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Abstract. Recent progress in per-pixel object class labeling of natural
images can be attributed to the use of multiple types of image features
and sound statistical learning approaches. Within the latter, Conditional
Random Fields (CRF) are prominently used for their ability to repre-
sent interactions between random variables. Despite their popularity in
computer vision, parameter learning for CRFs has remained difficult,
popular approaches being cross-validation and piecewise training.
In this work, we propose a simple yet expressive tree-structured CRF
based on a recent hierarchical image segmentation method. Our model
combines and weights multiple image features within a hierarchical rep-
resentation and allows simple and efficient globally-optimal learning of
≈ 105 parameters. The tractability of our model allows us to pose and
answer some of the open questions regarding parameter learning apply-
ing to CRF-based approaches. The key findings for learning CRF models
are, from the obvious to the surprising, i) multiple image features always
help, ii) the limiting dimension with respect to current models is the
amount of training data, iii) piecewise training is competitive, iv) current
methods for max-margin training fail for models with many parameters.

1 Introduction

Computer vision increasingly addresses high-level vision tasks such as scene un-
derstanding, object class image segmentation, and class-level object recognition.
Two drivers of this development have been the abundance of digital images and
the use of statistical machine learning models. Yet, it remains unclear what
classes of models are suited best to these tasks. Random field models [1, 2] have
found many applications due to their ability to concisely express dependencies
between multiple random variables, making them attractive for many high-level
vision tasks. Parameter learning in these rich models is essential to find from
a large set of possible candidates the model instance that best explains the ob-
served data and generalizes to unseen data. Despite the importance of parameter
learning, current applications of random fields in computer vision sidestep many
issues, making assumptions that are intuitive, but largely heuristic. The reason
for this gap between principled modeling and use of heuristics is the intractability
of many random field models, which makes it necessary use approximations.
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To shed light on the currently used practices we take the task of object class
image segmentation and propose a simple, yet expressive hierarchical multi-scale
CRF model in which parameter learning can be analyzed in isolation.

In our model, parameter learning is tractable, allowing us to experimentally
address the following open questions regarding conditional random fields for
object class image segmentation: 1. What is the effect of combining multiple
image features on the resulting model performance? 2. How does the size of the
training set and the accuracy of optimizing the training objective influence the
resulting performance? 3. Is it better to learn the models part-by-part (piecewise)
or jointly? 4. Does maximum margin training offer an advantage over maximum
likelihood estimation?

Outline. We first describe random fields in Section 2. In Section 3 we discuss the
current computer vision literature on parameter learning in CRFs. Our novel
model is introduced in Section 4 and we report experiments in Section 5.

2 Learning Random Fields

In this section we review basic results about random field models, factor de-
sign and define the problems that need to be solved to perform prediction and
parameter learning.

2.1 Random Field Models and Factor Graphs

Discrete random field models, also known as Markov networks, are a popu-
lar model to describe interacting variables [2]. In particular we will focus on
conditional random fields (CRF) [3, 4]. For a set Y = {Y1, . . . , YV } of random
variables, each taking values in a label set Y = {1, . . . , C}, a set of observation
variables X = {X1, . . . , XW }, and a parameter vector w ∈ RD, a conditional
random field specifies a probability distribution as

p(Y = y|X = x,w) =
1

Z(x,w)
exp(−E(y;x,w)), (1)

where E(y;x,w) is an energy function and Z(x,w) =
∑

y∈YV exp(−E(y;x,w))
is a normalizing constant known as partition function [1]. The energy function
is specified in terms of log-potential functions, also known as log-factors. Let
F ⊆ 2V ×2W be a set of subsets of the variables. Then F specifies a factorization
of (1), or equivalently an additive decomposition of the energy function as

E(y;x,w) =
∑
F∈F

EF (yF ;xF ,w), (2)

where yF and xF denote the restrictions of Y and X to the elements appearing in
F , respectively. The energy function EF operates only on the variables appearing
in the set F .
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The factorization is often given implicitly by means of an undirected graphical
model [1]. For all practical purposes, it is more convenient to directly specify F
used in (2) in terms of a factor graph [5]. For each element F ∈ F , a factor
graph contains a factor node (drawn as �), which is connected to all variable
nodes (drawn as ©) that are members of F . The factor graph compactly defines
F in (2). An example is shown in Figure 2 (page 6).

In order to fully specify the random field model, the form of the individ-
ual terms EF (yF ;xF ,w) in the summation (2) has to be defined. Each term
corresponds to one factor F in the factor graph and specifies the local inter-
actions between a small set of random variables. In practice the different fac-
tors have one of a few different roles such as incorporating observations into
the model or enforcing a consistent labeling of the variables. Therefore, clique
templates [4] (also known as parameter tying) are used, replicating parame-
ters across groups of factors with the same purpose. We let T = {1, . . . , |T |}
denote a small set of different factor purposes and split the parameter vec-
tor as w = (w>

1 , . . . ,w>
|T |)

>, then the energy of each factor can be written

as E
t(F )
F (yF ;xF ,wt(F )), where t(F ) is the type of the factor. As an additional

notation, let µF ∈ {0, 1}YF

be a set of binary indicator variables indexed by
yF ∈ YF and let µF (yF ) ∈ {0, 1} be one if YF = yF , zero otherwise. Let the
scalar θF,yF

(xF ,wt(F )) = E
t(F )
F (yF ;xF ,wt(F )) be the evaluated energy when

YF = yF . By suitably concatenating all µF , θF we can rewrite the energy (2) as
the inner product 〈θ(x,w),µ〉. Because this form is linear, the distribution (1)
is an exponential family distribution [1] with sufficient statistics µ and so called
canonical parameters θ(x,w).

What is left to do is to give the form of the feature function θF (xF ,wt(F ))
for all factor types t(F ) ∈ T . As we will see below an important requirement for
efficient parameter learning is that the energy function is linear in w. The energy
function E

t(f)
F related to one factor F is already a linear function in the output

of the feature function θF : XF ×RDt(F ) → RYF

. Therefore, the energy will only
be linear in w if we make the feature function also a linear function in its second
argument w. To this end, we will write θF (xF ,wt(F )) = H

t(F )
F (xF )wt(F ), where

H
t(F )
F (xF ) is a linear map from RDt(F ) onto RYF

, mapping the parameters wt(F )

to energies. Due to the identity E
t(F )
F (yF ;xF ,wt(F )) = 〈θF (xF ,wt(F )), µF (yF )〉 =

〈Ht(F )
F (xF )wt(F ), µF (yF )〉 = 〈wt(F ), φ(xF ,yF )〉 we can make explicit the lin-

earity in both wt(F ) and µF (yF ), where φ(xF ,yF ) = µF (yF )Ht(F )
F (xF ) is also

known as joint feature map in the CRF literature. Why is this important? Lin-
earity in w leads to convex learning problems (so that local optimality implies
global optimality); linearity in µ leads to an exponential family distribution.

2.2 Inference Problems

The random field model is now fully specified and we can consider inference and
learning tasks. The two tasks of our interest are the test-time prediction task,
labeling an image with a likely segmentation, and the parameter learning task
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in which we have fully annotated training data and want to estimate a good
parameter vector w. In computer vision, predictions are most often made by
solving an energy minimization problem as follows.

Problem 1 (MAP-MRF Labeling Problem). Given an observation x and a pa-
rameter vector w, find the y ∈ YV that maximizes the aposteriori probability
p(y|x,w), that is, solve

y∗ = argmax
y∈YV

p(y|x,w) = argmin
y∈YV

E(y;x,w).

For general factor graphs this problem is NP-hard [2].
To address the parameter learning problem we use the principle of maximum

likelihood to find a point estimate for w. We now define the estimation problem
but in Section 5.4 make connections to maximum-margin procedures.

Problem 2 (Regularized CML Estimation (CMLE)). Given a set of N fully ob-
served independent and identically distributed (iid) instances {(xn,yn)}n=1,...,N

and given a prior p(w) over RD, find w∗ ∈ RD with maximum regularized con-
ditional likelihood, that is, solve

w∗ = argmax
w∈RD

p(w)
N∏

n=1

p(yn|xn,w)

= argmax
w∈RD

[
1
N

log p(w)− 1
N

N∑
n=1

(E(yn;xn,w) + log Z(xn,w))

]
. (3)

From the fact that E(yn;xn,w) is a linear function in w it follows [2, section
20.3.2] that the log-likelihood (3) is a concave differentiable function in w and
therefore w∗ can be found using gradient descent. In the case that log p(w) is
strictly concave in w, (3) has a unique maximizer. Despite this, it is hard to
solve Problem 2 for general factor graphs. The reason is that evaluating (3) for
a given w requires computing the partition function Z(xn,w) for each sample,
a task involving summation of an exponential number of terms.

In our model presented in Section 4 we therefore consider tree-structured fac-
tor graphs. These are by definition acyclic and the partition function can be com-
puted efficiently by rearranging the exponential number of terms as a recursion
along the tree. This algorithm for computing log Z(xn,w) and ∇w log Z(xn,w)
is known as sum-product algorithm [5]. Likewise, for tree-structured factor graphs
we can efficiently solve the MAP-MRF problem by the max-product algorithm.

3 Literature Review

Literature on CRF-based object class segmentation. CRF-based approaches to
object class image segmentation can be distinguished by what kind of factors
they use (unary, pairwise, higher-order factors), the model capacity, that is, how
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many free parameters they have, how the model structure is defined (pixel grid,
superpixels, etc.) and how the parameter learning is performed.

Regarding the representation, the main lines are pixel- or pixel-blocks based
approaches [6–11], superpixel-based representations [12–14], superpixel hierar-
chies [15, 16], and hybrid (both pixels and superpixels) representations [17–19].

For parameter learning, most works cited before use a form of piecewise train-
ing or cross validation on one to five hand-chosen parameters. Models in which
joint parameter learning is performed are rare and often use an approximation,
such as loopy BP in [14, 11], pseudolikelihood in [9], and contrastive divergence
in [10]. Pincipled max-margin learning is performed in [6, 12, 19].

Literature on comparing learning methods for CRFs. Because we address the ef-
fect of different parameter learning methods, let us summarize existing compar-
isons of parameter learning methods. Kumar et al. [20] compare a large number
of approximate CRF learning methods on a synthetic binary low-level vision task
with four parameters. Similar experiments on the same dataset have been done
by Korc and Förstner [21]. The excellent study of Parise and Welling [22] com-
pares learning methods for generative binary non-vision MRF models with fixed,
non-replicated structure. Finley and Joachims [23] compare learning methods for
intractable MRF models advocating max-margin learning on relaxations.

Importance of tree-based models. Many early models for low-level vision were
based on tree-structured generative MRFs (for an extensive survey see [24]),
where the structure of the tree is fixed and simple, such as a quad-tree on a 2D
grid. The use of tree-structured models for high-level vision tasks is much less
common. One reason is that we now have efficient algorithms for MAP infer-
ence for certain potential functions for graphs of arbitrary structure. This offers
more modeling freedom on the graph structure while restricting the potential
function class. But recently there seems to be reconsideration of tree-based hi-
erarchical models for high-level vision tasks where the tree structure is adapted
to the image content [15, 16, 25]. Infact, even the more complex hybrid models
listed above [17–19] base their multi-scale structure on a hierarchical tree of
superpixels. Whereas obviously tree-based models are a restricted model class,
the ability to learn arbitrary potential functions and the adapted nature of the
tree structure to the image content offer drastic improvements over the early
tree-based models considered before [24].

Lim et al. [25] is closest to our approach: a segmentation hierarchy is used as
a multi-scale model for object class image segmentation. For each image region
a linear classifier is learned, using features derived from the hierarchy. The main
drawbacks of the otherwise sensible approach are the lack of pairwise interactions
between image regions and the use of an adhoc test-time prediction function.

4 Model

We now define a tree-structured model for object class image segmentation.
The model is naturally multi-scale and adapted to the image content. Due to
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Fig. 1. Illustration of a hierarchical UCM
segmentation. The hierarchy ranges from
a superpixel partitioning at the leaf level
to the entire image at the root. Each
node’s image region is shaded in green.
(Figure best viewed in color.)
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Fig. 2. Tree-structured factor graph CRF
induced by the hierarchical segmentation.
Each shaded segment r in Figure 1 has an
observation variable Xr (drawn shaded)
and a class variable Yr. Factors (drawn
as �) encode interactions.

its tree structure, test-time image labeling as well as joint parameter learning
are tractable. The tractability allows us to answer for the first time important
questions regarding modeling choices, such as: What is the required image gran-
ularity for object class image segmentation? How to parametrize and learn the
factors? What limits the current model performance? Is joint parameter learning
superior to piecewise training?

The model is based on the recent ultrametric contour maps (UCM) hierar-
chical segmentation method of Arbeláez [26]. We use the UCM segmentation to
define a tree structured factor graph. The factors are then suitably parametrized
such that parameter estimation from training data can be performed. This idea
is illustrated in Figures 1 and 2. In Figure 1 we illustrate the output of the UCM
method: a segmentation tree that recursively partitions the image into regions.
The leaves of the segmentation tree form a superpixel segmentation of the image,
whereas interior nodes represent larger image regions. Ideally object instances –
such as the car in the Figure 1 – are eventually represented by a single interior
node. We use the structure of the segmentation tree to define a factor graph as
shown in Figure 2. The shaded nodes correspond to image information observed
for each image region, whereas the white nodes represent the class variables
to be predicted, one for each region. The factor nodes (drawn as �) link both
observation and class variables, as well as pairs of class variables.

Because the hierarchical model structure is based on the UCM segmenta-
tion, it is naturally adapted to the image content. Moreover, it is a multi-scale
representation of the image [26]. Our factor-graph can concisely represent a
probability distribution over all possible labelings.

In next three subsections we discuss the choice of superpixel granularity, how
to parametrize factors and how to perform training and prediction.
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Fig. 3. Upper bound on the achiev-
able VOC 2009 segmentation accuracy
as a function of the preserved UCM
edge strength. The left axis (solid,
blue) shows the accuracy, the right axis
(dashed, green) shows the mean num-
ber of superpixels per image. For each
curve one unit standard deviations over
the 749 training images is shown.

Fig. 4. Visualization of the superpixels of
the hierarchical segmentation. Shown are
examples from the VOC 2009 segmenta-
tion set, with the chosen edge pruning pa-
rameter of 40, leading to an average of
≈ 100 superpixels and ≈ 200 tree nodes
per image.

4.1 Experiment: How many Superpixels?

When using a fixed precomputed representation of the image such as superpixels,
it is fair to ask how much representational power is lost in the process: because
we associate one discrete random variable with each superpixel, an error on this
representational level cannot be corrected later.

To determine this trade-off, we produce UCM segmentations using the code
of Arbeláez [26] for the 749 images in the PASCAL VOC 2009 segmentation
challenge [27]. By thresholding the obtained UCM maps at increasing values we
obtain a set of successively coarser hierarchical segmentations. For each threshold
we evaluate the maximum achievable accuracy if we could label all leaves of the
segmentation tree knowing the ground truth pixel labeling.

The results are shown in Figure 3. Even with a relatively small average num-
ber of superpixels the segmentation accuracy is above 70%. While this number
appears to be low, it can be put into perspective by recognizing that the cur-
rently best state-of-the-art segmentation models applied to the VOC 2009 data
set – including non-CRF approaches and methods trained on substantially more
training data – achieve 25− 36% using the same evaluation measure [27]. Gould
et al. [13] carried out a similar experiment on the MSRC and Sowerby data sets,
and their results agree with our observations. For the following experiments we
choose a pruning edge strength of 40, yielding an average of ≈ 100 superpixels
per image and a maximum achievable accuracy of ≈ 90%. For this choice, Fig-
ure 4 shows typical example segmentations for the VOC 2009 images. For each
image shown, the achievable accuracy is between 89.7% and 90.3%.
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4.2 Features and Factors

We now describe how to parametrize the factors used in our model, starting with
the unary observation factors.

YiXi

exp(−E1
{Xi,Yi}(yi; xi, w1))

Fig. 5. Unary energy
E1
{Xi,Yi}(yi; xi, w1).

Yi

Yj

exp(−E2
{Yi,Yj}(yi, yj; w2))

Fig. 6. Pairwise data-independent en-
ergy E2

{Yi,Yj}(yi, yj ; w2).

Unary observation factors. The most important factors, the unary observation
factors, describe the interaction between the image content and the variables
of interest. We use multiple image features representing appearance statistics
based on shape, color and texture to span a rich feature space describing an
image region. As shown in Figure 5 and described in Section 2.1, the unary
energy takes the following general form

E1
{Xi,Yi}(yi;xi,w1) = 〈θ1

{Xi}(xi,w1),µ{Yi}〉 = 〈H1
{Xi}(xi)w1,µ{Yi}〉.

Within this form, we define H1
{Xi}(xi) as the concatenation of multiple image fea-

tures. In particular, we define H1
{Xi}(xi) = (fSIFT(xi), fQHOG(xi), fQPHOG(xi),

fSTF(xi))>, where each fa is an image feature related to the image region as-
sociated with Xi. As image features fa : X → RDa we use the following:
a ∈ A = {SIFT,QHOG,QPHOG,STF}, where SIFT are normalized bag-of-
words histograms of quantized scale-invariant feature points (DSIFT = 512). The
QHOG features are soft-quantized histogram of oriented gradient vectors of the
image content within a bounding box of the image region Xi (DQHOG = 512).
Similarly, the QPHOG features are soft-quantized pyramid of histogram of ori-
ented gradient features of the black-and-white mask describing the image region
Xi (DQPHOG = 512). The STF features are normalized histograms of semantic
texton forest responses within the image regions [28] (DSTF = 2024). For the
above features w1 ∈ RD×Y , where D =

∑
a∈A Da = 3560, such that w1 in total

has C ·D elements. The SIFT and STF features model general image statistics
in the region Xi, whereas the QHOG and QPHOG features are responses to a
template of shapes and appearances obtained by clustering the training data. If
the hierarchical segmentation contains a region that describes an object instance,
we hope to obtain a high response in these features. More details regarding the
features used are available in the supplementary materials.
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Data-independent pairwise factor. The pairwise factor shown in Figure 6 models
the interaction of labels (Yi, Yj), where i and j form a children-parent pair in
the hierarchical segmentation. If for example, yi is labeled with a class, then yj

is likely to be labeled with the same class. We consider two possible energies of
the form shown in Figure 6, the first one having the commonly used form

E2,P
{Yi,Yi}(yi, yj ;w2,P ) = 〈w2,P ,µ{Yi,Yj}〉,

where we set H2,P
∅ to the identity operator, such that w2,P ∈ RY×Y is a sim-

ple table of energy values for each possible configuration (yi, yj). This setting
contains the generalized Potts model for pairwise interactions as a special case.
Note that unlike in random fields defined on a pixel grid we do not assume reg-
ular/submodular/attractive energies and also do not require symmetry of the
matrix w2,P . This is important because the role of child and parent variable is
known; for instance, a children-parent region labeling of (“car′′, “background′′)
is more likely to occur than (“background′′, “car′′). We consider a second type
of energy as a baseline: the constant energy, making all variables Yi ∈ Y inde-
pendent. We define it as parameter-less energy E2,constant

{Yi,Yi} (yi, yj) = 0.

4.3 Training and Testing

Training. For solving Problem 2 we use the LBFGS method from the minFunc
package of Mark Schmidt4 and for the inference we use libDAI [29]. In the
experiments we state the number of LBFGS iterations used.

For each instance in the training set, we set as ground truth label y ∈ YV

not the discrete labeling vector but the actual distribution µV ∈ [0, 1]Y
V

of pixel
labels within each image region. This faithfully represents the actual ground
truth information and reduces to the discrete label case if all pixels within a
region have the same label.

For the prior distribution over the parameters w1, w2, and w3 we choose a
multivariate Normal distribution, such that p(w1;σ) = N (0, σ2I), p(w2; τ) =
N (0, τ2I), and p(w3; τ) = N (0, τ2I). This leads to two hyper-parameters (σ, τ)
to be selected by model selection.

Test-time prediction. For a given test image x and trained model w∗ we find
the MAP labeling y∗ = argminy∈YV E(y;x,w∗). In y∗ we have one label per
hierarchical image region, whereas the original task is to label each pixel with
a unique label. It could therefore be the case that two region labels contradict
each other in their pixel assignments. We could enforce consistency by assigning
infinite energies to children-parent labelings of the form (yc, yp) where yc 6=
yp and yp 6= “background”. However, inconsistent labelings are absent in the
training data and hence the model parameters are already chosen such that
inconsistent labelings are unlikely. Experiments confirm this: on holdout data
less than 0.7% of all children-parent links are inconsistently labeled. Therefore,
4 http://people.cs.ubc.ca/∼schmidtm/Software/minFunc.html
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Unary features seg-val Train time D

SIFT 6.13% 22h01m 11,193
QHOG 8.40% 19h30m 11,193
QPHOG 7.35% 36h03m 11,193
STF 6.76% 39h36m 42,945
QHOG,QPHOG 10.92% 24h35m 21,945
SIFT,QHOG,QPHOG 14.54% 26h17m 32,697
all features 15.04% 41h39m 75,201

Fig. 7. The result of feature combination at the
unary factors.
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Fig. 8. VOC 2009 validation ac-
curacy as the training set size
and number of LBFGS iterations
vary.

for making test-time predictions we label each pixel with the label of its largest
region that is not assigned a background label. In case no such region exist, the
background label is assigned.

5 Experiments

Throughout the experiments section we use the PASCAL VOC 2009 dataset [27].
The segmentation challenge contains 1499 annotated images (749 training, 750
validation), labeling each pixel with either “background” or one of 20 object
classes, such as car, person, bottle, etc. The dataset is widely accepted to be
difficult and realistic. We report the official PASCAL VOC2009 segmentation
challenge performance measure [27] which is the average over 20 object classes
of the intersection/union metric. Except for the final challenge evaluation, all
models are trained on the segmentation train set (749 images) and we report
the performance on the segmentation val set (750 images).

5.1 Quantifying the Effect of Feature Combination

For high level vision tasks such as object recognition, image classification and
segmentation it is now well accepted that the combination of multiple image
features is essential for obtaining good performance [30]. On the other hand, the
use of multiple image features leads to models with many parameters and thus
a possibly higher estimation error or overfitting.

We verify our model by evaluating the performance of individual features
versus their combination. We do not perform model selection and fix σ = 1000,
τ = 1000. We train using 700 LBFGS iterations on the segmentation train set
and report the performance on the segmentation val set.

Table 7 reports the results. As expected, combining multiple features is essen-
tial to obtain reasonable performance levels. Combining the three SIFT, QHOG,
and QPHOG features doubles the performance of each individual one.
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Moreover, we find that adding any reasonable image feature never decreased
the performance. This shows that our model can combine multiple image fea-
tures in a robust way, and a high dimensionality D of the parameter space does
not lead to overfitting. We submitted a model trained using all features on the
segmentation trainval dataset to the VOC2009 challenge. Some good and er-
roneous segmentations of this model are shown in Figure 9. A discussion of the
challenge results and how other CRF-based approaches fared can be found in
the supplementary materials.

5.2 Training Set Size and Learning Tradeoff

For any machine learning model, there exists a tradeoff between the expressivity
of the model, the scalability to large training sets and the feasibility of optimiza-
tion [31]. This experiment determines what the limiting dimension of our model
is: the model class, the training set size or the training procedure. We train using
the SIFT, QHOG and QPHOG features as we vary the training set size and the
LBFGS iterations.5 We evaluate each model on the validation set.

The results are shown in Figure 8. Up to about 600 LBFGS iterations the
performance increases with more iterations. This is true for all training set sizes,
but eventually the performance levels off when enough iterations are used. Uni-
formly the performance increases when more training samples are used. This
indicates that the model has enough expressive power to achieve high accuracy
but is currently limited by the small amount of annotated training data.

5.3 Piecewise versus Joint Parameter Learning

Piecewise training [32] is a two-step procedure where in the first step the factor
graph is decomposed into disjoint subgraphs and each subgraph is trained indi-
vidually. In the second step the learned weights are fixed and the factors joining
the subgraphs are jointly trained. Piecewise training is an effective approxima-
tion and has been extensively used. Despite this, it has so far not been studied
how much is lost compared to joint training of the model.

To quantify what is lost we use CMLE training with 700 iterations on the
SIFT, QHOG and QPHOG features. We first produce a model without pairwise
potentials (Unary only) by selecting σ ∈ {10, 100, 1000} for best performance
on the validation set. The learned parameters are fixed and the pairwise energy
E2,P is used to retrain, selecting τ ∈ {10, 100, 1000} for best performance on the
validation set (Piecewise, Potts). The canonical competitor to this piecewise-
trained model is a jointly trained model (Joint), with σ, τ = 1000 fixed.

The results are shown in Table 1. The training time is reduced, but it is sur-
prising that the loss due to piecewise training of the unary energies is negligible.

5 The training set size is within {125, 250, 375, 500, 625, 749}, the training iterations
within {100, 200, . . . , 1000, 1250, 1500}.
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Model seg-val Training time

Unary only, 9.98% 2h15m
Piecewise, Potts 14.50% (2h15)+10h28m

Joint 14.54% 26h17m

Table 1. VOC 2009 segmentation accuracy on validation set for the best performing
unary-only model, the best piecewise-trained model, and the jointly-trained model.

Fig. 9. VOC test predictions. Top: success, bottom row: typical failures (background
labeled, wrong label, clutter, entire image labeled).

5.4 Maximum Likelihood versus Max-Margin

So far we have estimated the parameters of our models using the principle of max-
imum likelihood. An alternative method to estimate w from training data is the
maximum margin principle [33], recently applied to learn structured prediction
models in computer vision [34, 6, 12, 19] using the structured SVM formulation.

We use the standard margin-rescaling structured SVM formulation [33], which
we describe in the supplementary materials. The use of the structured SVM en-
tails the choice of a semi-metric ∆(yn,y) and the parameter Csvm. For ∆ :
YV × YV → R+ we choose the same function as [12], weighting the regions by
their relative sizes, something that is not possible in standard CMLE training.

We evaluate the structured SVM against CMLE with 500 LBFGS iterations.
For the structured SVM we use the popular cutting plane training procedure [33],
solved using the Mosek QP solver. We evaluate Csvm ∈ {10−5, 10−4, . . . , 1}
for the structured SVM model and (σ, τ) ∈ {100, 1000} × {1, 10, 100, 1000} for
CMLE and report the best achieved performance on the validation set using the
SIFT,QHOG,QPHOG features and the data-independent pairwise Potts factor.
For larger values of Csvm the cutting-plane training procedure failed; we describe
this in detail in the supplementary materials.

Accuracy CMLE Training time CMLE Accuracy SVM Training time SVM

Potts 13.65% 24h11m 13.21% 165h10m

Table 2. Results of maximum likelihood training and structured support vector ma-
chine training. See main text for details.
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The results shown in Table 2 show that the CMLE training procedure requires
less time and outperforms the structured SVM model consistently. It is unclear
and remains to be examined whether this is due to the failure of the structured
SVM optimization procedure for large values of Csvm or because of an inferior
estimator.

6 Conclusions and Future Work

We draw the following conclusions for the class of tree-structured/hierarchical
CRF based approaches to object class image segmentation:

– Current CRF models are limited by the amount of training data and available
image features; more of both consistently leads to better performance,

– Piecewise training of unary observation factors is competitive with joint
training and reduces the required training time considerably,

– Max-margin training is not well-tested within computer vision; current meth-
ods are slow and unstable in case of many parameters.

This work provides recommendations for the tractable, tree-structured case on
a popular high-level vision task. In the future we plan to provide a larger study
examining whether our conclusions extend to general intractable CRF models
learned using approximate inference. Additionally, we would like to examine
other high-level data-driven vision tasks.
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26. Arbeláez, P.: Boundary extraction in natural images using ultrametric contour
maps. In: Workshop on Perceptual Organization in Computer Vision. (2006)

27. Everingham, M., Gool, L.V., Williams, C.K., Winn, J., Zisserman, A.:
The PASCAL Visual Object Classes Challenge 2009 (VOC2009) Results.
http://www.pascal-network.org/challenges/VOC/voc2009/workshop/ (2009)

28. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image catego-
rization and segmentation. In: CVPR. (2008)

29. Mooij, J.M.: libDAI: A free/open source C++ library for discrete approximate
inference methods. http://www.libdai.org/ (2008)

30. Gehler, P., Nowozin, S.: On feature combination for multiclass object classification.
In: ICCV. (2009)

31. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: NIPS. (2007)
32. Sutton, C.A., McCallum, A.: Piecewise training for undirected models. In: UAI.

(2005)
33. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods

for structured and interdependent output variables. JMLR 6 (2005) 1453–1484
34. Blaschko, M.B., Lampert, C.H.: Learning to localize objects with structured output

regression. In: ECCV. (2008)


