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Abstract

This paper introduces a new formulation for discrete im-
age labeling tasks, the Decision Tree Field (DTF), that com-
bines and generalizes random forests and conditional ran-
dom fields (CRF) which have been widely used in computer
vision. In a typical CRF model the unary potentials are de-
rived from sophisticated random forest or boosting based
classifiers, however, the pairwise potentials are assumed to
(1) have a simple parametric form with a pre-specified and
fixed dependence on the image data, and (2) to be defined on
the basis of a small and fixed neighborhood. In contrast, in
DTF, local interactions between multiple variables are de-
termined by means of decision trees evaluated on the image
data, allowing the interactions to be adapted to the image
content. This results in powerful graphical models which
are able to represent complex label structure. Our key tech-
nical contribution is to show that the DTF model can be
trained efficiently and jointly using a convex approximate
likelihood function, enabling us to learn over a million free
model parameters. We show experimentally that for appli-
cations which have a rich and complex label structure, our
model achieves excellent results.

1. Introduction
The last decade has seen the meteoric rise in the use

of random field models in computer vision. Random
fields have been used to model many problems including
foreground-background (fg-bg) segmentation [4, 5], seman-
tic segmentation [13, 29], and a number of other computer
vision problems [31]. Many of these problems can be cast
as an image labeling problem, where we are given an image
x and need to predict labels y. Random fields provide a way
of factorizing the joint distribution p(x,y) or the posterior
distribution p(y|x) into a product of local interactions.

In the classic Markov random field (MRF) we obtain the
posterior distribution p(y|x) by integrating a per-pixel like-

lihood functions with pairwise consistency potentials ensur-
ing a smooth solution [9, 19]. One major advance in the
field was to make these smoothness cost dependent on the
local image structure [5], conditioning parts of the model on
the input data. In the last decade, these conditional random
field (CRF) models [17, 30, 13] have become popular for
their improved ability to capture the relationship between
labels and the image.

A lot of research effort has been devoted at the devel-
opment of efficient algorithms for estimating the Maxi-
mum a Posteriori (MAP) solution of such models [31, 15],
and the same is true for algorithms for probabilistic infer-
ence [36, 14]. The problem of parameter estimation in these
structured models has likewise been addressed [35, 30, 32].
However, despite these rapid developments, (most) state-of-
the-art random field CRF models continue to suffer from the
following limitations: (1) they are defined on the basis of a
fixed neighborhood structure (except the work of [16, 23]),
and (2) the potentials are assumed to have a simple para-
metric form with a pre-specified and fixed dependence on
the image data. While it is relatively easy to think of var-
ious ways to overcome these limitations, the key research
challenge is to suggest a model for which efficient and high-
quality training is still tractable.

This paper introduces a new graphical model, the De-
cision Tree Field (DTF), which overcomes the above-
mentioned limitations of existing models. We take a simple
yet radical view: every interaction in our model depends on
the image, and further, the dependence is non-parametric.
It is easy to see that even representing such a model is
extremely challenging, since there are numerous ways of
defining a mapping between the image and the parameters
of a unary or pairwise interaction in the graphical model.

Our model uses decision trees to map the image content
to interaction values. Every node of every decision tree in
our model is associated with a set of parameters, which are
used to define the potential functions in the graphical model.
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When making predictions on a novel test instance, the leaf
node of the decision tree determines the effective weights.

There are a number of important reasons for the choice
of decision trees to specify the dependence between poten-
tials and image content. Firstly, decision trees are non-
parametric and can represent rich functional relationships
if sufficient training data is available. Secondly, the training
of decision trees is scalable, both in the training set size and
in that the approach can be parallelized; recent advances
even allow training on graphics processors [26]. Since for
most computer vision applications it is well known that the
key to obtaining high predictive performance is the amount
of training data, many recent works use decision trees, or a
related variant of it (random Forests [6], extremely random-
ized trees [10], semantic texton forest [28]). In our context,
decision trees give another big advantage: they allow us to
efficiently and jointly learn all parameters in the model. We
achieve this by using a log-concave pseudo-likelihood ob-
jective function, which is known to work well given enough
training data because it is a consistent estimator [14].

Our Contributions
(1) To the best of our knowledge, we propose the first graph-
ical model for image labelling problems which allows all
potential functions to have an arbitrary dependence on the
image data.
(2) We show how the dependence between potential func-
tions and image data can be expressed via decision trees.
(3) We show how the training of the DTF model, which
involves learning of a large number of parameters, can be
performed efficiently.
(4) We empirically demonstrate that DTFs are superior to
existing models such as random forest and common MRFs
for applications with complex label interactions and large
neighborhood structures.

2. Related Work
There has been relatively little work on learning image-

dependent potential functions, i.e. the “conditional part” of
a random field. Most algorithms for learning the parameters
of a random field try to learn a class-to-class energy table
that does not depend on the image content [1, 2, 20, 32, 33].
However, there have been few attempts at learning the pa-
rameters of conditional potentials [8, 22, 12]. Recently,
Gould et al. [12] used a multiclass logistic regression classi-
fier on a set of manually selected features, such as the length
and orientation of region boundaries to obtain an image-
dependent learned model for pairwise interactions. Even
more recently, Cho et al. [8] proposed a model for image
restoration whose interactions were dependent on the se-
mantic meaning of the local image content as predicted by
a classifier. Unlike our work, all the above-mentioned mod-
els either target specific tasks, or assume a particular form

for the dependence of the potentials on the image content.
Neither of the above-mentioned approaches is able to learn
a dependency model with thousands or even millions of pa-
rameters which our model can achieve.

Decision trees are popularly used to model unary interac-
tions, e.g. [27]; but with two exceptions they have not been
used for pairwise or higher-order interactions. The first ex-
ception is the paper of Glesner and Koller [11], where de-
cision trees are used to model conditional probability tables
over many discrete variables in a Bayesian network. The
difference is that in [11] the decisions in the tree are eval-
uated on states of random variables, whereas in our work
we evaluate the image content and thus require no change
to the inference procedure.

The second exception is the “random forest random
field” [21]. Despite the similarity in name, the approach
is fundamentally different from ours. Instead of defining an
explicit model as we do in (2), Payet and Todorovic [21] de-
fine the model distribution implicitly as the equilibrium dis-
tribution of a learned Metropolis-Hastings Markov chain.
The Metropolis-Hastings ratio is estimated by classification
trees. This is a clever idea but it has a number of limitations,
i) at test-time there is no choice between different infer-
ence methods but one is bound to using inefficient Markov
Chain Monte Carlo (MCMC); in [21] superpixel graphs of
few hundred regions are used and inference takes 30 sec-
onds despite using advanced Swendsen-Wang cuts, and ii)
the model remains implicit, so that inspecting the learned
interactions as we will do in Section 5.3 is not possible.

In a broader view, our model has a richer representa-
tion of complex label structure. Deep architectures, such
as [18] and latent variable CRFs, as in [25], have the same
goal, but use hidden variables representing the presence of
larger entities such as object parts. While these models are
successful at representing structure, they are generally dif-
ficult to train because their negative log-likelihood function
is no longer convex. In contrast, by learning powerful non-
parametric conditional interactions we achieve a similar ex-
pressive power but retain convexity of the training problem.

3. Model
We now describe the details of our model. Throughout

we will refer to x ∈ X as a given observed image from the
set of all possible images X . Our goal is to infer a discrete
labeling y ∈ Y , where the labeling is per-pixel, i.e. we have
y = (yi)i∈V , yi ∈ L, where all variables have the same
label set L. We describe the relationship between x and
y by means of an energy function E that decomposes into
a sum of energy functions EtF

over factors F , where F
defines a subsets of variables. For example, for a pairwise
factor it is |F | = 2. We have

E(y,x,w) =
∑
F∈F

EtF
(yF , xF , wtF

). (1)



By yF we denote the collection (yi)i∈F , and likewise we
write xF to denote the parts of x contained in F . While
there may be many different subsets in F , we assume they
are of few distinct types and denote the type of the factor
F by tF . The function EtF

is the same for all factors of
that type, but the variables and image content it acts upon
differs. Furthermore, the function is parametrized by means
of a weight vector wtF

to be discussed below.
A visualization of a small factor graph model is shown

in Figure 2. It has three pairwise factor types (red, blue, and
green) and two unary factor types (black and turquoise).
All factors depend on the image data x. Figure 3 shows
the “unrolled” factor graph for an image of size 4-by-3 pix-
els, where the basic model structure is repeated around each
pixel i ∈ V , and pairwise factors which reach outside the
image range are omitted. In total we have |F| = 43 factors.

The energy function (1) defines a conditional probability
distribution p(y|x,w) as

p(y|x,w) =
1

Z(x,w)
exp(−E(y,x,w)), (2)

where Z(x,w) =
∑

y∈Y exp(−E(y,x,w)) is the normal-
izing constant. So far, our model is in the general form of
a conditional random field [17]. We now show how to use
decision trees for representing EtF

in (1).
With each function Et we as-
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Figure 1. Summation of
all energy tables along the
path of visited decision
nodes (shaded blue).

sociate one decision tree. To
evaluate EtF

(yF , xF , wtF
), we

start at the root of the tree, and
perform a sequence of tests s on
the image content xF , travers-
ing the tree to the left or right.
This process is illustrated in Fig-
ure 1. When a leaf node has been
reached, we collect the path of
traversed nodes from the root
node to the leaf node. With each
node q of the tree we associate a table of energy values
wtF

(q, yF ). Depending on the number of variables yF this
energy function acts on, the table can be a vector (unary),
a matrix (pairwise), or general k-dimensional array (higher
order). We sum all the tables along the path taken and com-
pute the energy as

EtF
(yF , xF , wtF

) =
∑

q∈Path(xF )

wtF
(q, yF ),

where Path(xF ) denotes the set of nodes taken during eval-
uating the tree. By using one set of weights at each node
we can regularize the nodes at the root of the tree to ex-
ert a stronger influence, affecting a large number of leaves;
at test-time we can precompute the summation along each
root-to-leaf path and store the result at each leaf.

To compute the overall energy (1) we evaluate EtF
for all

factors F ∈ F . Although the type tF might be the same, the
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Figure 2. Neighborhood struc-
ture around each pixel with
five different factor types.
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Figure 3. Unrolled factor graph
(image size 4-by-3 pixels), de-
pendencies on x and w are not
shown.

function EtF
depends on xF through the evaluation of the

decision tree. This allows image-dependent unary, pairwise,
and higher-order interactions. The set F is determined by
repeating the same local neighborhood structure for each
pixel, as shown in Figures 2 and 3.

In summary, our model consists of a set of factor types.
Each factor type contains, i) the number k of variables it
acts on and their relative offsets, ii) a single decision tree,
and iii) for each node in the decision tree, a table of energies
of size Lk. Given a new image x, for each possible labeling
y we can evaluate E(y,x,w) by the above procedure.

3.1. Relation to other Models

The proposed DTF generalizes a number of popular ex-
isting image labeling methods. If we ignore pairwise and
higher-order interactions in (1), then the variables are inde-
pendent and making predictions for each pixel is the same
as evaluating a random forests, as used in e.g. [28, 34]. In-
terestingly, as we will show in the experiments, even in this
setting we still slightly outperform standard random forests
since we learn the weights in each decision node instead
of using empirical histograms; this novel modification im-
proves predictive performance without any test-time over-
head compared to random forests. For pairwise interactions
we generalize simple CRFs with contrast-sensitive pairwise
potentials such as in [5, 4], the GrabCut system [24], and
TextonBoost [29]. Finally, if for the pairwise interactions
we use decision trees of depth one, such that these interac-
tions do not depend on the image content, then our model
becomes a classic Markov random field prior [19].

4. Learning Decision Tree Fields

Learning the model involves selecting the neighborhood
structure, the decision trees, and the weights stored in the
decision nodes. During learning we are given an iid set
{(xm,y∗m)}m=1,...,M of images xm and ground truth la-
belings y∗m. Our goal is to estimate the parameters w of
our model such as to predict y∗m for a given xm. For sim-
plifying the derivation of the learning method, we can treat
the given set of images as if it would be one large collection



of pixels as is done in [30].

4.1. Maximum Likelihood Learning

For learning the parameters of our model, we need to
elaborate on how the parameters w define the energy. One
important observation is that for a fixed set of decision trees
the energy function (1) can be represented such that it is
linear in the parameters w. To see this, consider a sin-
gle EtF

(yF , xF , wtF
) function and define a binary indicator

function

BtF
(q, z; yF , xF ) =

{
1 if q ∈ Path(xF ) and z = yF ,
0 otherwise.

Then, we can write the energy EtF
(yF , xF , wtF

) equiva-
lently as a function linear in wtF

,∑
q∈Tree(tF )

∑
z∈YF

wtF
(q, z)BtF

(q, z; yF , xF ). (3)

The use of decision trees allows us to represent non-linear
functions on x. Although non-linear in x, by the represen-
tation (3) we can parametrize this function linearly in wtF

.
Then, from (3) we see that the gradient has a simple form,
∇wtF

(q,z)EtF
(yF , xF , wtF

) = BtF
(q, z; yF , xF ).

Because (1) is linear in w, the log-likelihood of (2)
is a concave and differentiable function in w [14, Corol-
lary 20.2]. This means that if computing Z(x,w) and the
marginal distributions p(yF |x,w) for all F ∈ F would be
tractable, then learning the parameters by maximum likeli-
hood becomes a convex optimization problem.

We now show how to use efficient approximate likeli-
hood methods to learn all parameters associated to the de-
cision trees from training data. For now we assume we are
given a fixed set of factor types, including decision trees, but
have to learn the weights/energies associated to the nodes of
the trees. We will discuss how to learn trees later.

4.2. Pseudolikelihood

The pseudolikelihood [3] defines a surrogate likelihood
function that is maximized. In contrast to the true likelihood
function computing the pseudolikelihood is tractable and
very efficient. The pseudolikelihood is derived from the per-
variable conditional distributions p(yi|y∗V\{i},x,w). By
defining `i(w) = − log p(yi|y∗V\{i},x,w) we can write the
regularized negative log-pseudolikelihood `npl(w) as the
average `i over all pixels,

`npl(w) =
1
|V|

∑
i∈V

`i(w)− 1
|V|

∑
t

log pt(wt), (4)

where pt(wt) is a prior distribution over wt used to reg-
ularize the weights. We will use multivariate Normal dis-
tributions N (0, σtI), so that − log pt(wt) is of the form

1
2σ2

t
‖wt‖2 + Ct(σt) and the constant Ct(σt) can be omit-

ted during optimization because it does not depend on w.

For each factor type t the prior hyperparameter σt > 0 con-
trols the overall influence of the factor and we need to select
a suitable value by means of a model selection procedure
such as cross validation.

Function (4) is convex, differentiable, and tractably com-
putable. For optimizing (4) we use the L-BFGS numerical
optimization method [37]. To use L-BFGS we need to it-
eratively compute `i(w) and the gradient ∇wt

`i(w). The
computation of `i(w) and ∇wt`i(w) is straightforward and
yields the expressions shown in Figure 4, where we use
M(i) to denote the subset ofF that involves variable yi, and
Mt(i) likewise but restricted to factors of matching type, i.e.
Mt(i) = {F ∈ M(i) : tF = t}. By summing (5) and (6)
over all pixels in all images, we obtain the objective and its
gradient, respectively. When initializing the weights to zero
we have approximately ‖∇w`npl(w)‖ ≈ 1. During opti-
mization we stop when ‖∇w`npl(w)‖ ≤ 10−4, which is
the case after around 100-250 L-BFGS iterations, even for
models with over a million parameters.

4.3. Learning the Tree Structure

Ideally, we would like to learn the neighborhood struc-
ture and decision trees jointly with their weights using a sin-
gle objective function. However, whereas the weights are
continuous, the set of decision trees is a large combinatorial
set. We therefore propose to use a simple two-step heuristic
to determine the decision tree structure: we learn the clas-
sification tree using the training samples and the informa-
tion gain splitting criterion. This greedy tree construction
is popular and known to work well on image labeling prob-
lems [28]. The key parameters are the maximum depth of
the tree, the minimum number of samples required to keep
growing the tree, and the type and number of split features
used. As these settings differ from application to applica-
tion, we describe them in the experimental section. Unlike
in a normal classification tree, we store weights at every de-
cision node and initialize them to zero, instead of storing
histograms over classes at the leaf nodes only.

The above procedure is easily understood for unary inter-
actions, but now show that it can be extended in a straight-
forward manner to learn decision trees for pairwise factors
as well. To this end, if we have a pairwise factor we con-
sider the product set L × L of labels and treat each label
pair (l1, l2) ∈ L×L as a single class. Each training pair of
labels becomes a single class in the product set. Given a set
of such training instances we learn a classification tree over
|L|2 classes using the information gain criterion. Instead of
storing class histograms we now store weight tables with
one entry per element in L × L. The procedure extends to
higher-order factors in a straightforward way.

Once the trees are obtained, we set all their weights to
zero and optimize (4). During optimization the interaction
between different decision trees is taken into account. This



`i(w) =
∑

F∈M(i)

EF (y∗F ,x, wtF
) + log

∑
yi∈Yi

exp
(
−

∑
F∈M(i)

EF (yi, y
∗
V\{i},x, wtF

)
)
, (5)

∇wt
`i(w) =

∑
F∈Mt(i)

∇wtEF (y∗,x, wt)− Eyi∼p(yi|y∗V\{i},x,w)

[ ∑
F∈Mt(i)

∇wtEF (yi, y
∗
V\{i},x, wt)

]
. (6)

Figure 4. Objective and gradient expressions around a single variable i ∈ V for minimizing the negative log-pseudolikelihood.

is important because the tree structures are determined in-
dependently and if we were to optimize their weight inde-
pendently as well, then we would suffer from overcount-
ing labels during training. The same overcounting problem
would occur if we would want to use the class histograms at
the leaf nodes directly, for example by taking the negative
log-probability as an energy.

4.4. Complexity of Training

The complexity to compute the overall objective (4) and
its gradient is O(|V| · |L| ·N), where V is the set of pixels
in the training set, L is the label set, and N is the number
of factors in the neighborhood structure. Note that this is
linear in all quantities, and independent of the order of the
factors. This is possible only because of the pseudolike-
lihood approximation. Moreover, it is even more efficient
than performing a single sweep of message passing in loopy
belief propagation, which has complexity O(|V| · |L|k ·N)
for factors of order k ≥ 2.

4.5. Making Training Efficient

Training a graphical model on millions of pixels is com-
putationally challenging. We have two principled methods
to make training efficient.

First, observe that our training procedure parallelizes in
every step: we train the classification trees in parallel [26].
Likewise, evaluating (4) and its gradient is a large summa-
tion of independent terms, which we again compute in par-
allel with no communication overhead.

The second observation is that every step in our training
procedure can be carried out on a subsampled training set.
For classification trees we can process a subset of pixels, as
in [28]. Less obvious, we can do the same thing when opti-
mizing our objective (4). The first term in equation (4) takes
the form of an empirical expectation Ei∼U(V)[`i(w)] that
can be approximated both deterministically or by means of
stochastic approximation. We use a deterministic approxi-
mation by selecting a fixed subset V ′ ⊂ V and evaluating
`′npl(w) = 1

|V′|
∑

i∈V′ `i(w)− 1
|V′|

∑
t log pt(wt). We se-

lect V ′ to be large enough so this computation remains effi-
cient; typically V ′ has a few million elements.1

1When sampling V ′ uniformly at random with replacement from V , the
law of large numbers guarantees the asymptotic correctness of this approx-
imation.

4.6. Inference

We use different inference methods during test-time. For
making maximum posterior marginal predictions (MPM)
we use an efficient Gibbs sampler. Because the Gibbs sam-
pling updates use the same quantities as used for comput-
ing (5) we do not have to unroll the graph. For obtaining
approximate MAP predictions, we use the Gibbs sampler
with simulated annealing (SA), again exploiting the model
structure. Both the Gibbs sampler and the SA minimiza-
tion is explained in the supplementary materials. To have
a baseline comparison, we also minimize (1) using tree-
reweighted message passing (TRW) by unrolling the factor
graph and using the implementation of [15].

5. Experiments
We considered a broad range of applications and report

experiments for three data sets. One more experiment is
reported in the supplementary materials. The aim is to show
that the DTF enables improved performance in challenging
tasks, where a large number of interactions and parameters
need to be considered and these cannot be manually tuned.
Moreover, we show that conditional pairwise interactions
better represent the data and lead to improved performance.
As the three datasets are quite diverse, they also show the
broad applicability of our system.

5.1. Conditional Interactions: Snake Dataset

In this experiment we construct

Figure 5. Input (left),
labelling (right).

a task that has only very weak lo-
cal evidence for any particular label
and structural information needs to
be propagated at test-time in order
to make correct predictions. More-
over, this structure is not given but
needs to be learned from training
data. Consider Figure 5 to the right, illustrating the task.
A “snake” shown on the input image is a sequence of ad-
jacent pixels, and the color in the input image encodes the
direction of the next pixel: red means “go north”, yellow
means “go east”, blue means “go west”, and green means
“go south”. Once a background pixel is reached, the snake
ends. Each snake is ten pixels long, and each pixel is as-
signed its own label, starting from the head (black) to the tail
(white), with the background taking its own label (green).
Knowing about these rules, the labelling (Figure 5, right)



can be perfectly reconstructed. Here, however, these rules
need to be learned from training instances. Of course, in a
real system the unary interactions typically provide strong
cues [29, 2], but we believe that the task distills the limi-
tations of noisy unary interactions: in this task, for making
perfect predictions, the unary would need to learn about all
possible snakes of length ten, of which there are very many.

We use a standard 4-neighborhood for both the MRF and
the DTF models. The unary decision trees are allowed to
look at every pixel in the input image, and therefore could
remember the entire training image. For experimental de-
tails, please see the supplementary materials. We use a
training set of 200 images, and a test set of 100 images.

The results obtained are shown in Table 1 and Figure 6.
Here random forests (RF), trained unary potentials (Unary),
and the the learned Markov random field (MRF) perform
equally well, at around 91%. Upon examining this perfor-
mance further, we discovered that while the head and tail
labels are labelled with perfect accuracy, towards the mid-
dle segments of the snakes the labelling error is highest, see
Table 1. This is plausible, as for these labels the local evi-
dence is weakest. When using conditional pairwise interac-
tions the performance improves to an almost perfect 99.4%.
This again makes sense because the pairwise conditional
interactions are allowed to peek at the color-codes at their
neighbors for determining the directionality of the snake.

RF Unary MRF DTF
Accuracy 90.3 90.9 91.9 99.4
Accuracy (tail) 100 100 100 100
Accuracy (mid) 28 28 38 95

Table 1. Test set accuracies for the snake data set.

The predictions are illustrated for a single test instance
in Figure 6. We see that only the DTF makes a perfect pre-
diction. To show the uncertainty of the unary model, we
visualize two samples from the model.

Figure 6. Predictions on a novel test instance.

5.2. Learning Calligraphy: Chinese Characters

In the previous experiment we have used a standard 4-
connected neighborhood structure. In this experiment we
show that by using larger conditional neighborhoods we
are able to represent shape. We use the KAIST Hanja2
database of handwritten Chinese characters. We occlude
each character by grey box centered on the image, but with
random width and height. For more details, please see
the supplementary materials. This is shown in the left-
most column of Figure 7. We consider two datasets, one

where we have a “small occlusion” and one with a “large
occlusion” box. Note that most characters in the test set
have never been observed in the training set, but a model
that has learned about shape structure of Chinese charac-
ters can still find plausible completions of the input im-
age. To this end we use one unary factor with a decision
tree of depth 15. Additionally, we use a dense pairwise
neighborhood structure of 8-connected neighbors at one
and two pixels distance, plus a sparse set of 27 neighbors
at {(−9, 0), (−9, 3), (−9, 6), (−9, 9), (−6, 0), . . . , (9, 9)}.
Therefore, each variable has 2 · (24+4+4) = 64 neighbor-
ing variables in the model. For the pairwise decision trees
we use trees of depth one (MRF), or six (DTF).

Figure 7. Test set predictions for the large occlusion case.

The results for the large oc-
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Figure 8. Pairwise asso-
ciativity strength. Please
see text.

clusion task are shown in Fig-
ure 7. Qualitatively, they show
the difference between a rich
connectivity structure and condi-
tional interactions. Observe, for
example, that the MRF essen-
tially performs only a smoothing
of the results while respecting
local stroke-width constraints, as
apparent from the MRF MAP
prediction in the first row of Figure 7. In contrast, the DTF
predictions hallucinate meaningful structure that may be
quite different from the ground truth but bears similarity to
Chinese characters. Note that we achieve this rich structure
without the use of any latent variables. Because this task is
an inpainting task, the quantitative assessment is more dif-
ficult since the task is truly ambiguous. We therefore report
accuracies only for the small-occlusion case, where a rea-
sonable reconstruction of the ground truth seems more fea-
sible. We measure the per-pixel accuracy in the occluded
area on the test set. For the random forest baseline we ob-
tain 67.74%. The MRF with dense neighborhood improves
this to 75.18% and the DTF obtains 76.01%.

As an example of what structure the model is able to
learn, consider the visualization of the MRF pairwise inter-



Figure 9. Test set recognition results on the training set of 30 im-
ages. We show MRF (top) and DTF (bottom) results.

actions shown in Figure 8. The figure shows for each pair-
wise interaction the sum of learned diagonal energies minus
the sum of cross-diagonal entries. If this value is negative
(shown in blue) the interaction is encouraging the pixels to
take the same value. Red marks interactions that encourage
pixels to take different values. The plot shows that there is a
strong local smoothing term, but interestingly it is not sym-
metric. This can be explained by the fact that horizontal
strokes in Chinese characters are typically slanted slightly
upwards [7]. Note that we discovered these regularities au-
tomatically from the training data.

5.3. Accurate body-part detection

We consider the task of body part classification from
depth images, as recently proposed in [27]. Given a 2D
depth image, and a foreground mask, the task is to label
each pixel as belonging to one of 31 different body parts,
as shown in Figure 9. Despite the variations in pose and
body sizes [27] obtains high-quality recognition results by
evaluating a random forest for each pixel, testing local and
global depth disparities. In this task, the label set has a large
amount of structure, but it is not clear that a sufficiently
complex unary classifier, when given the image, cannot im-
plicitly represent this structure reasonably well. Here we
show that by adding pairwise interactions we in fact im-
prove the recognition accuracy. Moreover, once we make
the interactions conditional, accuracy further improves.

The experimental setup is as follows. We use two sub-
sets of the annotated data of [27] for training: 30 depth im-
ages, and 1500 depth images. In both cases we use a fixed
separate set of 150 depth images for testing. We train 4
unary decision trees for all models. For the pairwise mod-
els, we use the following neighborhood sizes, i) “+1” for
adding a 4-neighborhood one pixel away, ii) “+5” for an 8-
neighborhood five pixels away, and iii) “+20” when adding
an 8-neighborhood twenty pixels away. In the “+1,5,20”
configuration, each variable has 4+8+8=20 neighbors. For
each of the pairwise interactions we train two trees of depth
six. We measure the results using the same mean per-class
accuracy score as used in [27].

The results for 30 and 1500 training images are shown in

Table 2 and one instance is shown in Figure 9. Even with-
out adding pairwise interactions, our learned unary weights
already outperform the random forest classifier [27]. When
adding more interactions (+1, +1,20, +1,5,20), the perfor-
mance increases because dense pairwise interactions can
represent implicit size preferences for the body parts. Like-
wise, when adding conditionality (MRF to DTF), the per-
formance improves. The best performing model is our DTF
with large structure (+1,5,20) and almost 1.5 million free
parameters. It is trained in only 22 minutes and achieves
27.35% mean per-class accuracy. For the same setup of 30
and 1500 training images, the original work [27] reports
mean per class accuracies of 14.8% (30 train) and 34.4%
(1500 train), but reports an impressive 56.6% with 900k
training images, trained for a day on a 1000 core cluster.

An example of a learned pairwise interaction is shown in
Figure 10, demonstrating that the improved performance of
the DTF can be attributed to the more powerful interactions
that are allowed to take the image into account. We report
more results in the supplementary materials.

Model Measure [27] unary +1 +1,20 +1,5,20
MRF avg-acc 14.8 21.36 21.96 23.64 24.05
30 runtime 1m 3m18 3m38 10m 10m

weights - 176k 178k 183k 187k
DTF avg-acc - - 23.71 25.72 27.35
30 runtime - - 5m16 17m 22m

weights - - 438k 951k 1.47M
MRF avg-acc 34.4 36.15 37.82 38.00 39.30
1500 runtime 6h34 * * * (30h)∗

weights - 6.3M 6.2M 6.2M 6.3M
DTF avg-acc - - 39.59 40.26 41.42
1500 runtime - - * * (40h)*

weights - - 6.8M 7.8M 8.8M

Table 2. Body-part recognition results: mean per-class accuracy,
training time (4 cores, 8 threads), and number of parameters. (*)
We did not obtain reliable runtimes for the 1500 image runs, as
multiple jobs have been running in parallel on the machines used.

6. Conclusion
We have introduced Decision Tree Fields as flexible

and accurate models for image labeling tasks. This accu-
racy is achieved by being able to represent complex image-
dependent structure between labels. Most importantly, this
expressiveness is achieved without the use of latent vari-
ables and therefore we can learn the parameters of our
model efficiently by minimizing a convex function.
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