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Abstract
We propose a new method to quantify the so-
lution stability of a large class of combinato-
rial optimization problems arising in machine
learning. As practical example we apply the
method to correlation clustering, clustering
aggregation, modularity clustering, and rela-
tive performance significance clustering. Our
method is extensively motivated by the idea
of linear programming relaxations. We prove
that when a relaxation is used to solve the
original clustering problem, then the solution
stability calculated by our method is conser-
vative, that is, it never overestimates the so-
lution stability of the true, unrelaxed prob-
lem. We also demonstrate how our method
can be used to compute the entire path of
optimal solutions as the optimization prob-
lem is increasingly perturbed. Experimen-
tally, our method is shown to perform well
on a number of benchmark problems.

1. Introduction

Several fundamental problems in machine learning can
be expressed as the combinatorial optimization task
P1 z∗ := argminz∈B w>z,

where B ⊆ {0, 1}n is a specific set of indicator vectors
of length n. For example, clustering problems can be
posed naturally by means of binary variables indicat-
ing whether two samples are in the same cluster.

The formulation P1 is general and powerful. However,
depending on the problem parameter w, an optimal
solution z∗ might not be unique, or it might be unsta-
ble, i.e., a small perturbation to w will make another
z 6= z∗ optimal. To ensure a reliable and principled
use of P1 it is important to analyze the stability of z∗,
especially because the lack of stability can indicate se-
rious modeling problems.

In machine learning, the value of w usually depends on
the data, and possibly on a modeling parameter. Both
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these dependencies often introduce uncertainty. Real
data commonly originates from noisy measurements or
is assumed to be sampled from an underlying distribu-
tion. This data induces one w and thus one optimal
solution, e.g. clustering, z∗1. If a slight perturbation to
the data completely changes the solution to z∗2, then z∗1
must be treated with care. The preference of z∗1 over
z∗2 could merely be due to noise. To account for un-
certainty in the data, one commonly strives for stable
solutions with respect to perturbations or re-sampling.

Modeling parameters are another source of uncer-
tainty, for their “correct” value is usually unknown,
and thus estimated or heuristically set. A stability
analysis gives insight into how the parameter influ-
ences the solution on the given instance of data. Here
too stability can indicate reliability.

In addition, a stability analysis can reveal characteris-
tics of the data itself, as we illustrate in two examples.
We can compute the path of all solutions as the per-
turbation increases systematically. Depending on the
perturbation, this path may indicate structural infor-
mation or help to analyze a modeling parameter.

In this paper, we present a new general method to
quantify the solution stability of Problem P1 and com-
pute the solution path along a parametric perturba-
tion. In particular, we overcome the inability of ex-
isting approaches to handle a basic characteristic of
linear programming relaxations to P1, namely, that
only few constraints are known at a time. Owing to
our formulation, two close variants of the same algo-
rithm will suffice to solve both the nominal Problem
P1 and the stability analysis.

A running example for P1 makes the general discus-
sion concrete: the Graph Partitioning Problem (GPP),
which unifies a number of popular clustering tasks.
Our stability analysis for GPP hence allows a more
thoughtful analysis of these clusterings.

1.1. Graph Partitioning Problem

In many unsupervised learning problems, we only have
information about pairwise relations of objects, and
not about features of individuals. Examples include
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co-authorship and citations, or protein interactions. In
this case, exemplar- or centroid -based approaches are
inapplicable, and we directly use the graph of relations
or similarities. Clustering corresponds to finding an
appropriate partitioning of this graph.

Problem 1 (Graph Partitioning Problem)
Given an undirected, connected graph G = (V,E),
edge weights w : E → R, partition the vertices into
nonempty subsets so that the total weight of the edges
with end points in different subsets is minimized.

Note that, in contrast to common graph cut prob-
lems such as Minimum Cut or Normalized Cut, GPP
does not pre-specify the number of clusters. To de-
scribe a partitioning of G, we will use indicator vari-
ables zi,j ∈ {0, 1} for each edge (i, j) ∈ E, where
zi,j = 1 if i and j are in different partitions, and
zi,j = 0 otherwise. Figure 1 shows an example. Let
Z(G) = {z ∈ {0, 1}|E|| ∃π : V → N : ∀(i, j) ∈ E :
zi,j = Jπ(i) 6= π(j)K} be the set of all possible parti-
tionings, where J·K is the indicator function.

π(·) = 2

π(·) = 3

π(·) = 1

j

i

zi,j = 1zk,l = 0

k

l

Figure 1. An example partitioning z. Bold edges have
zi,j = 1, while others have zk,l = 0.

Using this notation, we can formalize GPP as a special
case of P1 with B = Z(G):

P2 min
z

∑
(i,j)∈E

w(i, j) zi,j

sb.t. z ∈ Z(G)

P2 encompasses a wide range of clustering problems if
we set the weights w accordingly. Table 1 summarizes
w for a number of popular clustering problems, and
also for two biases: one favoring clusters of equal sizes,
and one penalizing large clusters.

The information contained in a single weight w(i, j)
is often enough to make local decisions about i and j
being in the same cluster. Global agreement of these
local decisions is enforced by z being a valid partition-
ing. Exactly this global constraint z ∈ Z(G) makes
GPP difficult to solve.

In general, P1 is an integer linear program (ILP) and
NP-hard. A common approach to solving P1 is to use
a linear relaxation of the constraint z ∈ B.

Linear Relaxations. In general, the point set B ⊆
{0, 1}n is finite but exponentially large in n and usually

intractable. It is known from combinatorial optimiza-
tion (Schrijver, 1998) that relaxing the set B to its
convex hull conv(B) will not change the minimizer z∗

of P1. The set conv(B) is by construction a bounded
polyhedron – a so-called polytope – and at least one
minimizer of a linear function over a polytope is a ver-
tex. Therefore, at least one optimal solution of the re-
laxation will be integral, that means it is in B and thus
an optimal solution of the exact problem. For GPP,
the convex hull conv(Z(G)) is the Multicut Polytope.

The convex hull is defined in terms of vertices z ∈
{0, 1}n. We can alternatively describe it in terms of
intersecting halfspaces (Schrijver, 1998), i.e., linear in-
equalities. The minimal set of such inequalities to
characterize the polytope exactly is the set of all facet-
defining inequalities. Knowing these inequalities, we
can derive a linear program equivalent to P2.

But often only a subset of the facet-defining in-
equalities is known, some are difficult to check and
all are too many to handle efficiently. Therefore,
one commonly replaces conv(B) by an approximation
B̂ ⊇ conv(B) ⊃ B represented by a tractable subset
of the facet-defining inequalities.

We will use such relaxations to derive a method for
quantifying the stability of the optimal solution z∗

with respect to perturbations in w. In Section 2,
we first introduce our notion of stability analysis and
then show how to overcome the difficulties of exist-
ing approaches. Details about solving the formulated
problems follow in Section 3. We describe the general
cutting-plane algorithm for both P1 and the stability
analysis in Section 3.1, while Section 3.2 specifies algo-
rithmic details for GPP, i.e., a relaxation of the mul-
ticut polytope that is tighter than previous approxi-
mations for the problems in Table 1. Experiments in
Section 4 evaluate our method.

2. Stability Analysis

We first detail our notion of stability and then develop
our approach. The method is based on local polyhe-
dral approximations to the feasible set of the combina-
torial problem and efficiently identifies solution break
points for parametric perturbations of w.

We perturb the weight vector w ∈ Rn by a vector
d ∈ Rn. The resulting weights are then w′(θ) = w+θd
for a perturbation level θ. Stability analysis asks for
the range of θ for which the optimal solution does not
change, i.e., the stability range.

Definition 1 (Stability Range) Let the feasible set
B ⊆ {0, 1}n, a weight vector w ∈ Rn and the op-
timal solution z∗ := argminz∈B w>z be given. For
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Table 1. Graph partitioning formulations of clustering problems for a set of objects V or graph G = (V,E), and λ > 0.

Problem Description Weights

Correlation
Clustering

Given pairwise positive and negative similarity ratings
v(i, j) ∈ R for samples i, j, find a partitioning that agrees
as much as possible with these ratings (Bansal et al., 2002;
Demaine et al., 2006; Joachims & Hopcroft, 2005).

w(i, j) = v(i, j), ∀(i, j) ∈ E

Clustering
Aggregation,
Consensus
Clustering

Also known as clustering ensemble and clustering combina-
tion. Find a single clustering that agrees as much as possible
with a given set of m clusterings (Gionis et al., 2007).

w(i, j) = 1
m

Pm
k=1

`
1− 2rk

i,j

´
,

∀(i, j) ∈ V × V , where rk rep-
resents clustering k analogous to
z.

Modularity
Clustering

Maximize modularity, i.e., the difference between the
achieved and expected fraction of intra-cluster edges. Origi-
nally for unweighted graphs (Newman & Girvan, 2004; Bran-
des et al., 2008), it is straightforward to extend to weighted
graphs (Newman, 2004; Gaertler et al., 2007), and so are the
weights on the right.

w(i, j) = 1
2|E|

“
ηi,j − deg(i)deg(j)

2|E|

”
,

∀(i, j) ∈ V × V , with ηi,j = J(i, j) ∈
EK, and deg denoting the degree of a
node.

Relative Per-
formance
Significance
Clustering

Maximize the achieved versus expected performance, i.e.,
fraction of edges within clusters and of missing edges be-
tween clusters (Gaertler et al., 2007).

w(i, j) = 1
n(n−1)

“
2ηi,j − deg(i)deg(j)

|E|

”
,

∀(i, j) ∈ V × V

Bias: Squared
Differences of
Cluster Sizes

The criterion λ
PK

k,l=1(|Ck| − |Cl|)2 favors clusters of equal
sizes.

∆w(i, j) = −2λ, ∀(i, j) ∈ V × V

Bias: Squared
Cluster Sizes

A penalty for large clusters is
λ
PK

k=1 |Ck|2 = λ
PK

k=1

P
i,j∈V 2λ|V |2 − λ

P
i,j∈V zi,j .

∆w(i, j) = −λ, ∀(i, j) ∈ V × V

z∗

w

θd

z′

Figure 2. Geometry of Stability Analysis in a Polytope

a perturbation vector d ∈ Rn and modified weights
w′(θ) = w + θd, the stability range is the interval
[ρd,−, ρd,+] ∈ ({−∞,∞}∪R)2 of θ values for which z∗

is optimal for the perturbed problem minz∈B w′(θ)>z.

The geometry of stability ranges in the polytope
conv(B) is illustrated in Figure 2. The polytope is
lightly shaded and bounded by lines representing the
inequalities that define conv(B). We know that z∗ is
optimal for w′(θ) = w + θd for θ = 0. The point z∗ is
a vertex of the polytope. Two of the inequalities are
binding (satisfied with “=”), indicated by two bound-
ary lines touching z∗. The negative normal vectors of
the inequalities span a cone (shaded dark). As long as
w′(θ) lies in this cone, z∗ is optimal. If w′(θ) leaves
the cone, say for a large enough θ > 0, then we can im-
prove over z∗ by sliding along an edge of the polytope

to another vertex z′ ∈ B whose associated cone now
contains the new vector w + θd. Formally, if w′(θ) is
outside the cone, then a descent direction at an obtuse
angle to w will be in B. Moving z along this direction
improves the value w′(θ)>z.

We aim to find the value of θ where w′(θ) leaves the
cone. If we know all inequalities defining the polytope,
then we have an explicit description of the cone. Com-
mon approaches to compute stability ranges (Schri-
jver, 1998; Jansen et al., 1997) rely on this knowl-
edge and use the simplex basis matrix (Bertsimas &
Tsitsiklis, 1997). But the inequalities for the multicut
polytope (and conv(B) in general) are not explicitly
known, since the polytope is defined as the convex hull
of a complicated set. Even for relaxations B̂, the set of
constraints is too large to be handled as a whole, and
just a few local constraints are known to the solver at
a time. With such a small subset, the normal cone is
only partially known and the basis matrix approach
grossly underestimates the stability range, making it
useless for anything but trivial instances.

In an online setting, (Kılınç-Karzan et al., 2007) use
axis-aligned perturbations for the cost vector to obtain
both an inner and outer polyhedral approximation to
the stability region, the region where changes to w re-
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main without effect. In contrast, we aim for an exact
stability range for a given perturbation direction.

We will now present a method to compute stability
ranges even without explicit knowledge of all con-
straints at all times. Owing to the formulation, two
close variants of the same algorithm will suffice to solve
both the original problem and the stability analysis.
We will also relate the stability range obtained from
relaxations to the stability range of the exact problem.

2.1. Linear Programming Stability Analysis
using Separation Oracles

To avoid use of the basis matrix, we adopt a lesser
known idea of (Jansen et al., 1997, Section 4.2): at
optimality, the primal and dual optimal values are
equal. Hence, z∗ is optimal (and w′(θ) in the cone)
as long as the optimal value of the perturbed dual
equals w′(θ)>z∗. Jansen et al. (1997) implement this
idea in an LP derived from the dual of the original
problem. With our implicit constraints, a dual-based
approach is inapplicable. Therefore, we revert to the
primal to construct a pair of auxiliary linear programs
that search within the cone of all possible constraints
defining conv(B) around z∗.

The resulting formulation is similar to the original
Problem P1, so we can use a similar solution proce-
dure to take into account all implicit constraints —
a point we elaborate in Section 3.1. The following
program yields the stability range for a given optimal
solution z∗ and perturbation direction d.

P3 min
α∈R,z∈Rn

w>z + αw>z∗

sb.t. (
1
α

z) ∈ conv(B) (1)

(d>z∗)α− d>z = t (2)
0 ≤ zi ≤ α, i = 1, . . . , n.

Constraint (1) is still linear, because it corresponds
to A( 1

αz) ≤ b, or Az − αb ≤ 0. The constant t ∈
{−1, 1} in (2) determines whether we search for the left
interval boundary ρd,− or right interval boundary ρd,+

of the stability range [ρd,−; ρd,+]. At the optimum,
the Lagrange multiplier for Constraint (2) equals the
boundary ρd,− or ρd,+, depending on t. Problem P3
is primal infeasible if and only if ρd,− = −∞ for the
left boundary (t = −1) or ρd,+ = ∞ for the right
boundary (t = 1).

The stability range could also be found approximately
by probing various values of θ, similar to a line search
in continuous optimization. In contrast, our method
finds the breakpoint exactly by solving one optimiza-
tion per search direction. It is guaranteed not to miss

any breakpoints, a property that is hard to ensure for
an iterative point-wise testing procedure.

The hardness of P3, like that of the nominal prob-
lem P1, depends on the tractability of conv(B). That
means we are forced to replace conv(B) by a tractable
approximation B̂ to solve P3 efficiently. We will out-
line the relaxation for GPP in Section 3.2. But if we
use B̂, then the stability range only refers to the re-
laxation, i.e., for θ /∈ [ρd,−, ρd,+], the optimal solution
of the relaxation is guaranteed to change. Theorem 1
relates this stability range of the relaxation to the sta-
bility range of the exact problem.

Theorem 1 (Stability Inclusion) Let z∗ be the op-
timal solution of P1 for a given B ⊆ {0, 1}n and
weights w ∈ Rn. For a perturbation d ∈ Rn, let
[ξd,−, ξd,+] be the true stability range for θ on conv(B).
If B̂ ⊇ conv(B) is a polyhedral relaxation of B using
only facet-defining inequalities and if z∗ is a vertex
of B̂, then the stability range [ρd,−, ρd,+] on B̂, i.e.,
for the relaxation minz∈ bBw>z, is included in the true
range: [ρd,−, ρd,+] ⊆ [ξd,−, ξd,+].

Proof. Let SB be the set of all constraints defining
conv(B) at z∗ and S bB the set of all facet-defining con-
straints for B̂ at z∗. As S bB contains only facet-defining
constraints, we have S bB ⊆ SB. As a result, the cone
spanned by the negative constraint normals in SB con-
tains the cone spanned by the negative constraint nor-
mals in S bB, and thus [ρd,−, ρd,+] ⊆ [ξd,−, ξd,+]. �

Theorem 1 and P3 suggest that with a tight enough re-
laxation B̂, we can efficiently compute a good approx-
imation of the stability range by essentially the same
algorithm that we apply to P1. Besides quantifying
the robustness of a solution with respect to paramet-
ric perturbations, stability ranges help to recover an
entire path of solutions, as we will show next.

2.2. Efficiently Tracing the Solution Path

As we increase the perturbation level θ, the optimal
solution changes at certain breakpoints, the boundary
points of the current stability range. That means we
can trace the path of all optimal solutions along the
weight path w + θd for θ ∈ [−∞,∞] by repeatedly
jumping to the solution at the breakpoint and com-
puting the stability range to find the next breakpoint.

The interpretation of the path of solutions depends on
the choice of weights and the perturbation. For GPP,
we will use weights derived from similarity matrices
and obtain all clustering solutions on a path defined by
shifting a linear bias term. This amounts to computing
all clusterings between the extremes “one big cluster”
and “each sample is its own cluster”.
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3. Implementation

In the previous sections we formalized the nominal
problem P1 and the stability analysis P3. Now we
describe how to actually solve them. We first present
a general algorithm and then specify details for GPP,
mainly a suitable relaxation of the multicut polytope.

3.1. Cutting Plane Algorithm

The cutting plane method (Wolsey, 1998, chapter 11)
shown in Algorithm 1 applies to both P1 and P3.
Cutting plane algorithms provide a polynomial-time
method to solve (appropriate) relaxations of ILPs.

The algorithm works with a small set of constraints
that defines a loose relaxation S to the feasible set B.
It iteratively tightens S by means of violated inequal-
ities. In Line 11, we solve the current LP relaxation.
Having identified a minimizer z, we search for a vio-
lated inequality in the set of all constraints (Line 12).
If we find a violated inequality, we add it to the cur-
rent constraint set to reduce S (Line 16) and re-solve
with the tightened relaxation. Otherwise, z∗ = z is
optimal with all constraints.

Algorithm 1 Cutting Plane Algorithm
1: (z∗, f, optimal) = CuttingPlane(B,w)
2: Input:
3: Set B ⊆ {0, 1}n, weights w ∈ Rn
4: Output:
5: Optimal solution z∗ ∈ [0, 1]n,
6: Lower bound on the objective f ∈ R,
7: Optimality flag optimal ∈ {true, false}.
8: Algorithm:
9: S ← [0, 1]n {Initial feasible set}

10: loop
11: z ← argminz∈S w>z {Solve LP relaxation}
12: Sviolated ← SeparateInequalities(B, z)
13: if no violated inequality found then
14: break
15: end if
16: S ← S ∩ Sviolated {Cut z from feasible set}
17: end loop
18: optimal← (z ∈ {0, 1}n) {Integrality check}
19: (f, z∗)← (w>z, z)

The search for a violated inequality is the separation
oracle. It depends on the particular set B of the com-
binatorial problem at hand and the description of the
relaxation B̂. The separation oracle is decisive for the
runtime. If it runs in polynomial time, then the en-
tire algorithm runs in polynomial time (Wolsey, 1998,
chapter 11). Hence, polynomial-time separability is
an important criterion for the relaxation B̂. The next
section addresses such a relaxation for GPP.

3.2. Relaxations of the Multicut Polytope

Solving GPP over Z(G) or conv(Z(G)), the multicut
polytope, is NP-hard (Deza & Laurent, 1997; Chopra
& Rao, 1993). To relax conv(Z(G)) for an efficient
optimization, we need facet-defining inequalities that
describe an approximation to conv(Z(G)) and are sep-
arable in polynomial time. In addition, the tighter the
relaxation is, i.e., the more inequalities we use, the
more accurate the stability analysis becomes.

The multicut polytope conv(Z(G)) and variations
have been researched in the late eighties and early
nineties (Grötschel & Wakabayashi, 1989; Grötschel &
Wakabayashi, 1990; Chopra & Rao, 1993; Deza et al.,
1992; Deza & Laurent, 1997). We now discuss two
subsets of the set of facet-defining inequalities for the
multicut polytope that we use, cycle inequalities and
odd-wheel inequalities. Both are polynomial-time sepa-
rable, so we can tell efficiently whether a point satisfies
all inequalities and if it does not, we can find a violated
inequality.

Cycle Inequalities. The cycle inequalities are gen-
eralizations of the triangle inequality. Any valid graph
partitioning z satisfies a transitivity relation: there is
no all-zero path between any two adjacent vertices i,
j that are in different subsets of the partition, i.e.,
for which zi,j = 1. Formally, this property is de-
scribed by the cycle inequalities (Chopra & Rao, 1993)
that are facet-defining for chord-free cycles ((i, j), p),
p ∈ Path(i, j), where Path(i, j) is the set of paths be-
tween i and j.

zi,j ≤
∑

(s,t)∈p

zs,t, (i, j) ∈ E, p ∈ Path(i, j). (3)

In complete graphs, all cycles longer than three edges
contain chords. Hence, for complete graphs we can
simplify the cycle inequalities to a polynomial number
of triangle inequalities, as done in Grötschel and Wak-
abayashi (1989); Chopra and Rao (1993); and Brandes
et al. (2008). The separation procedure for (3) is a sim-
ple series of shortest path problems, one for each edge.
We omit it for reasons of space, details can be found
in Chopra and Rao (1993).

Previous LP relaxations for correlation and modularity
clustering (Emanuel & Fiat, 2003; Finley & Joachims,
2005; Demaine et al., 2006; Brandes et al., 2008) limit
their approximation of the multicut polytope to cycle
inequalities only. We call these equivalent relaxations
LP-C relaxation. Our experiments will show that the
LP-C relaxation is not very tight, and additional odd-
wheel inequalities (Deza et al., 1992; Chopra & Rao,
1993) improve the approximation.
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Odd-Wheel Inequalities. Let a q-wheel be a con-
nected subgraph S = (Vs, Es) with a central vertex
j ∈ Vs and a cycle of the q vertices in C = Vs \ {j}.
For each i ∈ C there exists an edge (i, j) ∈ Es. For
every q-wheel, a valid partitioning z satisfies∑

(s,t)∈E(C)

zs,t −
∑
i∈C

zi,j ≤ b12qc, (4)

where E(C) denotes the set of all edges in the outer
cycle C. Deza et al. (1992) prove that the odd-wheel
inequalities (4) are facet-defining for every odd q ≥ 3.
These inequalities are polynomially separable. The
separation procedure is still rather involved and we
omit it here; details can be found in Deza and Lau-
rent (1997).

The inequalities (3) and (4) together describe a tight
polynomial-time solvable relaxation to conv(Z(G))
that we will call LP-CO relaxation.

4. Experiments and Results

The first part of the experiments addresses properties
of our algorithm and relaxation. We compare our so-
lution method to a popular heuristic and demonstrate
the gain of tightening the relaxation to LP-CO. Exper-
iment 4.2 relates optimality and runtime to properties
of the data. The second part illustrates example ap-
plications: critical edges for modularity clustering and
an analysis of the solution path for similarity data.

4.1. Tightness and comparison to a heuristic

In the Introduction, we show how to solve modularity
clustering via GPP. Here we examine solution quali-
ties of our LP relaxation and the Kernighan-Lin (KL)
heuristic (Kernighan & Lin, 1970). The latter uses a
greedy local search and generally converges fast. Con-
trary to the LP relaxation, where integrality indicates
optimality, KL provides no guarantees.

We compare KL to two variants of relaxation: LP-C,
which is limited to cycle-inequalities, and the tightened
LP-CO, which also includes odd-wheel inequalities.
Note that all previous LP relaxations of correlation
and modularity clustering (Finley & Joachims, 2005;
Brandes et al., 2008; Demaine et al., 2006; Emanuel &
Fiat, 2003)correspond to LP-C.

The solution produced by the KL heuristic is al-
ways feasible but possibly suboptimal, and LP-C
and LP-CO are weak and tight relaxations, respec-
tively. Hence the maximized modularity always satis-
fies KL ≤ OPT ≤ LP-CO ≤ LP-C, where OPT is the
true optimum.

We evaluate solutions on five networks described in

Brandes et al. (2008); and Newman and Girvan (2004):
dolphins, karate, polbooks, lesmis and att180 (62,
34, 105, 77 and 180 nodes, respectively).

Table 2 shows the achieved modularity and the run-
time. For all data sets, the LP-CO solutions are op-
timal (OPT=LP-CO) and all modularity scores agree
with the best modularity in the literature.1

The Kernighan-Lin heuristic is always the fastest
method and its solutions are close to optimal, as the
upper bound provided by LP-C and LP-CO shows. KL
itself does not give hints about closeness to optimal-
ity. The LP-C relaxation is in general very weak and
obtains the optimal solution only on the smallest data
set (karate). All it yields otherwise is an upper bound
on the optimal modularity. So the effort of a tighter
approximation (LP-CO) does improve the quality of
the solution already on small examples.

Table 2. Modularity and runtimes on standard small net-
work datasets. Fractional solutions are bracketed, optimal
solutions are in boldface.

Kernighan-Lin LP-C LP-CO

dolphins 0.5268 0.4s (0.5315) 4.2s 0.5285 9.1s
karate 0.4198 0.1s 0.4198 0.2s 0.4198 0.2s

polbooks 0.5226 7.0s (0.5276) 147.4s 0.5272 148.5s
lesmis 0.5491 1.5s (0.5609) 6.9s 0.5600 11.7s
att180 0.6559 14.5s (0.6633) 302.3s 0.6595 1119.6s

4.2. LP-CO Scaling Behavior

After investigating the gain of the tighter relaxation,
we now examine the scaling behavior of LP-CO with
respect to edge density, problem difficulty and noise.

We sample a total of 100 vertices and uniformly assign
one out of three “latent” class labels to each vertex.
For a given edge density d ∈ {0.1, 0.15, . . . , 1.0} we
sample a set E of 100·99

2 d non-duplicate edges from the
complete graph. To each edge e ∈ E we assign with
probability n ∈ {0, 0.05, . . . , 0.5} a “noisy” weight uni-
formly at random from the interval [−1, 1]. To all other
edges we assign a “true” weight from either [−1, 0]
if the latent class label of the adjacent vertices are
different, or from [0, 1] if the latent class labels are
equal. For each pair (d, n) we create ten graphs with
the above properties and solve GPP on each instance.
Figures 3 to 5 show where integrality was achieved,
the average runtime and Rand index to the underly-
ing labels. The index is 1 if the partitioning is identical
to the latent classes. The expected Rand index of a

1Except for the karate data set which differs from the
optimal modularity of 0.431 reported in (Brandes et al.,
2008). We contacted the authors who discovered a corrup-
tion in their data set and confirmed our value of 0.4198.
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random partitioning is 2
3 (Rand, 1971).

The figures suggest two relations between properties
of the data and the algorithm. First, integrality of
the LP-CO solution (gray region in Figure 3) mostly
coincides with the optimal solution being close to the
“latent” labels, i.e., cases where the Rand index in Fig-
ure 4 is 1. Second, the runtime depends more on the
noise level than on edge density. To save space, we
do not illustrate corresponding results for the weaker
LP-C relaxation. It generates 12% fewer integral so-
lutions and smaller corresponding Rand indices, but
runs faster when there is lots of noise.

4.3. Example applications of stability

We now apply stability analysis to investigate the
properties of clustering solutions in two applications.

“Critical edges” in Modularity Clustering
Modularity clustering is a popular tool to analyze net-
works. But which edges are critical for the parti-
tion at hand, i.e., their removal will change the op-
timal solution? To test whether an edge e is critical,
we compute the stability range for the perturbation
d = wM (V,E \ {e})−wM (V,E), where wM computes
the modularity edge weights from the original undi-
rected, unweighted graph. For θ = 1, the GPP weights
will correspond to E \{e}, so e is critical if and only if
1 /∈ [ρd,−, ρd,+]. Figure 6 illustrates the critical edges
on top of the partitioning of the karate network, an
example for a social network.
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Figure 6. Critical edges in Zarachy’s karate club network
with four groups. A removal of any red edge would change
the current (best) partitioning. All other edges can be re-
moved individually without changing the solution. (Figure
best viewed in color.)

Clustering Solution Path The solution path can
reveal more information about a data set than one
partition alone. Our data (courtesy of Frank Jäkel)
contains pairwise similarities of 26 types of leaves
in the form of human confusion rates. To investi-
gate groups of leaves induced by those similarities, we
solve GPP on a similarity graph with edge weights
equal to the symmetrized confusion rates. This corre-
sponds to weighted correlation clustering, where neg-
ative weights indicate dissimilarity.

We make low similarities negative by adding a thresh-
old θ < 0 from each edge (d = 1). It is not obvious
how to set θ; a higher θ will result in few clusters.
Hence, we trace the solution path for θ = 0 to the
point when each node is a cluster.

Figure 7 illustrates how the stability ranges of the solu-
tions vary along the path. Figure 8 shows some stable
solutions. At change points of the path, the optimal
solution often changes only little, as indicated by the
Rand index (Rand, 1971). This means that many so-
lutions are very similar and might represent the same
underlying clustering. Indeed, the path reveals struc-
tural characteristics of the data: low-density areas in
the graph will be cut first, whereas some leaves remain
together throughout almost the entire path and form
dense sub-communities. Leaves that are fluctuating
between groups are not clearly categorized and likely
to be at the boundary between two clusters.

In general, the solution path provides richer informa-
tion than one single clustering and permits a more
careful analysis of the data, in particular if the value
of a decisive model parameter is uncertain.
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Figure 7. Clustering solution path for the leaves dataset.
The red stems show the difference of adjacent clusterings.

5. Conclusions

We have shown a new general method to compute sta-
bility ranges for combinatorial problems. Applied to a
unifying formulation, GPP, this method opens up new
ways to carefully analyze graph partitioning problems.
The experiments illustrate examples for GPP and an
analysis of the method. A useful extension will be to
find the perturbation to which the solution is most
sensitive, rather than specifying the direction before-
hand. Given the generality of the method developed
in this work, where else could the analysis of solution
stability lead to further insights? Examples may be
other learning settings, algorithms that make use of
combinatorial optimization, or theoretical analyses.
All code is made available as open-source at http://

www.kyb.mpg.de/bs/people/nowozin/lpstability/.
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