penalizes mistakes depending on the tree distance between classes in a

hierarchy.

prediction tasks with large output spaces. Every prediction that is not

fully identical to the intended one is considered a mistakes, and all

mistakes are penalized equally.

Hierarchical multi-class loss: ∆(y, y′) = 1
2distH(y, y′), where H

is a hierarchy over the classes in Y and distH(y, y′) measures the dis-

tance between y and y′ within the hierarchy. This loss is a common

way to incorporate information about label hierarchies in multi-class

prediction problems. Differences between predicted and correct label

are penalized less if they occur between similar classes (with respect to

the given hierarchy) than if the occur between dissimilar ones. This is

shown in Figure 6.1.

Hamming loss: ∆(y, y′) = 1
m

∑m
i=1Jyi 6= y′iK. Frequently used loss

for image segmentation or other tasks in which the output y consists of

multiple part labels y1, . . . , ym. Each part label is judged independently

and the average number of labeling errors is determined.

Area overlap: ∆(y, y′) = area(y∩y′)
area(y∪y′) . Standard loss in object local-

ization, e.g . in the PASCAL detection challenges, with y and y′ being

bounding box coordinates, and y ∩ y′ and y ∪ y′ are their intersection

and union, respectively. This is shown in Figure 6.2.

138 Structured Support Vector Machines

Fig. 6.2 Region-based loss functions. Left: target region y (solid boundary) and prediction

y′ (dashed boundary). Middle: union y∪ y′ and intersection y∩ y′ of the regions. Measured
by area overlap loss, y′ is a rather poor prediction of y, because taking the ratio of areas

results in ∆(y, y′) ≈ 2
3

. Right: set of incorrectly predicted pixel y4y′. Measured by per-

pixel Hamming loss, y′ is a good prediction of y (∆(y, y′) ≈ 0.03), because most image
pixels are correctly classified as belonging to the background.

6.2 Numeric Optimization

All summands in Equation (6.2) are convex functions in w, and there-

fore S-SVM training is a convex optimization problem. This hold even

for the limit case of C →∞, which is only solvable with finite objective

value if a weight vector with zero loss exists. As in the CRF situation

we can apply standard convex optimization methods to find its global

minimum. Figure 6.3 shows an illustration of the objective function in

a simplified situation and the effect of different C values. Note that the

contours are similar to the CRF situation3 (Figure 5.1 on page 118)

except that they are not everywhere differentiable, which is the result

of the max operation in Equation (6.3).

Subgradient Descent Minimization. Because of its non-

differentiability, Equation (6.2) cannot be solved by straight-forward

gradient descent optimization. However, subgradient methods [Shor,

1985] that we introduced in Section 4.7.3 are suitable candidates.

Algorithm 14 contains pseudo-code for S-SVM training by subgradi-

ent descent. For each summand of the loss term, line 11 identifies which

3This similarity is of course not just a coincidence. In fact, if we set ∆(y, y′) = Jy 6= y′K
and use the multiclass logistic loss,

`(xn, yn, w) = log
∑

y
exp(g(xn, yn, w)− g(xn, y, w)).

instead of the Hinge loss in Equation (6.2), we recover an optimization problem equivalent
to conditional random field training (5.2) with λ = N

2C
. This illustrates that for good ideas

there is often more than one way to justify them. For further connections between CRFs
and S-SVMs, see e.g. [Pletscher et al., 2010].

6.2. Numeric Optimization 139

3 2 1 0 1 2 3 4
2

1

0

1

2

(a) C = 0.01

3 2 1 0 1 2 3 4
2

1

0

1

2

(b) C = 0.10

3 2 1 0 1 2 3 4
2

1

0

1

2

(c) C = 1.00

3 2 1 0 1 2 3 4
2

1

0

1

2

(d) C →∞

Fig. 6.3 S-SVM objective function for X = R and Y = {−1,+1} with training set

{(−10,+1), (−4,+1), (6,−1), (5,−1)} and ϕ(x,+1) = (x, 0) and ϕ(x,−1) = (0, x). For
small C, contours are nearly circular and centered the origin. With C increasing, the loss

term gains more influence and the regions of non-differentiability become more visible. For

C →∞ a large part of the parameter space causes infinite objective value (black region).

y ∈ Y is active in the max operation of Equation (6.3). We can ignore

the summand 〈w,ϕ(xn, yn)〉 of `(xn, yn, wcur) for this because it does

not depend on y. Line 13 computes the subgradient of `(xn, yn, wcur)

with respect to w, and line 14 updates the weight vector according to

the chosen learning rate.

In order to perform one weight vector update, we have to solve

n optimization problems of the form argmaxy ∆(yn, y) + g(xn, y, w).

We call these loss-augmented prediction steps because of their strong

resemblance to the evaluation of f(x) = argmaxy g(x, y, w). In fact, in

many cases ∆ can be rewritten to look like additional terms of the inner

140 Structured Support Vector Machines

Algorithm 14 Subgradient Descent SSVM Training

1: w∗ = SubgradientDescent(T, η)

2: Input:

3: T number of iterations

4: η learning rate

5: Output:

6: w∗ ∈ RD learned weight vector

7: Algorithm:

8: wcur ← 0

9: for t=1,. . . ,T do

10: for n=1,. . . ,N do

11: ŷn = argmaxy∈Y ∆(yn, y) + 〈w,ϕ(xn, y)〉
12: end for

13: p← wcur + C
N

∑N
n=1

[
ϕ(xn, yn)− ϕ(xn, ŷn)

]
14: wcur ← wcur − η

t p

15: end for

16: w∗ ← wcur

product evaluation required to compute F . In this case we can reuse the

routines for MAP prediction of Structured Prediction to perform the

maximization step and only one prediction routine will be necessary

which is then used during training as well as for structured prediction.

We call training algorithms with this property prediction-based. CRF

training of Conditional Random Fields is not of this kind, as it requires

probabilistic inference during training.

Subgradient descent optimization is easy to implement and it can

be applied for batch as well as for online learning. However, it has a

relatively weak convergence rate of O(
√
ε) [Nedic and Bertsekas, 2000],

i.e. reducing the distance between wcur and w∗ by a factor of ε can

require O(1
ε2

) iterations. Given that each iteration requires multiple

costly steps of loss-augmented prediction, it is natural to look for effi-

cient way to optimize Equation (6.2). A promising candidate for this is

the bundle method, which improves the convergence rate to O(1
ε) [Teo

et al., 2009]. However, there is no practical experience with this training

technique in a computer vision context so far.

6.2. Numeric Optimization 141

Fig. 6.4 Illustration of Learning to Plan. Given a set of training paths (green) between given
start and end locations, the task consists of learning a prediction function that find similar

paths in new images (red), e.g. preferring larger roads over smaller ones and avoiding water

and vegetation. (Image Source: WisconsinView.org, SSEC)

Example 6.2 (Learning to Plan). Learning to plan is the task of

predicting paths through aerial images for given start and end points

(see Figure 6.4 for an illustration). Ratliff et al. [2006] propose max-

imum margin planning for this task: they use a structured support

vector machine to learn a prediction function for planning: training

data consists of images in a per-pixel color representation, and exam-

ple paths with the intended property, e.g . preferring roads and avoiding

vegetation. The S-SVM optimization problem is solved using subgra-

dient descent, where for prediction and loss-augmented prediction the

A∗ algorithm [Hart et al., 1968] is used.

Working Set Training. It is possible to express the S-SVM training

problem in a way that avoids the complications introduced by the non-

differentiability of the loss function.

Definition 6.2 (S-SVM – Formulation with Slack Variables).

Let ξ = (ξ1, . . . , ξn) ∈ RN+ be a vector of auxiliary variables, called

slack variables. For any C > 0 the slack formulation of S-SVM training

chooses the parameter w∗ by solving

(w∗, ξ∗) = argmin
w∈RD,ξ∈Rn+

1

2
‖w‖2 +

C

N

N∑
n=1

ξn (6.7)

142 Structured Support Vector Machines

subject to, for n = 1, . . . , N :

g(xn, yn, w)− g(xn, y, w) ≥ ∆(yn, y)− ξn, for all y ∈ Y. (6.8)

The slack formulation of S-SVM training is equivalent to the loss-

formulation of S-SVM training given by Equation (6.2), i.e. both re-

turn the same weight vector w∗. To see this, one observes that the

constraints (6.8) ensure ξn ≥ `(xn, yn, w) for all n = 1, . . . , N , while

Equation (6.7) aims at minimizing the value of ξn. At their optimal

values, the slack variables have the same values as the corresponding

loss terms, and consequently, the optimal weight vectors between both

formulation coincide as well.

From the optimization point of view, the constrained optimization

problem (6.7)/(6.8) has a more elementary form than Equation 6.2.

Its objective function is quadratic in w and linear in ξ, and all con-

straints are linear, thereby making the optimization problem jointly

convex. However, this advantage comes at the expense of a large num-

ber of constraints, namely |Y| inequalities per training sample. For

most structured prediction problems, this number is far larger than

what software packages for constrained convex optimization can pro-

cess in reasonable time. Typically, it is not even possible to store all

constraints explicitly in memory. However, because there are only D

degrees of freedom in the weight vector, and N degrees of freedom in

the slack variables, it is possible to show that D+N constraints suffice

to determine the optimal solution, whereas the others will be fulfilled

automatically. If we knew the set of relevant constraints in advance we

could solve the optimization (6.7)/(6.8) efficiently. This motivates the

use of cutting plane training [Kelley Jr, 1960], for which pseudo-code

is given in Algorithm 15.

Cutting plane training is a delayed constraint generation technique.

It searches for the best weight vector and the set of active constraints

simultaneously in an iterative manner. Starting from an empty working

set, in each iteration it solves the optimization problem (6.7)/(6.8) with

only the constraints of the working set (line 9). Subsequently, it checks

for each sample if any of the |Y| constraints are violated (line (11)). If

not, one has found the optimal solution and the algorithm terminates.

6.2. Numeric Optimization 143

Algorithm 15 Cutting Plane S-SVM Training

1: w∗ = CuttingPlane(ε)

2: Input:

3: ε tolerance

4: Output:

5: w∗ ∈ RD learned weight vector

6: Algorithm:

7: S ← ∅
8: repeat

9: (wcur, ξcur)← solution to (6.7) with constraints (6.8) from S

10: for n=1,. . . ,N do

11: y∗ ← argmaxy∈Y Hn(y;wcur, ξcur)

12: if Hn(y∗;wcur, ξcur) > ε then

13: S ← S ∪ {(xn, y∗)}
14: end if

15: end for

16: until S did not change in this iteration

17: w∗ ← wcur

where Hn(y;w, ξ) := g(xn, y, w)− g(xn, yn, w) + ∆(y, yn)− ξn.

Otherwise it adds the most violated constraints to the working set

(line 13) and starts the next iteration. To achieve faster convergence

one typically chooses a tolerance ε > 0 and requires a constraint to be

violated by at least ε in order to be included in the working set. It is

then possible to prove convergence after O(1
ε2

) steps with the guarantee

that the objective value at the solution differs at most ε from the global

mimimum [Tsochantaridis et al., 2005].

In order to train an S-SVM using Algorithm 15 we need be able

to perform two kinds of operations: solving the quadratic optimiza-

tion problem in line 9, and identifying the potentially most violated

constraint in line 11. As long as the working set size is reasonable,

the first task can be solved using general purpose quadratic program

solvers, either directly or after dualizing it. It is, however, also possi-

ble to adapt existing SVM training methods and this typically leads to

much higher performance [Platt, 1999a]. The second task is identical to

144 Structured Support Vector Machines

Fig. 6.5 Illustration of Semantic Image Segmentation. Each pixel of an image (left) is

assigned a semantic class label, here: sky (blue), building (red), or vegetation (green). Spatial

consistency of the labeling is encouraged by pair-wise energy terms between neighboring
pixels. (Image source: http://www.flickr.com/photos/foxypar4/3313167875/)

the loss-augmented prediction step that we have already encountered

in subgradient-based training. Consequently, the cutting plane method

is a prediction-based parameter learning technique.

Example 6.3 (Semantic Image Segmentation). In semantic im-

age segmentation each pixel of an image has to be assigned to one of

multiple predefined categories, e.g . material classes (“grass”, “road”)

or geometric properties (“vertical surface”, “ground plane”), see Fig-

ure 6.5 for a visualization. To solve this task, Szummer et al. [2008] use

a structured support vector machine to predict a label for every pixel.

The unary terms consist of low-level image feature, in particular color

and image gradient histograms. The pairwise terms are Potts poten-

tials, measuring if neighboring pixels belong to the same or to different

labels, and the corresponding weight is restricted to positive values.

By restricting the pairwise weights to positive values, prediction and

loss-augmented prediction can be done with the graph cuts algorithm.

This allows working set training of the S-SVM.

Cutting plane training is attractive because it allows us to reuse

existing components: ordinary SVM solvers and algorithms for (loss-

adapted) MAP prediction. However, its convergence rate can be unsat-

isfactory, in particular for large values of the regularization constant C

(see e.g . [Nowozin et al., 2010] for a qualitative as well as quantitative

study). The recently developed one-slack formulation of S-SVM reduce

this problem.

6.2. Numeric Optimization 145

Definition 6.3 (S-SVM – One Slack Formulation). Let ξ ∈ R+

be a single auxiliary (slack) variable. For any C > 0 one-slack S-SVM

training chooses the parameter w∗ by solving

(w∗, ξ∗) = argmin
w∈RD,ξ∈R+

1

2
‖w‖2 + Cξ (6.9)

subject to, for all (y(1), . . . , y(n)) ∈ Y × · · · × Y,

1

N

N∑
n=1

[
g(xn, yn, w)− g(xn, y(n), w)

]
≥ 1

N

N∑
n=1

∆(yn, y(n))− ξ. (6.10)

S-SVM training with one slack variable is equivalent to S-SVM

training with n slack variables and therefore also to the loss formu-

lation of S-SVM training. In fact, it is easy to see that from every

solution to (6.7)/(6.8) we obtain a solution to (6.9)/(6.10) by setting

ξ =
∑N

n=1 ξ
n. The opposite direction requires a more careful analysis of

independences between the constraints, see [Joachims et al., 2009]. The

one-slack formulation of S-SVM training has |Y|n constraints, so even

more than the variant with n slack variables. However, it can be shown

that cutting plane optimization of (6.9)/(6.10) achieves a solution ε-

close to the optimal objective value within O(1
ε) steps, thereby often

offering a significant reduction in training time for practical problems.

The intuitive reason for this is that the one-slack formulation builds

each of the constraints in its working set as a sum over the feature vec-

tors of several candidate predictions. This leads to a smaller number

of overall constraints, while at the same time each constaints contains

information from many samples and is therefore more robust.

An equivalent approach for achieving O(1
ε) convergence of S-SVM

training is the BMRM procedure [Teo et al., 2009]. It relies on bundle

methods to stabilize the objective function between iterations, thereby

also achieving faster convergence than a straight-forward cutting plane

scheme.

146 Structured Support Vector Machines

trees

meadows
vegetation

commercial

habitat

highway

road

man-made

natural

alphalt

building

shadow

Fig. 6.6 Illustration of automatic remote imaging ground survey [Tuia et al., 2010]. Each

pixel of a multispectral aerial image (left) is classified into one class of a seven class hier-
archy (right). Outputs (middle) are color coded: trees (dark green), meadows (light green),

highway (dark gray), road (light gray), residential (orange), commercial (red), and shadow

(blue). (Image Source: WisconsinView.org, SSEC)

Example 6.4 (Remote Imaging Ground Survey). Remote

imaging ground surveys aim at classifying each pixel of an aerial or

satellite by its surface type, e.g . roads, residential areas, or commercial

areas, see Figure 6.6 for an illustration.

Tuia et al. [2010] introduce a hierarchical S-SVM classification

model for this purpose in which a per-pixel classifier is trained using

working set training for the one-slack S-SVM formulation. Because the

number of classes is small, prediction and loss-augmented prediction

can be performed by exhaustive evaluation.

6.3 Kernelization

Support vector machines derive a large part of their popularity from the

fact that they can be kernelized, thereby allowing the efficient training

of non-linear classifiers. Structured SVMs can be kernelized in a similar

way.

Definition 6.4 (Kernelized S-SVM). Let k : (X ×Y)× (X ×Y)→
R be a positive definite joint kernel function with induced feature func-

tion ϕ : X ×Y → H into a Hilbert space H. For any C > 0, kernelized

6.3. Kernelization 147

S-SVM training forms a decision function

f(x) = argmax
y∈Y

N∑
i=1

∑
y′∈Y

αiy′k((xi, y′), (x, y)), (6.11)

with coefficients α = (αiy)i=1,...,N,y∈Y that are determined by solving

α = argmax
α∈RN×Y+

∑
i=1,...,N
y∈Y

αiy −
1

2

∑
i=1,...,N
y∈Y

∑
i′=1,...,N
y′∈Y

αiyαi′y′K
ii′

yy′ (6.12)

subject to, for i = 1, . . . , N ,∑
y∈Y

αiy ≤
C

N
(6.13)

whereK
ii′

yy′ = Kii′

yiyi′
−Kii′

yiy′−Kii′

yyi′
+Kii′

yy′ withKii′
yy′ = k((xi, y), (xi

′
, y′)).

The kernelized S-SVM formulation is derived by applying the for-

malism of Lagrangian dualization to the constrained optimization prob-

lem (6.7)/(6.8), resulting in its dual problem

max
α∈RN×Y+

∑
i=1,...,N
y∈Y

αiy (6.14)

− 1

2

∑
i,i′=1,...,N
y,y′∈Y

αiyαi′y′
〈
ϕ(xi, yi)− ϕ(xi, y) , ϕ(xi

′
, yi
′
)− ϕ(xi

′
, y′)

〉
,

subject to, for i = 1, . . . , N ,∑
y∈Y

αiy ≤
C

N
. (6.15)

Using the kernel trick [Schölkopf and Smola, 2002] we can replace in-

ner products between feature functions by evaluations of the kernel

function

k((x, y) , (x′, y′)) =
〈
ϕ(x, y) , ϕ(x′, y′)

〉
. (6.16)

148 Structured Support Vector Machines

The optimization problem (6.12)/(6.13) follows from this using the

bilinearity of the inner product and the definition of K.

Note that in principle the prediction function (6.11) might become

infeasible to compute, because it contains a potentially exponential

number of summands. However, this is not the case in practice be-

cause the constraints (6.15) enforce sparsity in the coefficients. For

every i = 1, . . . , N most coefficients αiy for y ∈ Y will be zero. This

sparsity property also makes it feasible to solve the optimization prob-

lem (6.12)/(6.13) numerically by keeping a working set over the non-

zero coefficients, see [Tsochantaridis et al., 2005].

Kernel functions of the form (6.16) are called joint kernels, because

they are not only kernels between two elements of the input domain,

as it is the case for ordinary support vector machines, but between two

(input, output) pairs. In their kernelized form structured SVMs offer

the same advantages of kernelized training as ordinary SVMs do. In

particular, one does not need an explicit expression for the feature

map ϕ. It suffices if we can evaluate the kernel function for arbitrary

arguments. This is specifically advantageous if the feature map is very

high dimensional. However, when choosing a joint kernel function one

has to take care that the maximization (6.11) and the loss-augmented

prediction during working set training remain feasible.

Example 6.5 (Object Category Localization). The task of local-

izing object categories in images typically requires the prediction of a

bounding box for each object in an image. Blaschko and Lampert [2008]

construct a kernelized S-SVM for this task that learns a prediction

function into the set of 4-tuples of bounding box coordinates.

For this purpose they introduce the restriction kernel :

k((x, y), (x′, y′)) = kimage(x|y, x′|y′), where x|y denotes the re-

striction of the image x to the rectangular region described by y, and

kimage is any kernel between images, see Figure (6.7) for an illustration.

When kimage is a linear kernel over a bag of visual words representation,

prediction and loss-augmented prediction are performed efficiently by

a branch-and-bound search [Lampert et al., 2009].

6.4. Latent Variables 149

(a) image x1, box y1 (b) image x2, box y2 (c) image x3, box y3

Fig. 6.7 Restriction kernel k((x, y), (x′, y′)) = kimage(x|y , x′|y′) for bounding box object
category localization. Image-box pairs are compared by the similarity of the image regions

inside the box coordinates. k((x1, y1), (x2, y2)) is large, because the regions show similar

objects. k((x1, y1), (x3, y3)) is small, because the objects within the regions are not similar.
(Image source: http://pdphoto.org)

6.4 Latent Variables

As we discussed in Conditional Random Fields, the introduction of

latent variables can give more expressive power to structured predic-

tion models, thereby making them more powerful prediction tools. Like

training methods for CRFs, S-SVMs training can be extended to in-

clude latent variables in a straight-forward way.

Definition 6.5 (Latent-Variable S-SVMs). Let z ∈ Z be a vector

of latent variables, i.e. its values are not observed in the training set.

Let ϕ : X × Y × Z → RD be a feature map, where Z denotes a set of

latent variables that are observed neither at training nor at evaluation

time. Latent variable S-SVM training [Yu and Joachims, 2009] learns

a prediction function

f(x) = argmax
y∈Y

max
z∈Z

g(x, y, z, w∗) (6.17)

with g(x, y, z, w) = 〈w,ϕ(x, y, z)〉, where the parameter vector is ob-

tained by solving

w∗ = argmin
w∈RD

1

2
‖w‖2 +

C

N

N∑
n=1

`(xn, yn, w) (6.18)

150 Structured Support Vector Machines

with

`(xn,yn, w) = (6.19)

max
y∈Y

[
∆(yn, y) + max

z∈Z
g(xn, y, z, w)

]
−max

z∈Z
g(xn, yn, z, w).

Latent variable S-SVM training is derived from the loss-based

S-SVM formulation (6.2), by introducing additional latent variables

z ∈ Z and bounding the ∆-loss by the Hinge-loss when choosing the

best possible assignment, i.e. when maximizing g(x, y, z, w) over z ∈ Z.

Because of the max operation in a term with negative sign within Equa-

tion (6.19), this upper bound is no longer a convex function of w, such

that (6.18) is not a convex optimization problem. We can therefore not

expect to find an efficient training procedure with guaranteed conver-

gence to the globally best weight vector. However, good results have

been reported using locally optimal optimization techniques, in par-

ticular the concave-convex procedure (CCCP) [Yuille and Rangarajan,

2003] for which pseudo-code is given in Algorithm 16.

CCCP is based on the observation that, while not convex, Equa-

tion (6.18) can be written as a sum of a concave and a convex term.

Both terms have have the form of (loss-augmented) prediction tasks, so

individually we can optimize them efficiently. The algorithm works by

iteratively approximating the concave part by upper bounding linear

functions. This requires the identification of assignments to the latent

variables that minimize the concave expression, or equivalently max-

imize its negative (line 11). Intuitively, the step can be thought of a

finding the latent assignments that best explain the training data for

the current weight vector and fixing them for the rest of the iteration.

Subsequently, one solves the modified optimization problem (line 13),

which is now convex, because the concave part has been linearized,

and one obtains a new weight vector. Both steps are iterated until no

improvement in the objective value is achieved anymore.

The CCCP procedure decreases the objective value at each itera-

tion, but it does not guarantee that the solution found at convergence is

the global minimum. Nevertheless, CCCP has shown useful in practice

for solving latent variable problems.

6.4. Latent Variables 151

Algorithm 16 Concave-Convex Procedure

1: w∗ = ConvexConcave(ε)

2: Input:

3: ε precision

4: Output:

5: w∗ ∈ RD learned weight vector

6: Algorithm:

7: wprev ← 0

8: repeat

9: wcur ← wprev

10: for n = 1, . . . , N do

11: ẑn ← max
z∈Z

g(xn, yn, z, wcur)

12: end for

13: wcur ← argminw∈RD
1
2‖w‖2 + C

N

∑N
n=1

ˆ̀n(w) with
ˆ̀n(w) = max

y∈Y,z∈Z

[
∆(yn, y) + g(xn, y, z, w)

]
− g(xn, yn, ẑn, w).

14: until |wprev − wcur| < ε

15: w∗ ← wcur

Example 6.6 (Occlusion-Aware Object Category Localization).

Vedaldi and Zisserman [2009] extend S-SVM based object category

localization (Example 6.5) to better cope with partially occluded

or truncated objects. For each images x with bounding box y they

introduce a vector of hidden binary variables z that encodes which

parts of the object is visible. For this they decompose the object region

x|y into rectangular grid cells. Each component of z corresponds to

one such grid cell, indicating if it is occluded or not (see Figure 6.8

for an illustration). Prediction and loss-augmented prediction can be

performed efficiently by incorporating idea from multiscale template

matching. This is used to train the model with CCCP.

152 Structured Support Vector Machines

Fig. 6.8 Illustration of Object Category Localization with latent occlusion variables (sim-

plified from Vedaldi and Zisserman [2009]). Left: as in ordinary object category localization,

we aim at learning a prediction function that takes images as input and bounding box co-
ordinates as output. Right: the presumed object region is decomposed into a rectangular

grid (here 9× 9). For each grid cell a latent variable indicates whether the object is visible

(transparent) or occluded (black).

6.5 Other Training Objectives

Prediction-based training methods for structured prediction models

are powerful because they only require iterative solution of the loss-

augmented prediction problem, and this is often possible using the same

routines as for MAP prediction. However, there are cases in which the

loss function cannot easily be included into the optimization. When

loss-augmented prediction becomes a hard problem exact structured

SVM training typically becomes infeasible. Assuming that ordinary,

loss-free, prediction is still possible, the structured perceptron offers a

solution in these cases.

6.5.1 Structured Perceptron Training

Structured perceptron learning [Collins, 2002] generalizes the multi-

class perceptron [Crammer and Singer, 2003] to structured output

spaces. Algorithm 17 shows it in pseudo-code. Like a classical per-

ceptron, the structured perceptron works iteratively. In every step it

chooses a training examples, either randomly or in an online fashion,

and predicts its label (line 10). If the prediction was correct, the weight

vector is kept, otherwise the feature vector of the correct prediction is

added and the feature vector of the wrong prediction is subtracted

6.5. Other Training Objectives 153

Algorithm 17 Structured Perceptron Training

1: w∗ = StructuredPerceptron(T)

2: Input:

3: T number of iterations

4: Output:

5: w∗ ∈ RD learned weight vector

6: Algorithm:

7: wcur ← 0

8: for t = 1, . . . , T do

9: (xn, yn)← randomly chosen training example

10: ŷ ← argmaxy∈Y 〈wcur, ϕ(xn, yn)〉
11: if ŷ 6= yn then

12: wcur ← wcur +
[
ϕ(xn, yn)− ϕ(xn, ŷ)

]
13: end if

14: end for

15: w∗ ← wcur

(line 12). Thereby the quality estimate of the correct label is increased

for the next step and the estimate of the mispredicted label is de-

creased. As one can see, no loss function is taken into account, and

only ordinary prediction is required. The structured perceptron is also

easily adapted to the situation of online-learning, as it only requires

access to one training example at a time.

Because Algorithm 17 does not include explicit regularization, over-

fitting can occur and structured perceptron learning typically results

in lower prediction accuracy than S-SVM training when both meth-

ods are applicable. This holds in weaker form also for variants such

as the averaged structured perceptron which introduces regularization

by returning the average of all weight vector obtained during training

instead of the final one [Collins, 2002].

Perceptron-based structured learning nevertheless has its justifica-

tion due to its extreme simplicity in implementation. Used as a baseline,

it provides insight into the learning problem as well as providing a good

indicator what results to expect from more advanced techniques for the

learning of structured prediction functions.

154 Structured Support Vector Machines

Example 6.7 (Figure-Ground Image Segmentation). Figure-

ground segmentation (see Example 5.1) can also be performed using

prediction-based learning. Structured perceptron learning leads to a

particularly simple training algorithm that is illustrated in Figure 6.9.

In each step, one picks a training image and predicts the segmentation

resulting from the current weight vector, e.g . using the graph cuts

algorithm. If its overlap with the ground truth is too low, the weight

vector is updated by the difference of feature representations between

the target and the predicted segmenetation. Otherwise the weight

vector is left unchanged. The training is stopped when the predictions

for all examples are sufficiently good, or after a predefined number of

steps.

6.6 Approximate Training

Prediction-based training generally assumes that the prediction prob-

lem argmaxy g(x, y, w) or the loss-augmented prediction problem

argmaxy ∆(y′, y)+g(x, y, w) can be solved exactly. As we saw in Struc-

tured Prediction this is generally not the case, and we often have to

give up optimality to be able to predict a structured output at all.

It is currently a field of active research how prediction-based train-

ing and approximate prediction techniques can be combined. Early

theoretical results by Kulesza and Pereira [2007] showed the severity of

the problem: when training a structured perceptron already small pre-

diction errors can lead to large deviations of the learned weight vector.

However, the authors also identified subclasses of problems for which

this problem does not occur.

Finley and Joachims [2008] analyzed the situation of S-SVMs in

more detail, when the loss-augment prediction problem can be per-

formed only approximately. They identified two classes of approxi-

mate inference techniques: under-generating techniques, such as greedy

search or the loopy max-product algorithm, make the intractable pre-

diction problem tractable by searching only over a subset Yunder ⊂ Y
of possible labels. Over-generating techniques achieve the same goal by

6.6. Approximate Training 155

(a) training image (b) ground truth (c) predicted foreground-

background mask after con-
vergence (60 iterations)

(d) predicted masks after 1, 10 and 50 structured perceptron iterations

Fig. 6.9 Illustration of prediction-based learning for figure-ground segmentation. Each pixel

of an image has to be label foreground (white) or background (black). Structured perceptron

learning predicts a segmentation in each iteration and changes the weight vector until for
all training images the prediction is sufficiently close to the ground truth segmentation. In

this example, the criterion is 90% area overlap which is achieved after 60 iterations. (Image

source: Derek Magee, Univ. of Leeds.)

searching over a set Yover ⊃ Y that is larger than the original output

space, e.g . real values outputs instead of integer valued ones for linear

programming relaxations.

Both classes have advantages and disadvantages, but in conclusion

over-generating techniques appear more suitable for approximate S-

SVM training than under-generating ones, which was confirmed by

experimental results.

Alternatively, training modification to the S-SVM training have

been proposed that approximate the optimization problem in a way

similar to pseudo-likelihood training [Bo and Sminchisescu, 2009], or

to piece-wise training of CRFs [Alahari et al., 2010]. It has also been

suggested to train hybrid generative/discriminative models that avoid

the need to perform prediction tasks at training time altogether [Lam-

156 Structured Support Vector Machines

pert and Blaschko, 2009].

So far practical experience with approximate training of structured

models in computer vision tasks is limited, and it appears that more

research is required to determine which direction is the most promising

one.

7

Conclusion

Making use of the problem structure is crucial for efficient structured

prediction and learning. The models we discuss in this tutorial all have

a non-trivial structure; this makes them rich enough to be useful, but

it also complicates inference and parameter estimation.

Many of the occurring prediction problems are NP-hard. Only by

understanding the problems’ structure, we are able to still make predic-

tions, and do so efficiently. To this end we discussed a number of suc-

cessful techniques in terms of what desired property of a non-existing

ideal algorithm we are willing to give up: problem generality, guaran-

teed optimality, worst-case complexity, integrality, and determinism.

Parameter learning poses very similar problems as prediction does,

no matter if we follow a probabilistic or a maximum-margin approach.

Understanding the model structure is important for accessing the in-

sights obtained by solving the prediction problem. This allows us to

make the right choices that make training tractable.

Despite the breadth of the algorithmic techniques described and

the emergence of general frameworks such as graphical models, it is

ultimately the individual computer vision researcher who has to face a

novel structured prediction problem.

157

Notations and Acronyms

158

Notations and Acronyms 159

Symbol Description

X Input domain of the prediction function.
x ∈ X Element of input domain.
X Random variable that takes values in input domain.

G Decision domain.
Y ⊆ G Structured output domain of the prediction function.
y ∈ Y Element of output domain.
Y Random variable that takes values in output domain.

Z Domain of latent values.
z ∈ Z Latent value.
Z Latent random variable.

G = (V, E) Graph for graphical model. V = {nodes}, E = {edges}.
(V,F , E) Factor graph. V = {variable nodes}, F = {factor nodes}, E =

{edges}.
�i Part of structured object � that corresponds to node i ∈ V

in graphical model representation, in particular Xi, Xi, xi for
inputs, Yi, Yi, yi for outputs, and Zi, Zi, zi for latent quantities.

�F Part of structured object � that corresponds to factor F in
graphical model representation, in particular XF =

∏
i∈F Xi,

XF = (Xi)i∈F , xF = (xi)i∈F , etc.
�∗ Result of MAP-prediction for a quantity �
�̂ Empirical estimate of a quantity �.

D ∈ N Dimension of feature space.
ϕ : X × Y → RD Feature function.
w ∈ RD weight vector.
g : X × G → R Evaluation function, usually parametrized as g(x, y, w) =

〈w,ϕ(x, y)〉.
f : X → Y Structured prediction function, usually defined implicitly as

f(x) = argmaxy∈Y g(x, y, w).
p(Y = y|X = x,W = w) Conditional probability distribution parametrized by w.
E(x, y, w) Energy function, E(x, y, w) = − log p(y|x,w).

S Set of samples.

τ (k) > 0 Simulated annealing temperature at iteration k.

η(k) ∈ N Simulation steps in simulated annealing iteration k.

D = {(xi, yi)}i=1,...,N Set of input-output pairs used for training
N ∈ N Number of training examples
T ∈ N Number of training iterations
d ∈ RD Descent direction in gradient descent procedures.
η1, . . . , ηT Sequence of learning rates, typically ηt = η

t
for η > 0.

〈 ·, · 〉 (Euclidean) inner product: 〈u, v 〉 = utv =
∑dim
i=1 [u]i[v]i

J·K Function evaluating to 1 if its argument is true, to 0 otherwise.
[·]+ Positive part of argument: [t]+ := max(0, t).

References

Aarts, E. H. L., J. H. M. Korst, and P. J. M. v. Laarhoven (1997),

‘Simulated Annealing’. In: E. H. L. Aarts and J. K. Lenstra (eds.):

Local Search in Combinatorial Optimization. Wiley-Interscience, pp.

91–120.

Ahuja, R. K., Ö. Ergun, J. B. Orlin, and A. P. Punnen (2002), ‘A survey

of very large-scale neighborhood search techniques’. In: E. Boros and

P. L. Hammer (eds.): Workshop on Discrete Optimization. pp. 75–

102.

Alahari, K., P. Kohli, and P. H. S. Torr (2008), ‘Reduce, reuse & recycle:

Efficiently solving multi-label MRFs’. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR).

Alahari, K., C. Russell, and P. H. S. Torr (2010), ‘Efficient Piece-

wise Learning for Conditional Random Fields’. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition

(CVPR).

Andriluka, M., S. Roth, and B. Schiele (2009), ‘Pictorial structures

revisited: People detection and articulated pose estimation’. In:

IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR).

160

Notations and Acronyms 161

Anstreicher, K. M. and L. A. Wolsey (2009), ‘Two “well-known”

properties of subgradient optimization’. Mathematical Programming

120(B), 213–220.

Asuncion, A. U., Q. Liu, A. T. Ihler, and P. Smyth (2010), ‘Learning

with blocks: Composite likelihood and contrastive divergence’. In:

Conference on Uncertainty in Artificial Intelligence (AISTATS).

Barahona, F. and R. Anbil (2000), ‘The volume algorithm: producing

primal solutions with a subgradient method’. Mathematical Program-

ming 87(3), 385–399.

Barber, D. (2011), Bayesian Reasoning and Machine Learning. Cam-

bridge University Press. In press.

Barbu, A. and S. C. Zhu (2005), ‘Generalizing Swendsen-Wang to Sam-

pling Arbitrary Posterior Probabilities’. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (T-PAMI) 27(8), 1239–1253.

Batra, D., A. C. Gallagher, D. Parikh, and T. Chen (2010), ‘Be-

yond Trees: MRF Inference via Outer-Planar Decomposition’. In:

IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR).

Batra, D., S. Nowozin, and P. Kohli (2011), ‘Tighter Relaxations for

MAP-MRF Inference: A Local Primal-Dual Gap based Separation

Algorithm’. In: Conference on Uncertainty in Artificial Intelligence

(AISTATS).

Bertsekas, D. P. (1995), Nonlinear Programming. Belmont, MA: Athena

Scientific. 2nd edition.

Bertsekas, D. P. (1998), Network Optimization. Athena Scientific.

Bertsimas, D. and J. N. Tsitsiklis (1997), Introduction to Linear Opti-

mization. Athena Scientific.

Besag, J. (1975), ‘Statistical Analysis of Non-Lattice Data’. The Statis-

tician pp. 179–195.

Besag, J. (1986), ‘On the Statistical Analysis of Dirty Pictures’. Journal

of the Royal Statistical Society B-48(3), 259–302.

Birchfield, S. and C. Tomasi (1998), ‘A Pixel Dissimilarity Measure

That Is Insensitive to Image Sampling’. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (T-PAMI) 20(4), 401–406.

Bishop, C. M. (2006), Pattern recognition and machine learning.

162 Notations and Acronyms

Springer.

Blake, A., C. Rother, M. Brown, P. Perez, and P. H. S. Torr (2004),

‘Interactive image segmentation using an adaptive GMMRF model’.

In: European Conference on Computer Vision (ECCV). pp. 428–441.

Blaschko, M. B. and C. H. Lampert (2008), ‘Learning to localize ob-

jects with structured output regression’. In: European Conference on

Computer Vision (ECCV).

Bo, L. and C. Sminchisescu (2009), ‘Structured output-associative re-

gression’. In: IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR).

Bonnans, J. F., J. C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal

(2003), Numerical Optimization. Springer.

Bordes, A., L. Bottou, and P. Gallinari (2009), ‘SGD-QN: Careful

Quasi-Newton Stochastic Gradient Descent’. Journal of Machine

Learning Research (JMLR) 10, 1737–1754.

Bottou, L. and O. Bousquet (2007), ‘The Tradeoffs of Large Scale

Learning’. In: Conference on Neural Information Processing Systems

(NIPS). The MIT Press.

Boykov, Y. and M.-P. Jolly (2001), ‘Interactive Graph Cuts for Optimal

Boundary and Region Segmentation of Objects in N-D Images’. In:

International Conference on Computer Vision (ICCV). pp. 105–112.

Boykov, Y. and V. Kolmogorov (2004), ‘An Experimental Compari-

son of Min-Cut/Max-Flow Algorithms for Energy Minimization in

Vision’. PAMI 26(9), 1124–1137.

Boykov, Y., O. Veksler, and R. Zabih (1998), ‘Markov Random Fields

with Efficient Approximations’. In: IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR). pp.

648–655, IEEE Computer Society.

Boykov, Y., O. Veksler, and R. Zabih (2001), ‘Fast Approximate En-

ergy Minimization via Graph Cuts’. IEEE Transactions on Pattern

Analysis and Machine Intelligence (T-PAMI) 23(11), 1222–1239.

Carreira, J. and C. Sminchisescu (2010), ‘Constrained Parametric

Min-Cuts for Automatic Object Segmentation’. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition

(CVPR). pp. 3241–3248.

Chen, C., D. Freedman, and C. H. Lampert (2011), ‘Enforcing topolog-

Notations and Acronyms 163

ical constraints in random field image segmentation’. In: IEEE Com-

puter Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR). pp. 2089–2096.

Clausen, J. (1999), ‘Branch and Bound Algorithms – Principles and

Examples’. University of Copenhagen.

Collins, M. (2002), ‘Discriminative training methods for hidden markov

models: Theory and experiments with perceptron algorithms’. In:

Conference on Empirical methods in Natural Language Processing.

pp. 1–8.

Conejo, A. J., E. Castillo, R. Mı́nguez, and R. Garćıa-Bertrand (2006),

Decomposition Techniques in Mathematical Programming. Springer.

Crammer, K. and Y. Singer (2003), ‘Ultraconservative Online Algo-

rithms for Multiclass Problems’. Journal of Machine Learning Re-

search (JMLR) 3, 951–991.

Elidan, G., I. McGraw, and D. Koller (2006), ‘Residual Belief Propa-

gation: Informed Scheduling for Asynchronous Message Passing’. In:

Uncertainty in Artificial Intelligence (UAI).

Felzenszwalb, P. and D. Huttenlocher (2000), ‘Efficient Matching of

Pictorial Structures’. In: IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR). pp. 66–75.

Felzenszwalb, P. F. and D. P. Huttenlocher (2006), ‘Efficient Belief

Propagation for Early Vision’. International Journal of Computer

Vision (IJCV) 70(1), 41–54.

Finley, T. and T. Joachims (2008), ‘Training structural SVMs when ex-

act inference is intractable’. In: International Conference on Machine

Learing (ICML). pp. 304–311.

Fischler, M. A. and R. A. Elschlager (1973), ‘The Representation and

Matching of Pictorial Structures’. IEEE Trans. Computer 22(1), 67–

92.

Fletcher, R. (1987), Practical Methods of Optimization. John Wiley &

Sons.

Franc, V., S. Sonnenburg, and T. Werner (2011), ‘Cutting-plane Meth-

ods in Machine Learning’. In: S. Sra, S. Nowozin, and S. J. Wright

(eds.): Optimization for Machine Learning. MIT Press.

Frangioni, A. (2005), ‘About Lagrangian Methods in Integer Optimiza-

tion’. Annals of Operations Research 139(1), 163–193.

164 Notations and Acronyms

Freedman, D. and P. Drineas (2005), ‘Energy Minimization via Graph

Cuts: Settling What is Possible’. In: IEEE Computer Society Con-

ference on Computer Vision and Pattern Recognition (CVPR). pp.

939–946.

Freeman, W. T., E. C. Pasztor, and O. T. Carmichael (2000), ‘Learn-

ing Low-Level Vision’. International Journal of Computer Vision

(IJCV) 40(1), 25–47.

Frey, B. J. and D. J. C. MacKay (1997), ‘A Revolution: Belief Propaga-

tion in Graphs with Cycles’. In: Conference on Neural Information

Processing Systems (NIPS). The MIT Press.

Fulkerson, B., A. Vedaldi, and S. Soatto (2009), ‘Class segmentation

and object localization with superpixel neighborhoods’. In: Interna-

tional Conference on Computer Vision (ICCV).

Geiger, D. and A. L. Yuille (1991), ‘A common framework for image seg-

mentation’. International Journal of Computer Vision (IJCV) 6(3),

227–243.

Geman, S. and D. Geman (1984), ‘Stochastic Relaxation, Gibbs Dis-

tributions, and the Bayesian Restoration of Images’. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence (T-PAMI) 6(6),

721–741.

Geoffrion, A. M. (1974), ‘Lagrangian Relaxation for Integer Program-

ming’. Mathematical Programming Study 2, 82–114.

Geyer, C. J. (1992), ‘Practical Markov chain Monte Carlo’. Statistical

Science 7(4), 473–483.

Goodman, J. (2004), ‘Exponential priors for maximum entropy mod-

els’. In: Human Language Technology Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics (HLT-

NAACL). pp. 305–312.

Guignard, M. (2003), ‘Lagrangean Relaxation’. TOP 11(2), 151–200.

Guignard, M. and S. Kim (1987), ‘Lagrangean Decomposition: A Model

Yielding Stronger Lagrangean Bounds’. Mathematical Programming

39, 215–228.

Häggström, O. (2000), Finite Markov Chains and Algorithmic Appli-

cations. Cambridge University Press.

Hart, P., N. Nilsson, and B. Raphael (1968), ‘A formal basis for the

Notations and Acronyms 165

heuristic determination of minimum cost paths’. IEEE Transactions

on Systems Science and Cybernetics 4(2), 100–107.

Hastings, W. K. (1970), ‘Monte Carlo sampling methods using Markov

chains and their applications’. Biometrika pp. 97–109.

He, X., R. Zemel, and M. Carreira-Perpinan (2004), ‘Multiscale condi-

tional random fields for image labeling’. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR).

Heskes, T. (2006), ‘Convexity Arguments for Efficient Minimization of

the Bethe and Kikuchi Free Energies’. Journal of Artificial Intelli-

gence Research (JAIR) 26, 153–190.

Hestenes, M. R. and E. Stiefel (1952), ‘Methods of Conjugate Gradi-

ents for Solving Linear Systems’. Journal of Research of the National

Bureau of Standards 49(6), 409–436.

Hinton, G. (2002), ‘Training products of experts by minimizing con-

trastive divergence’. Neural Computation 14(8), 1771–1800.

Ishikawa, H. (2003), ‘Exact Optimization for Markov Random Fields

with Convex Priors’. IEEE Trans. Pattern Anal. Mach. Intell 25(10),

1333–1336.

Joachims, T., T. Finley, and C.-N. Yu (2009), ‘Cutting-Plane Training

of Structural SVMs’. Machine Learning 77(1), 27–59.

Johnson, J. K., D. M. Malioutov, and A. S. Willsky (2007), ‘Lagrangian

Relaxation for MAP Estimation in Graphical Models’. Allerton Con-

ference on Control, Communication and Computing.

Jojic, V., S. Gould, and D. Koller (2010), ‘Accelerated dual decompo-

sition for MAP inference’. In: J. Fürnkranz and T. Joachims (eds.):

Proceedings of the 27th International Conference on Machine Learn-

ing (ICML-10), June 21-24, 2010, Haifa, Israel. pp. 503–510, Om-

nipress.

Jordan, M. I., Z. Ghahramani, T. S. Jaakkola, and L. K. Saul (1999),

‘An Introduction to Variational Methods for Graphical Models’. Ma-

chine Learning 37(2), 183–233.

Kelley Jr, J. (1960), ‘The cutting-plane method for solving convex pro-

grams’. Journal of the Society for Industrial and Applied Mathemat-

ics 8(4), 703–712.

Kelm, B. M., N. Müller, B. H. Menze, and F. A. Hamprecht (2006),

‘Bayesian Estimation of Smooth Parameter Maps for Dynamic

166 Notations and Acronyms

Contrast-Enhanced MR Images with Block-ICM’. In: CVPR Work-

shop on Mathematical Methods in Biomedical Image Analysis, Com-

puter Vision and Pattern Recognition. pp. 96–103.

Kikuchi, R. (1951), ‘A Theory of Cooperative Phenomena’. Physical

Review 81(6), 988–1003.

Kim, T., S. Nowozin, P. Kohli, and C. D. Yoo (2011), ‘Variable Group-

ing for Energy Minimization’. In: IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983), ‘Optimization

by Simulated Annealing’. Science 220, 671–680.

Kittler, J. and J. Föglein (1984), ‘Contextual classification of multi-

spectral pixel data’. Image Vision Computing 2(1), 13–29.

Kohli, P., M. P. Kumar, and C. Rother (2009a), ‘MAP Inference in

Discrete Models’. Tutorial at ICCV 2009.

Kohli, P., M. P. Kumar, and P. H. S. Torr (2007), ‘P3 & Beyond: Solving

Energies with Higher Order Cliques’. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR).

Kohli, P., L. Ladický, and P. H. S. Torr (2008), ‘Robust higher order po-

tentials for enforcing label consistency’. In: IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR).

Kohli, P., L. Ladicky, and P. H. S. Torr (2009b), ‘Robust Higher Order

Potentials for Enforcing Label Consistency’. International Journal

of Computer Vision (IJCV) 82(3), 302–324.

Koller, D. and N. Friedman (2009), Probabilistic Graphical Models:

Principles and Techniques. The MIT Press.

Kolmogorov, V. (2006), ‘Convergent Tree-Reweighted Message Passing

for Energy Minimization’. IEEE Transactions on Pattern Analysis

and Machine Intelligence (T-PAMI) 28(10), 1568–1583.

Kolmogorov, V. and C. Rother (2007), ‘Minimizing Nonsubmodular

Functions with Graph Cuts-A Review’. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (T-PAMI) 29(7), 1274–1279.

Kolmogorov, V. and R. Zabih (2004), ‘What Energy Functions Can Be

Minimized via Graph Cuts?’. IEEE Transactions on Pattern Analy-

sis and Machine Intelligence (T-PAMI) 26(2), 147–159.

Komodakis, N. and N. Paragios (2008), ‘Beyond Loose LP-Relaxations:

Optimizing MRFs by Repairing Cycles’. In: European Conference on

Notations and Acronyms 167

Computer Vision (ECCV).

Komodakis, N., N. Paragios, and G. Tziritas (2007a), ‘MRF Optimiza-

tion via Dual Decomposition: Message-Passing Revisited’. In: Inter-

national Conference on Computer Vision (ICCV).

Komodakis, N., G. Tziritas, and N. Paragios (2007b), ‘Fast, Ap-

proximately Optimal Solutions for Single and Dynamic MRFs’. In:

IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR). IEEE Computer Society.

Korte, B. and J. Vygen (2008), Combinatorial Optimization: Theory

and Algorithms. Springer. 4th edition.

Kschischang, F. R., B. J. Frey, and H.-A. Loeliger (2001), ‘Factor

graphs and the sum-product algorithm’. IEEE Transactions on In-

formation Theory 47(2), 498–519.

Kulesza, A. and F. Pereira (2007), ‘Structured Learning with Approx-

imate Inference’. In: Conference on Neural Information Processing

Systems (NIPS).

Kumar, S. and M. Hebert (2004), ‘Discriminative fields for modeling

spatial dependencies in natural images’. Conference on Neural Infor-

mation Processing Systems (NIPS).

Lampert, C. H. and M. B. Blaschko (2009), ‘Structured prediction by

joint kernel support estimation’. Machine Learning 77(2-3), 249–269.

Lampert, C. H., M. B. Blaschko, and T. Hofmann (2008), ‘Beyond

sliding windows: Object localization by Efficient Subwindow Search’.

In: IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR).

Lampert, C. H., M. B. Blaschko, and T. Hofmann (2009), ‘Efficient

Subwindow Search: A Branch and Bound Framework for Object Lo-

calization’. IEEE Transactions on Pattern Analysis and Machine In-

telligence (T-PAMI) 31(12), 2129–2142.

Lee, Y., Y. Lin, and G. Wahba (2004), ‘Multicategory support vector

machines’. Journal of the American Statistical Association 99(465),

67–81.

Lemaréchal, C. (2001), ‘Lagrangian Relaxation’. In: M. Jünger and D.

Naddef (eds.): Computational Combinatorial Optimization. Springer,

pp. 112–156.

168 Notations and Acronyms

Lempitsky, V. S., A. Blake, and C. Rother (2008), ‘Image Segmenta-

tion by Branch-and-Mincut’. In: European Conference on Computer

Vision (ECCV).

Lempitsky, V. S., P. Kohli, C. Rother, and T. Sharp (2009), ‘Image Seg-

mentation with A Bounding Box Prior’. In: International Conference

on Computer Vision (ICCV).

Liang, F., C. Liu, and R. J. Carroll (2010), Advanced Markov chain

Monte Carlo methods: Learning from past samples. John Wiley.

Liu, D. C. and J. Nocedal (1989), ‘On the limited memory BFGS

method for large scale optimization’. Mathematical Programming

45(1), 503–528.

Liu, J. S. (2001), Monte Carlo Strategies in Scientific Computing,

Springer Series in Statistics. New York: Springer.

MacKay, D. J. C. (2003), Information Theory, Inference and Learning

Algorithms. Cambridge University Press.

Martins, A. F. T., N. A. Smith, and E. P. Xing (2009), ‘Polyhedral

outer approximations with application to natural language parsing’.

In: International Conference on Machine Learing (ICML).

Martins, A. F. T., N. A. Smith, E. P. Xing, P. M. Aguiar, and M. A. T.

Figueiredo (2010), ‘Augmenting Dual Decomposition for MAP In-

ference’. In: Proceedings of the 3rd International Workshop on Op-

timization for Machine Learning (OPT 2010), December 10, 2010,

Whistler, Canada.

McAllester, D. (2007), ‘Generalization bounds and consistency for

structured labeling’. In: G. Bakır, T. Hofmann, B. Schölkopf, A.

Smola, B. Taskar, and S. Vishwanathan (eds.): Predicting Structured

Data. The MIT Press.

Meltzer, T., A. Globerson, and Y. Weiss (2009), ‘Convergent message

passing algorithms - a unifying view’. In: Uncertainty in Artificial

Intelligence (UAI).

Metropolis, N., A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller,

et al. (1953), ‘Equation of state calculations by fast computing ma-

chines’. The Journal of Chemical Physics 21(6), 1087–1092.

Mézard, M. and A. Montanari (2009), Information, Physics, and Com-

putation. Oxford University Press.

Notations and Acronyms 169

Minka, T. (2005), ‘Divergence measures and message passing’. Mi-

crosoft Research Technical Report, MSR-TR-2005-173.

Morency, L.-P., A. Quattoni, and T. Darrell (2007), ‘Latent-Dynamic

Discriminative Models for Continuous Gesture Recognition’. In:

IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR).

Mori, G. (2005), ‘Guiding Model Search Using Segmentation’. In: In-

ternational Conference on Computer Vision (ICCV).

Murray, I. (2009), ‘Markov chain Monte Carlo’. Tutorial at Machine

Learning Summer School 2009.

Nedic, A. and D. Bertsekas (2000), ‘Convergence rate of incremental

subgradient algorithms’. In: S. P. Uryasev and P. M. Pardalos (eds.):

Stochastic Optimization: Algorithms and Applications. Springer, pp.

223–264.

Nesterov, Y. E. (2005), ‘Smooth minimization of non-smooth func-

tions’. Mathematical Programming 103(1), 127–152.

Neter, J., M. Kutner, C. Nachtsheim, and W. Wasserman (1996), Ap-

plied linear statistical models. McGraw-Hill, 4 edition.

Nocedal, J. and S. J. Wright (1999), Numerical optimization. Springer.

Nowozin, S., P. V. Gehler, and C. H. Lampert (2010), ‘On Parameter

Learning in CRF-based Approaches to Object Class Image Segmen-

tation’. In: European Conference on Computer Vision (ECCV).

Nowozin, S. and S. Jegelka (2009), ‘Solution stability in linear program-

ming relaxations: graph partitioning and unsupervised learning’. In:

International Conference on Machine Learing (ICML).

Nowozin, S. and C. H. Lampert (2009), ‘Global connectivity potentials

for random field models’. In: IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR).

Papadimitriou, C. H. and K. Steiglitz (1998), Combinatorial optimiza-

tion: algorithms and complexity. Dover Publications.

Picard, J. C. and M. Queyranne (1980), ‘On the structure of all min-

imum cuts in a network and applications’. Combinatorial Optimiza-

tion II pp. 8–16.

Platt, J. C. (1999a), ‘Fast training of support vector machines using

sequential minimal optimization’. In: B. Schölkopf, C. J. C. Burges,

170 Notations and Acronyms

and A. J. Smola (eds.): Advances in Kernel Methods. The MIT Press,

pp. 185–208.

Platt, J. C. (1999b), ‘Probabilities for SV Machines’. In: A. J. Smola,

P. L. Bartlett, B. Schölkopf, and D. Schuurmans (eds.): Advances in

large margin classifiers. The MIT Press, pp. 61–74.

Pletscher, P., C. S. Ong, and J. M. Buhmann (2010), ‘Entropy and

Margin Maximization for Structured Output Learning’. In: European

Conference on Marchine Learning (ECML).

Potetz, B. (2007), ‘Efficient Belief Propagation for Vision Using Lin-

ear Constraint Nodes’. In: IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR).

Ramalingam, S., P. Kohli, K. Alahari, and P. H. S. Torr (2008), ‘Ex-

act inference in multi-label CRFs with higher order cliques’. In:

IEEE Computer Society Conference on Computer Vision and Pat-

tern Recognition (CVPR).

Ratliff, N. D., J. A. Bagnell, and M. A. Zinkevich (2006), ‘Maximum

margin planning’. In: International Conference on Machine Learing

(ICML).

Ren, X. and J. Malik (2003), ‘Learning a Classification Model for

Segmentation’. In: International Conference on Computer Vision

(ICCV).

Robert, C. P. (2001), The Bayesian Choice. From decision Theoretic

Foundations to Computational Implementation, Springer Series in

Statistics. Springer.

Robert, C. P. and G. Casella (2004), Monte Carlo Statistical Methods.

Springer. 2nd edition.

Rother, C., V. Kolmogorov, V. S. Lempitsky, and M. Szummer (2007),

‘Optimizing Binary MRFs via Extended Roof Duality’. In: IEEE

Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR).

Sarawagi, S. and R. Gupta (2008), ‘Accurate max-margin training for

structured output spaces’. In: International Conference on Machine

Learing (ICML).

Saul, L. K. and M. I. Jordan (1995), ‘Exploiting Tractable Substruc-

tures in Intractable Networks’. In: Conference on Neural Information

Notations and Acronyms 171

Processing Systems (NIPS). pp. 486–492.

Savchynskyy, B. D., J. Kappes, S. Schmidt, and C. Schnörr (2011), ‘A

Study of Nesterov’s Scheme for Lagrangian Decomposition and MAP

Labeling’. In: IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition (CVPR). IEEE Computer Society.

Schlesinger, M. I. (1976), ‘Syntactic analysis of two-dimensional visual

signals in noisy conditions (in Russian)’. Kibernetika 4, 113–130.

Schmidt, F. R., D. Farin, and D. Cremers (2007), ‘Fast Matching of

Planar Shapes in Sub-cubic Runtime’. In: International Conference

on Computer Vision (ICCV).

Schmidt, F. R., E. Töppe, and D. Cremers (2009), ‘Efficient planar

graph cuts with applications in Computer Vision’. In: IEEE Com-

puter Society Conference on Computer Vision and Pattern Recogni-

tion (CVPR).

Schmidt, U., Q. Gao, and S. Roth (2010), ‘A Generative Perspective on

MRFs in Low-Level Vision’. In: IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR).

Schölkopf, B. and A. J. Smola (2002), Learning with kernels. The MIT

Press.

Schraudolph, N. N. and D. Kamenetsky (2008a), ‘Efficient Exact Infer-

ence in Planar Ising Models’. In: Conference on Neural Information

Processing Systems (NIPS). The MIT Press.

Schraudolph, N. N. and D. Kamenetsky (2008b), ‘Efficient Exact Infer-

ence in Planar Ising Models’. In: Conference on Neural Information

Processing Systems (NIPS).

Shimony, S. E. (1994), ‘Finding MAPs for Belief Networks Is NP-Hard’.

Artificial Intelligence 68(2), 399–410.

Shor, N. Z. (1985), Minimization methods for non-differentiable func-

tions. Springer.

Sontag, D., A. Globerson, and T. Jaakkola (2008a), ‘Clusters and

Coarse Partitions in LP Relaxations’. In: Conference on Neural In-

formation Processing Systems (NIPS).

Sontag, D., A. Globerson, and T. Jaakkola (2011), ‘Introduction to

Dual Decomposition for Inference’. In: S. Sra, S. Nowozin, and S. J.

Wright (eds.): Optimization for Machine Learning. MIT Press.

172 Notations and Acronyms

Sontag, D., T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss

(2008b), ‘Tightening LP Relaxations for MAP using Message Pass-

ing’. In: Uncertainty in Artificial Intelligence (UAI). pp. 503–510.

Strandmark, P. and F. Kahl (2010), ‘Parallel and Distributed Graph

Cuts by Dual Decomposition’. In: IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

Sutton, C. and A. McCallum (2009), ‘Piecewise training for structured

prediction’. Machine Learning 77(2-3), 165–194.

Szeliski, R., R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,

A. Agarwala, M. F. Tappen, and C. Rother (2008), ‘A Compara-

tive Study of Energy Minimization Methods for Markov Random

Fields with Smoothness-Based Priors’. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence (T-PAMI) 30(6), 1068–1080.

Szummer, M., P. Kohli, and D. Hoiem (2008), ‘Learning CRFs Using

Graph Cuts’. In: European Conference on Computer Vision (ECCV).

Tappen, M. F. and W. T. Freeman (2003), ‘Comparison of Graph Cuts

with Belief Propagation for Stereo, using Identical MRF Parameters’.

In: International Conference on Computer Vision (ICCV). pp. 900–

907, IEEE Computer Society.

Taskar, B., C. Guestrin, and D. Koller (2003), ‘Max-margin Markov

networks’. In: Conference on Neural Information Processing Systems

(NIPS).

Teo, C., S. Vishwanathan, A. Smola, and Q. Le (2009), ‘Bundle Meth-

ods for Regularized Risk Minimization’. Journal of Machine Learning

Research (JMLR) 1, 1–55.

Torresani, L., V. Kolmogorov, and C. Rother (2008), ‘Feature Corre-

spondence Via Graph Matching: Models and Global Optimization’.

In: European Conference on Computer Vision (ECCV).

Tsochantaridis, I., T. Joachims, T. Hofmann, and Y. Altun (2005),

‘Large Margin Methods for Structured and Interdependent Output

Variables’. Journal of Machine Learning Research (JMLR) 6, 1453–

1484.

Tu, Z., X. Chen, A. L. Yuille, and S. C. Zhu (2005), ‘Image Parsing:

Unifying Segmentation, Detection, and Recognition’. International

Journal of Computer Vision (IJCV) 63(2), 113–140.

Tuia, D., J. Muñoz-Maŕı, M. Kanevski, and G. Camps-Valls (2010),

Notations and Acronyms 173

‘Structured Output SVM for Remote Sensing Image Classification’.

Journal of Signal Processing Systems.

Vapnik, V. and A. Chervonenkis (1974), Theory of pattern recognition

(in Russian). Nauka, Moscow.

Vazirani, V. V. (2001), Approximation Algorithms. Springer.

Vedaldi, A. and A. Zisserman (2009), ‘Structured output regression for

detection with partial occulsion’. In: Conference on Neural Informa-

tion Processing Systems (NIPS).

Vicente, S., V. Kolmogorov, and C. Rother (2008), ‘Graph cut based

image segmentation with connectivity priors’. In: IEEE Computer

Society Conference on Computer Vision and Pattern Recognition

(CVPR).

Vicente, S., V. Kolmogorov, and C. Rother (2009), ‘Joint optimization

of segmentation and appearance models’. In: International Confer-

ence on Computer Vision (ICCV).

Vishwanathan, S. V. N., N. N. Schraudolph, M. W. Schmidt, and K. P.

Murphy (2006), ‘Accelerated training of conditional random fields

with stochastic gradient methods’. In: International Conference on

Machine Learing (ICML). pp. 969–976.

Wainwright, M. J. and M. I. Jordan (2008), ‘Graphical Models, Expo-

nential Families, and Variational Inference’. Foundations and Trends

in Machine Learning 1(1-2), 1–305.

Weinman, J. J., L. Tran, and C. J. Pal (2008), ‘Efficiently Learning

Random Fields for Stereo Vision with Sparse Message Passing’. In:

European Conference on Computer Vision (ECCV).

Werner, T. (2007), ‘A Linear Programming Approach to Max-sum

Problem: A Review’. IEEE Transactions on Pattern Analysis and

Machine Intelligence (T-PAMI) 29(7), 1165–1179.

Werner, T. (2008), ‘High-arity interactions, polyhedral relaxations,

and cutting plane algorithm for soft constraint optimisation (MAP-

MRF)’. In: IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR).

Werner, T. (2009), ‘Revisiting the Decomposition Approach

to Inference in Exponential Families and Graphical Mod-

els’. Center for Machine Perception, Czech Technical Uni-

versity Prague, Research Report, CTU-CMP-2009-06.

174 Notations and Acronyms

ftp://cmp.felk.cvut.cz/pub/cmp/articles/werner/Werner-TR-

2009-06.pdf.

Werner, T. (2010), ‘Belief Propagation Fixed Points as

Zero Gradients of a Function of Reparameterizations’.

Center for Machine Perception, Czech Technical Uni-

versity Prague, Research Report, CTU-CMP-2010-05.

ftp://cmp.felk.cvut.cz/pub/cmp/articles/werner/Werner-TR-

2010-05.pdf.

Williams, H. P. (1999), Model Building in Mathematical Programming.

New York: John Wiley & Sons, 4 edition.

Winn, J. and C. M. Bishop (2005), ‘Variational Message Passing’. Jour-

nal of Machine Learning Research (JMLR) 6, 661–694.

Wolsey, L. A. (1998), Integer Programming. New York: John Wiley &

Sons.

Woodford, O. J., C. Rother, and V. Kolmogorov (2009), ‘A Global Per-

spective on MAP Inference for Low-Level Vision’. In: International

Conference on Computer Vision (ICCV).

Xing, E. P., M. I. Jordan, and S. J. Russell (2003), ‘A generalized mean

field algorithm for variational inference in exponential families’. In:

Uncertainty in Artificial Intelligence (UAI). pp. 583–591.

Yedidia, J. S., W. T. Freeman, and Y. Weiss (2004), ‘Con-

structing Free Energy Approximations and Generalized Belief

Propagation Algorithms’. MERL Technical Report, 2004-040.

http://www.merl.com/papers/docs/TR2004-040.pdf.

Yu, C. N. J. and T. Joachims (2009), ‘Learning structural SVMs with

latent variables’. In: International Conference on Machine Learing

(ICML).

Yuille, A. (2005), ‘The Convergence of Contrastive Divergences’. In:

Conference on Neural Information Processing Systems (NIPS). pp.

1593–1600.

Yuille, A. L. (2002), ‘CCCP Algorithms to Minimize the Bethe and

Kikuchi Free Energies: Convergent Alternatives to Belief Propaga-

tion’. Neural Computation 14(7), 1691–1722.

Yuille, A. L. and A. Rangarajan (2003), ‘The concave-convex proce-

dure’. Neural Computation 15(4), 915–936.

Notations and Acronyms 175

Zhang, T. (2004), ‘Statistical behavior and consistency of classification

methods based on convex risk minimization’. Annals of Statistics

32(1), 56–85.

Zhu, S. C., Y. N. Wu, and D. Mumford (1998), ‘Filters, Random

Fields and Maximum Entropy (FRAME): Towards a Unified The-

ory for Texture Modeling’. International Journal of Computer Vision

(IJCV) 27(2), 107–126.

