
Frequent Subgraph Retrieval in
Geometric Graph Databases

Sebastian Nowozin
Max Planck Institute for Biological Cybernetics

Spemannstr. 38, 72076 Tübingen, Germany
sebastian.nowozin@tuebingen.mpg.de

Koji Tsuda
Max Planck Institute for Biological Cybernetics

Spemannstr. 38, 72076 Tübingen, Germany
koji.tsuda@tuebingen.mpg.de

Abstract

Discovery of knowledge from geometric graph databases
is of particular importance in chemistry and biology, be-
cause chemical compounds and proteins are represented as
graphs with 3D geometric coordinates. In such applica-
tions, scientists are not interested in the statistics of the
whole database. Instead they need information about a
novel drug candidate or protein at hand, represented as
a query graph. We propose a polynomial-delay algorithm
for geometric frequent subgraph retrieval. It enumerates
all subgraphs of a single given query graph which are fre-
quent geometric ε-subgraphs under the entire class of rigid
geometric transformations in a database. By using geomet-
ric ε-subgraphs, we achieve tolerance against variations in
geometry. We compare the proposed algorithm to gSpan
on chemical compound data, and we show that for a given
minimum support the total number of frequent patterns is
substantially limited by requiring geometric matching. Al-
though the computation time per pattern is larger than for
non-geometric graph mining, the total time is within a rea-
sonable level even for small minimum support.

1. Introduction

Frequent subgraph mining algorithms (FSM) such as
gSpan [21] and extensions have been successfully applied
to different applications such as chemical compound clas-
sification [10] and molecular QSAR analysis [16], graph
clustering [20] and computer vision [13]. In FSM, we deal
with a large database of attributed graphs, where nodes and
edges have discrete labels. The purpose of FSM is to enu-
merate all frequently appearing subgraphs in the database.
Typically, all subgraphs whose frequency is above a mini-
mum support threshold are enumerated. FSM helps users
to analyze the database and can be used to create a feature
space for subsequent machine learning algorithms as well.

One domain of graph mining is geometric graph min-
ing, where each node of a graph has 2D or 3D coordinates
and subgraph patterns have to match geometrically under

a given transformation class [11, 4, 1]. To deal with real
world data, a geometric pattern is matched with a certain
tolerance ε, because a perfect match does not happen in real
data. Due to the tolerance, geometric mining is significantly
more difficult than ordinary graph mining. There are many
different geometric representations of the same pattern, all
of which are ε-isomorphic to each other. To enumerate all
patterns satisfying minimum support, we need to define a
canonical pattern for these equivalent patterns. We call this
problem the pattern ambiguity problem. To the best of our
knowledge, there is no effective solution to this problem.

Extracting such geometric patterns from molecular 3D
structures is one of the central topic in computational biol-
ogy, and numerous approaches have been proposed. Most
of them are optimization methods, which detect one pattern
at a time by minimizing a loss function (e.g., [14, 15, 6]).
They are different from our approach enumerating all pat-
terns satisfying a certain geometric criterion. In particular,
they do not have a minimum support constraint. Instead
they try to find a motif that matches all graphs.

Kuramochi et al. [11] used a heuristic way to extend
a geometric pattern, so there is no explicit description of
the set they enumerated. Deshpande et al. [4] used non-
geometric graph patterns from chemical molecules aug-
mented with average inter-atomic distances. Their patterns
contain geometric information, but only in a summarized
form. Arimura et al. [1] proposed a method to enumerate all
maximum geometric patterns, but they assumed zero toler-
ance and therefore small variations of the vertex coordinates
are treated as different patterns. Huan et al. [8] applied an
enumerative approach to detect structural motifs, but pro-
teins are represented as graphs with discrete labels in ad-
vance by thresholding the distances among atoms.

We deal with the problem of frequent subgraph retrieval
(FSR), which is similar to but different from frequent sub-
graph mining. In mining, frequently appearing subgraph
patterns in the graph database are enumerated. In retrieval,
the user has a query graph apart from the database. FSR is
frequent subgraph mining, where the set of patterns is re-

stricted to the set of subgraphs of the query graph. In biol-
ogy and chemistry applications, this setting makes sense,
because users access databases to gain some knowledge
about a newly discovered chemical compound or protein at
hand. In such a case, geometric patterns that do not match
the query graph are not useful. Furthermore, the statistics or
characteristics of the whole database are not of interest here,
which is strikingly different from the market basket analysis
setting addressed by the usual frequent mining algorithms.

Our FSR algorithm is based on reverse search [2], and
the pattern set to be enumerated is unambiguously de-
scribed as an exact subgraph of the query graph, thereby
avoiding the pattern ambiguity problem. Straightforwardly,
one can create a retrieval version of the popular gSpan
frequent subgraph mining algorithm [21], which we call
gSpan-retrieval. It does not use geometric information and
the search tree is pruned as soon as the pattern is not in-
cluded in the given query graph. However, gSpan-retrieval
is exponential-delay, due to the minimum DFS code checks
in the gSpan algorithm. While our proposed method is
slower than gSpan-retrieval in practice, we prove that our
method has polynomial-delay [9].

In experiments, we used four chemical datasets with 3D
atomic coordinates. In efficiency comparison with gSpan-
retrieval, we will show that the geometric information re-
duces the number of frequent patterns found significantly.
While the computational time per pattern of our method is
much larger than that of gSpan-retrieval, when the mini-
mum support threshold is decreased, the number of patterns
of gSpan explodes super-exponentially to an intractable
level, whereas our method can keep the number of pat-
terns small due to the discriminative geometry required for
matching. To prove that our small set of geometric patterns
are still informative, naive Bayes prediction of chemical ac-
tivities is performed based on our patterns and the patterns
by gSpan-retrieval. On the four data sets examined, the pre-
diction accuracy is improved significantly on three sets.

2. Method
In order to describe our method we first define the notion

of geometric graph and geometric ε-subgraph.

Definition 1 (Geometric graph) A labeled, connected,
undirected geometric graph G = (V,E,LV ,LE , CV) con-
sists of a vertex set V ⊂ N, an edge setE ⊆ V ×V , a vertex
labeling LV : V → N, an edge labeling LE : E → N and
vertex coordinates CV : V → Rd, assigning each vertex a
vector in Rd. Let G denote the set of all possible geometric
graphs and let ∅ ∈ G denote the empty graph.

Definition 2 (Geometric ε-subgraph relation) Given two
geometric graphs g1 = (V1, E1,LV1 ,LE1 , CV1), g2 =
(V2, E2,LV2 ,LE2 , CV2), g1, g2 ∈ G, and a geometric tol-
erance ε ≥ 0, we define g1 ⊆ε g2 to be true if and only

if ∃(m,T), m : V1 → V2 injective and complete on V1,
T : Rd → Rd with T being a rigid transformation, such
that

1. ∀i ∈ V1 : LV1(i) = LV2(m(i)), the vertex labels are
matched, and

2. ∀(i, j) ∈ E1 : (m(i),m(j)) ∈ E2,LE1(i, j) =
LE2(m(i),m(j)), all edges of g1 also exist in g2 with
the correct label, and

3. ∀i ∈ V1 : ‖CV1(i) − T (CV2(m(i)))‖ ≤ ε, the geom-
etry matches under transformation up to the required
tolerance.

We write g2 ⊇ε g1 iff g1 ⊆ε g2. Also, we write g1 ⊂ε g2 iff
g1 ⊆ε g2 and |V1| < |V2|.

Problem 1 (Frequent geometric subgraph retrieval)
For a given geometric query graph q ∈ G, a geometric
graph database G = {g1, . . . , g|G|}, gi ∈ G, a minimum
support threshold s > 0, and a geometric tolerance ε ≥ 0,
find all g ∈ G with g ⊆0 q such that g is frequent enough in
G, i.e. |{i = 1, . . . , |G| : g ⊆ε gi}| ≥ s.

Comparing Problem 1 with a general frequent mining
problem we note that it allows tolerant matching into the
database for counting the support, but requires exact match-
ing in the query graph. This simplification with regards to
the query graph makes it tractable to solve the problem effi-
ciently, as the set {g ∈ G : g ⊆0 q} is finite. This also over-
comes the pattern ambiguity problem by making the query
graph the canonical reference.

Our proposed method solves Problem 1 and is composed
of two parts, i) the enumeration of all g ⊆0 q by means
of reverse search and, ii) the geometric matching g ⊆ε gi
within the graph database. By integrating these two steps,
we can prune large parts of the search space efficiently with-
out losing any frequent ε-subgraph. We now discuss the two
parts separately.

2.1. Reverse Search Enumeration

We generate candidate frequent geometric subgraphs by
recursively enumerating the set of all exact geometric sub-
graphs of the query graph, i.e. {g ∈ G : g ⊆0 q} and explic-
itly checking the frequency in the geometric graph database.

Enumerating all subgraphs of a given graph is itself a
non-trivial problem. To solve the subgraph enumeration
problem efficiently, we use the reverse search algorithm [2].
We establish polynomial delay and output-polynomial time
complexity for our algorithm.

In the general reverse search framework, we enumerate
elements from a set X by means of a reduction mapping
f : X → X . The reduction mapping reduces any ele-
ment from X to a “simpler” one in the neighborhood of

2

the input element. The mapping is chosen such that when
it is applied repeatedly, we eventually reduce it to some
solution elements in the set S ⊂ X . Formally, we write
∀x ∈ X : ∃k ≥ 0 : fk(x) ∈ S. In our subgraph enu-
meration problem, we identify X with the set of all possible
connected labeled graphs G. This setting is similar to the
enumeration of all connected induced subgraphs in Avis and
Fukuda [2]; but here we distinguish connected subgraphs
also on the presence of edges. To this end, the mapping
f : G → G removes either one edge or one vertex-edge. By
evaluating the mapping repeatedly the graph is shrunk to the
empty graph. Thus, here we have S = {∅}. Precisely, we
define the reduction mapping as follows.

Definition 3 (Reduction Mapping fq) Given a geometric
query graph q ∈ G, a geometric graph g ∈ G such that g ⊆0

q, i.e. g is an exact geometric subgraph of the query graph,
and let UEq : Eq → N and UVq : Vq → N be an index
labeling assigning unique indices to edges and vertices of
q, respectively. We then define the mapping fq : G → G
which reduces g to fq(g), with g ⊃0 fq(g) by performing
the following actions.

1. If g contains one or more edges forming a cycle, the
graph fq(g) is the same as g, with the edge corre-
sponding to the highest-index cycle-edge in q removed.

2. If g contains no edges forming a cycle, the graph fq(g)
is the same as g, with the leaf vertex corresponding
to the highest-index vertex in q and its adjacent edge
removed, if it exist. A vertex is said to be a leaf, if it
only has one adjacent edge.

Clearly the above mapping is well-defined because each
possible graph g ⊆0 q is successively reduced to the empty
graph in a unique way. By considering fq(g) for all possible
g ∈ G, g ⊆0 q, a reduction tree is defined, with ∅ ∈ G being
the root node. Reverse search performs subgraph enumera-
tion by inverting the reduction mapping such that the tree is
explored from the root node towards the leaves.

The inverse mapping f−1
q : G → G∗ generates for a

given graph g ⊆0 q a set X of enlarged graphs g′ ∈ X ,
g′ ⊃0 g, g′ ⊆0 q such that fq(g′) = g. The inverse mapping
follows uniquely from definition 3.

By recursively evaluating f−1
q we can traverse the tree

and thus efficiently enumerate all subgraphs of q with-
out generating duplicate subgraphs. We consider the sec-
ond subproblem of geometrically matching the enumerated
graphs in the graph database.

2.2. Matching with tolerances
Checking the geometric ε-subgraph relation requires one

to test whether g ⊆ε gi is satisfied. In this paper we limit
ourselves to the practically relevant case of 3D vertex co-
ordinates, i.e. CV : V → R3 and rigid transformations.

However, our algorithm works for arbitrary dimensions and
transformations.

For the 3D case, we parametrize the general rigid
transformation matrix using homogeneous coordinates by
a translation vector (tx, ty, tz) and three rotation angles
(α, β, γ) around the canonical axes. The resulting ma-
trix is shown in Figure 1. Consider the question whether
there exist a set (α, β, γ, tx, ty, tz) of parameters such that
we can align two given point sets X = {x1, . . . , xN},
Y = {y1, . . . , yN}, xi, yi ∈ R3 such that the norm
between each original point and the matched point un-
der the transformation satisfies a given tolerance ε ≥ 0,
i.e. whether ∃ (α, β, γ, tx, ty, tz) : ∀i = 1, . . . , N :
‖xhi − T (α, β, γ, tx, ty, tz)yhi ‖ ≤ ε, where xh and yh

are the homogeneous extensions of x and y, respec-
tively.1 The “no-effect” transformation is simply T0 :=
T (0, 0, 0, 0, 0, 0). We directly minimize the squared er-
ror

∑N
i=1 ‖xhi − T (α, β, γ, tx, ty, tz)yhi ‖2 using BFGS [3].

This six-dimensional minimization problem is non-convex,
however for the case of R3 we consider here we are guar-
anteed to obtain the optimal solution, essentially because
we add one vertex at a time and all six parameters can be
uniquely recovered from three or more non-collinear ver-
tex correspondences. By solving the above optimization
problem we can determine whether a good alignment ex-
ists. Now we have the two ingredients – subgraph enumera-
tion and geometric matching – necessary to state the whole
algorithm.

2.3. Algorithm
The algorithm uses location sets LG(g) which map the

occurrence of a geometric subgraph g into the geometric
graph database G. Let LG(g) = {(i,m, T) : g ⊆ε
giwith node-matching m under rigid transformation T}.
Algorithm 1 consists of three functions, FREQGEO, MINE

Algorithm 1 Frequent Geometric Subgraph Retrieval
Input: database G = (g1, . . . , g|G|), gi ∈ G,

query q ∈ G, minsup s ≥ 1, tolerance ε ≥ 0.
Algorithm:

1: function FREQGEO(G, q, s, ε)
2: MINE(G, ∅, q, s, ε, {(i, ∅, T0) : i = 1, . . . , |G|})
3: end function
4: function MINE(G, g, q, s, ε, LG(g))
5: if |LG(g)| < s return . support satisfied?
6: REPORT(g, LG(g), g is visited for the first time)
7: X ← f−1

q (g) . All valid extensions of g in q
8: for g′ ∈ X do . For all extensions, recurse
9: MINE(G, g′, s, τ,

10: FILTERLOCATION(G,LG(g), g′, g, ε))
11: end for
12: end function

and FILTERLOCATION. The main function is MINE,
1xh = [x′, 1]′.

3

T (α, β, γ, tx, ty, tz) :=

264 cos(α) cos(β), cos(α) sin(β) sin(γ)− sin(α) cos(γ), cos(α) sin(β) cos(γ) + sin(α) sin(γ), tx
sin(α) cos(β), sin(α) sin(β) sin(γ) + cos(α) cos(γ), sin(α) sin(β) cos(γ)− cos(α) sin(γ), ty
− sin(β) cos(β) sin(γ) cos(β) cos(γ), tz

0, 0, 0, 1

375
Figure 1. General 3D rigid transformation matrix used.

which is called once for each node visited in the reverse
search tree. The main loop in line 8 calls MINE for all
child nodes of the current node, effectively walking the
reverse search tree in a depth-first fashion. While this tree
walk is performed, a location list of occurrences of the
current geometric subgraph is kept and updated by means
of the FILTERLOCATION function. The FILTERLOCATION
function is called for each g′ ⊃0 g extension where all
matches of g are recorded in a location list. It filters the
location list such that only those matches in gi ∈ G are
kept which fulfill g′ ⊇ε gi.

The predicate “g is visited for the first time” in line 6 of
the algorithm tests whether it is globally the first visit of g
as a ε-subgraph. Without limit of generality we can assume
q ∈ G, then this check can be performed in O(1), as then
all occurrences of g ⊆ε q are in the location list LG(g) in
a unique order; therefore we simply have to check if g is
the first element in q’s location list.2 Based on the value
of this predicate, the REPORT function can decide whether
to report only the first occurrence of g ⊆ε q, immediately
returning whenever the predicate is false, or to report every
occurrence of g ⊆0 q, g′ ⊆0 q, even if both g ⊆ε g′ and
g′ ⊆ε g hold. For all experiments we use the first option.

Complexity Analysis. We now state that Algorithm 1 for
the important case of coordinates in R3 enumerates all fre-
quent geometric subgraphs of a given query graph with
polynomial delay and therefore in output polynomial time.

Theorem 1 (Polynomial delay) For a geometric graph
database G of N geometric graphs, a query graph q ∈ G,
a minimum support s ≥ 1 and matching tolerance ε ≥ 0,
the time between two successive calls to REPORT in line 6
is bounded by a polynomial in the dimensions of input data.

Proof sketch. (ommitted in the short version of the paper.)
For pattern mining algorithms, output polynomial time

follows from polynomial delay.

3. Experiments and Results
We will now evaluate the proposed algorithm in three

experiments. As data sets we use chemical compound data
sets for structure-activity relationship (SAR) prediction of
Sutherland, O’Brien and Weaver [19]. The data sets con-
tain specific molecules; the BZR data set contains ligands
for the benzodiazepine receptor, the COX data set contains

2If q /∈ G, we define G′ = G ∪ {q} and perform mining on G′ with
minimum support increased by one.

cyclooxygenase-2 inhibitors, the DHFR data set contains
inhibitors of dihydrofolate reductase and the ER data set
contains estrogen receptor ligands. Besides containing re-
lated molecules, the data set additionally comes with activ-
ity labels. Not all of the samples present in the data sets
are labeled; the labeled samples have a binary label, being
either -1 or 1. Table 1 shows the number of molecules in
the different data sets as well as the number of labeled sam-
ples in the provided training and testing splits. In the first

Dataset name Number of Chemicals Training samples Test samples
BZR 3D 405 181 125
COX2 3D 467 178 125
DHFR 3D 756 233 160
ER 3D 1009 266 180

Table 1. Datasets used in the experiments.

experiment we assess empirically the runtime and number
of retrieved subgraphs of our algorithm and compare it to
gSpan-retrieval, a modified version of the popular gSpan
graph mining algorithm [21]. The second experiment is
concerned with the discriminativeness of the geometric sub-
graph features. In the third experiment we show a retrieval
application in which similar compounds are retrieved using
geometric subgraph features, where similarity is measured
by means of the χ2-distance on histograms of geometric
subgraph features.

3.1. Experiment 1: Runtime

To assess the empirical runtime of our proposed algo-
rithm we conduct the following experiment. We select ten
random chemicals from the 405 molecules of the BZR 3D
database. For minimum supports in the range 20 to 405
we perform subgraph retrieval using FreqGeo and gSpan-
retrieval, a modified version of the open-source gSpan im-
plementation available in the gboost toolbox3. We modify
gSpan such that at each extension step an additional prun-
ing condition is checked for: the current frequent subgraph
must appear also in a given query graph. Thus, the two al-
gorithms perform the same task, except that FREQGEO re-
quires the 3D geometry to match, while the modified gSpan
retrieval algorithm does not use 3D geometry at all. The
runtime over all ten query molecules is averaged. Regard-
ing the runtime, we expect a tradeoff between the following
two effects in FREQGEO geometric subgraph retrieval, i)

3http://www.kyb.tuebingen.mpg.de/bs/people/
nowozin/gboost/

4

more expensive extension and matching due to the 3D ge-
ometry check, ii) more discriminative matching for larger
subgraphs due to 3D geometry.

0 100 200 300 400 500
10

−1

10
0

10
1

10
2

10
3

10
4

Runtime versus minimum support

Minimum support

A
v
e
ra

g
e
d

 r
u
n

ti
m

e

gSpan retrieval

FreqGeo geometric retrieval

Figure 2. Runtime: gSpan-retrieval, FreqGeo.

0 100 200 300 400 500
10

0

10
1

10
2

10
3

10
4

10
5

Number of frequent subgraphs versus minimum support

Minimum support

N
u

m
b

e
r

o
f

fr
e

q
u

e
n

t
s
u

b
g

ra
p

h
s

gSpan retrieval

FreqGeo geometric retrieval

Figure 3. Avg. count of frequent subgraphs.

Figure 2 shows the averaged runtime for both gSpan-
retrieval and FREQGEO subgraph retrieval, Figure 3 the
number of frequent subgraphs found. We see that gSpan
is faster by roughly two orders of magnitude for high values
of minimum support and by roughly one order to magni-
tude for low minimum support. For a minimum support
below 90, the used implementation of gSpan-retrieval starts
to exhausts the main memory of our system, whereas we
use FREQGEO to mine down to a minimum support of 20.

The smaller number of patterns returned by FREQGEO
provides a better interpretability: a small set of geomet-
ric subgraphs returned by our algorithm (around 1000 for
a minimum support of 20) is more interpretable than a large
one (around 30,000 for a minimum support of 90) of non-
geometric subgraphs returned by gSpan-retrieval. Thus, ge-
ometry aids interpretability.

3.2. Experiment 2: Geometric Features
We have shown that the number of patterns is re-

duced dramatically by introducing the geometric con-
straints. However, it could be the case that important in-
formation is lost by pattern set reduction. To check this,
we perform simple supervised classification to compare our
geometric patterns with non-geometric ones.

In principle, retrieval methods are not directly amenable
to supervised learning, because the feature space created by

patterns depends on a query graph. It would be possible to
create a feature space by collecting patterns retrieved from
several query graphs, but then the problem is how to select
query graphs optimally. For supervised classification based
on non-geometric patterns, please refer to [17, 13] and ref-
erences therein. For 3D QSAR analysis, several prediction
methods such as CoMFA have been proposed [7, 18]. In
this experiment, we would like to measure the remaining in-
formation in our geometric patterns, instead of confronting
state-of-the-art methods in accuracy.

For each of the chemical compound database used in
the previous experiment, the training and testing subsets
are combined. On these four geometric graph sets we per-
form geometric subgraph retrieval on ten randomly selected
chemical compounds from the training set of each database.
For each graph set, we use the class labels of only the train-
ing subset to train a naive Bayes classifier on the retrieved
features. The classifier is used to predict the labels of the
test sets. The same experiment is performed with the re-
trieval version of gSpan with identical settings but not mak-
ing use of geometric information. The subgraph retrieval,
both for FREQGEO and gSpan-retrieval is performed using
a minimum support of 75. For the naive Bayes classifier,
we use the class conditional m-estimate of the probability
of a graph sj appearing as subgraph of a given test graph

g as p(sj ⊆ε g|y = 1) ≈
PN
n=1 I(sj⊆εgi)+mpPN
n=1 I(yn=1)+m

, where m is
the equivalent sample size and p is the prior probability, see
e.g. [12]. We use m = 1 and p = 1

2 for all experiments.
The probability estimate for p(sj ⊆ε g|y = −1) is used
analogously. With these per-feature probability estimates
we consider the naive Bayes classifier log-odds φ(g) =
log p(y=1|g)

p(y=−1|g) = log p(y=1)
p(y=−1) +

∑
j log p(sj⊆εg|y=1)

p(sj⊆εg|y=−1) . If
the log-odd is positive, g is predicted to be in the positive
class, otherwise its negative. To evaluate the predictive per-
formance for the test set, we consider the ROC Area Under
Curve (AUC) and ROC Equal Error Rate (EER) [5]. The
results shown in Table 2 demonstrate that for some of the
data sets using geometry improves the performance of our
simple classifier. It implies that the information required in
activity prediction is well preserved in our small geometric
pattern set.

FREQGEO gSpan retrieval
Dataset ROC AUC ROC EER ROC AUC ROC EER
BZR 3D 0.6585±0.026 0.6559±0.029 0.6096±0.025 0.6125±0.024

COX2 3D 0.7109±0.010 0.6325±0.012 0.6952±0.029 0.6159±0.019
DHFR 3D 0.7447±0.030 0.6732±0.030 0.6868±0.051 0.6311±0.060

ER 3D 0.7241±0.065 0.6743±0.061 0.7222±0.064 0.6741±0.050

Table 2. Averaged test set classifications.

3.3. Experiment 3: Retrieval by Similarity

As last experiment we assess the retrieval application.
In this setting, a query graph is given to the algorithm and

5

similar graphs should be retrieved from the database. In
order to rank the graphs from a database G by similarity
to a query graph q, we perform frequent geometric sub-
graph retrieval on q in the database G and consider the
histogram hq and hg of occurrences of the retrieved fre-
quent subgraphs in q and g ∈ G. The χ2-distance is
a natural metric for these histogram representation, and
we simply rank all database graphs by the χ2-distance as
χ2(hq, hg) =

∑
{n:hqn+hgn>0}

(hqn−h
g
n)2

hqn+hgn
, where hn is the

number of occurrences of the n’th frequent geometric sub-
graph found. In Table 3 the top five matching graphs for a
set of query graphs in the BZR 3D database are shown. We
used a minimum support of 20. While subjective, the or-
der demonstrates the ability of retrieving similar chemical
compounds, by graph structure and geometry.

Query Ranking results

Table 3. Rankings on the BZR dataset.

4. Conclusion
We have proposed and experimentally evaluated an algo-

rithm able to retrieve frequent geometric subgraph patterns.
The retrieved subgraphs are allowed to match up to a pre-
specified geometric tolerance. We believe our contribution
is a novel and clean method to robustly use geometry in-
formation for subgraph retrieval and will be especially use-
ful in computational biology. Previous approaches require
either exact matches and thus are not robust, or discretize
or heuristically summarize geometric information into edge
or vertex attributes, the effects of which on are hard to un-
derstand. The proposed algorithm overcomes the pattern
ambiguity problem of these previous approaches. Instead
of asking for globally frequent geometric subgraphs in a
graph database, we remove all ambiguities by establishing
a single query graph as reference for geometric matching.
This simplifies the problem, but it also makes sense when
statistics such as similarity to the query graph are the object
of interest, for example in classification applications where
mining is used to generate meaningful features. Our imple-
mentation is available at http://www.kyb.mpg.de/
bs/people/nowozin/freqgeo/.

Acknowledgments. This work is funded in part by the EU CLASS
project, IST 027978 and the PASCAL Network of Excellence.

References

[1] H. Arimura, T. Uno, and S. Shimozono. Time and space
efficient discovery of maximal geometric subgraphs. In Dis-
covery Science 2007, pages 42–55, 2007.

[2] D. Avis and K. Fukuda. Reverse search for enumeration.
Discrete Appl. Math., 65:21–46, 1996.

[3] D. P. Bertsekas. Nonlinear Programming. Athena, 1999.
[4] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis.

Frequent substructure-based approaches for classifying
chemical compounds. IEEE Trans. Knowledge and Data En-
gineering, 17(8):1036–1050, 2005.

[5] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements
of Statistical Learning. Springer, July 2001.

[6] L. Holm and C. Sander. Dali: a network tool for protein
structure comparison. Trends Biochem Sci, 20(11):478–480,
1995.

[7] H. Hong, H. Fang, Q. Xie, R. Perkins, D. Sheehan, and
W. Tong. Comparative molecular field analysis (CoMFA)
model using a large diverse set of natural, synthetic and en-
vironmental chemicals for binding to the androgen receptor.
SAR and QSAR in Environmental Research, 14(5-6):373–
388, 2003.

[8] J. Huan, D. Bandyopadhyay, W. Wang, J. Snoeyink, J. Prins,
and A. Tropsha. Comparing graph representations of protein
structure for mining family-specific residue-based packing
motifs. J Comput Biol, 12(6):657–671, 2005.

[9] D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On
generating all maximal independent sets. Information Pro-
cessing Letters, 27:119–123, Mar. 1988.

[10] T. Kudo, E. Maeda, and Y. Matsumoto. An application of
boosting to graph classification. In NIPS, 2004.

[11] M. Kuramochi and G. Karypis. Discovering frequent geo-
metric subgraphs. In ICDM, pages 258–265, 2002.

[12] T. M. Mitchell. Machine Learning. McGraw-Hill, 1997.
[13] S. Nowozin, K. Tsuda, T. Uno, T. Kudo, and G. H. Bakır.

Weighted substructure mining for image analysis. In CVPR,
2007.

[14] B. J. Polacco and P. C. Babbitt. Automated discovery of
3d motifs for protein function annotation. Bioinformatics,
22(6):723–730, 2006.

[15] R. B. Russell. Detection of protein three-dimensional side-
chain patterns: new examples of convergent evolution. J Mol
Biol, 279(5):1211–1227, 1998.

[16] H. Saigo, T. Kadowaki, and K. Tsuda. A linear programming
approach for molecular QSAR analysis. In MLG, 2006.

[17] H. Saigo, S. Nowozin, T. Kadowaki, T. Kudo, and K. Tsuda.
A mathematical programming approach to graph classifica-
tion and regression. Machine Learning, 2008.

[18] L. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, and R. Blair.
QSAR models using a large diverse set of estrogens. J.
Chem. Inf. Comput. Sci., 41:186–195, 2001.

[19] J. J. Sutherland, L. A. O’Brien, and D. F. Weaver. Spline-
fitting with a genetic algorithm: A method for develop-
ing classification structure-activity relationships. Journal of
Chemical Information and Computer Sciences, 43(6):1906–
1915, 2003.

[20] K. Tsuda and T. Kudo. Clustering graphs by weighted sub-
structure mining. In ICML, 2006.

[21] X. Yan and J. Han. gspan: graph-based substructure pattern
mining. In ICDM, pages 721–724, 2002.

6

