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Abstract

In web-related applications of image categorization, it is
desirable to derive an interpretable classification rule with
high accuracy. Using the bag-of-words representation and
the linear support vector machine, one can partly fulfill the
goal, but the accuracy of linear classifiers is not high and
the obtained features are not informative for users. We pro-
pose to combine item set mining and large margin classi-
fiers to select features from the power set of all visual words.
Our resulting classification rule is easier to browse and sim-
pler to understand, because each feature has richer infor-
mation.

As a next step, each image is represented as a graph
where nodes correspond to local image features and edges
encode geometric relations between features. Combining
graph mining and boosting, we can obtain a classification
rule based on subgraph features that contain more infor-
mation than the set features. We evaluate our algorithm
in a web-retrieval ranking task where the goal is to re-
ject outliers from a set of images returned for a keyword
query. Furthermore, it is evaluated on the supervised clas-
sification tasks with the challenging VOC2005 data set.
Our approach yields excellent accuracy in the unsupervised
ranking task compared to a recently proposed probabilistic
model and competitive results in the supervised classifica-
tion task.

1. Introduction
In the last decade the development of inexpensive digital

cameras and the growth of the Internet produced a wealth
of easily accessible digital image content. Despite some re-
search progress, the ability of programs to automatically in-
terpret the content of images, or even just assisting a human
user to sort or group images is still rather limited, both in
terms of accuracy and scalability. For example, thousands
of images are easily retrieved using keyword searching by,
e.g., Google Image. Typically they contain outlier images
that do not semantically match what the user really wanted.
Therefore it would be helpful if a machine learning algo-
rithm can identify those outliers automatically [6]. Another
attractive task would be to classify retrieved images auto-
matically into folders. This is basically a supervised multi-
class image classification problem.

Images can be modeled as collections of parts, as is done
e.g. in the popular bag-of-words model. Given such rep-
resentation we can try to identify patterns that frequently
appear among the images. Cheng et al. [1] recently showed
under moderate assumptions that frequent patterns are more
likely to be discriminative for telling apart samples of dif-
ferent classes. Motivated by this result, we propose to use
frequent item set mining on the bag-of-words representation
in order to identify likely discriminative patterns in a col-
lection of images. By combining this mining step with a
1-class linear ν-SVM we obtain a function to rank each im-
age by the similarity to the overall collection of images. We
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apply the algorithm in a purely unsupervised setting to de-
tect outlier images in a web-retrieval task where images are
the result to a keyword query.

In supervised classification where we have known train-
ing class labels we can directly search for the most dis-
criminative patterns instead of assuming frequent patterns
to be the most discriminative ones. By using weighted sub-
structure mining algorithms the patterns maximizing a score
function can be sought efficiently. We obtain a classification
function using these patterns by combining the weighted
mining with linear programming boosting [2] to a new clas-
sifier termed item set boosting. This new classifier allows us
to iteratively build an optimal classification rule as a linear
combination of simple and interpretable hypothesis func-
tions, where each hypothesis function checks for the pres-
ence of a combination of visual codewords.

The proposed approach is flexible and works for other
image representations as well. In this paper, we demonstrate
this by replacing the bag-of-words representation with one
based on labeled connected graphs. In the graph each vertex
represents a local image feature and the geometric relation-
ships between the features are encoded as edge attributes.
Instead of item sets, the discriminative patterns are sub-
graphs, which capture co-occurrence of multiple features as
well as their geometric relationships.

An advantage of using efficient weighted substructure
mining algorithms is that we can exhaustively search very
large pattern spaces. For the bag-of-words representation
with n codewords we effectively search a pattern space
containing potentially O(2n) patterns. For subgraphs the
pattern space is an order of magnitude larger, yet efficient
graph mining techniques still allow us to search the space
exhaustively.

We start with a short overview of recent approaches to
object classification in the presence of clutter. In Section 2
we discuss our approach to unsupervised image ranking and
evaluate it experimentally. In Section 3 we describe our ap-
proach to supervised object classification. The main com-
ponents, generalized weighted substructure mining and the
LPBoost algorithm, are described in detail and are experi-
mentally validated. Finally, Section 4 contains a summary
of the results.

1.1. Literature Review

Some researchers have concentrated on evaluating and
improving the features used for object classification [22, 15,
8]. If the features are expressive enough, simple classifiers
such as Support Vector Machines can be used successfully
for learning. Adapted versions of SVMs and Boosting have
also been used [21, 17].

Quack et al. [11] use frequent item set mining on interest
points extracted for each video frame in a video sequence.
Each frame becomes a set of interest points and frequent

spatial configurations corresponding to individual objects
are found from these sets. An earlier similar work is Sivic
and Zisserman [16].

Russell et al. [13] discover object classes in an unsuper-
vised setting. Given many images, for each image a set of
feature points are extracted. Additionally each image is seg-
mented into regions multiple times, varying the segmenta-
tion parameters. Each segment covers a set of interest points
and the problem of identifying object classes is posed as the
problem of finding segments that consistently share similar
interest points in one region. They demonstrate that natural
object classes are recovered.

2. Unsupervised image ranking
Consider the task of keyword based image retrieval,

where for a given keyword a set of images x1, x2, . . . , xN
is retrieved. Most of the images will be related to the key-
word, but there will be a small fraction of images that do not
relate to the keyword. Patterns which consistently appear in
the samples are likely to be discriminative for sorting out
the outliers.1

For this ranking task we use the bag-of-words represen-
tation commonly used in computer vision based on local
image features. Local image features are a sparse repre-
sentation for natural images. Modern local feature extrac-
tion methods work in two steps. First, an interest point
operator defined on the image domain extracts a set of
interest points [9]. Second, the image information in the
neighborhood around each interest point is used to build a
fixed-length descriptor such that invariance and robustness
against common image transformations is obtained [10].
We assume that each extracted interest point pi has image
coordinates pi.coords ∈ R2 and relative scale information
pi.scale ∈ R+. For each image, a set of local image fea-
tures is extracted and the feature descriptors are projected
onto a set of discrete “visual words” from a codebook. The
codebook is created a-priori by k-means clustering. The
discretization is carried out using nearest-neighbor match-
ing to the codebook vectors.

2.1. Method

Denote by d the number of visual words in the codebook.
An image is represented as a set of visual words, equiva-
lently d-dimensional binary vector x ∈ {0, 1}d. In item set
mining, a pattern t ∈ {0, 1}d is also defined as a set of vi-
sual words. A pattern t is included in x, i.e., t ⊆ x, if for
all ti = 1 we also have xi = 1. Denote by T the set of
all possible patterns, whose number of non-zero elements
is between tmin and tmax. Denote by I(·) the indicator
function that is 1 if the condition inside is satisfied and 0

1The relationship between frequency of a pattern and its discriminative
information has recently been examined by Cheng et al. [1].
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Figure 1. Search tree for frequent item set mining. Not all combi-
nations are visited due to pruning.

otherwise. Given a set X = {x1, . . . ,xN}, the support of
a pattern t in a setX is the number of times it appears in the
elements of X , such that support(t;X) =

∑
n I(t ⊆ xn).

Frequent substructure mining is defined as follows

Problem 1 (Frequent substructure mining) Given a
minimum support threshold τ , find the complete set
of patterns T = {t1, . . . , t|T |}, ti ∈ T , such that
support(t;X) ≥ τ .

We used the Linear time Closed item set Miner (LCM) al-
gorithm of Uno et al. [18]. There are two types of item set
mining algorithms, apriori and backtracking. LCM is an
instance of the latter and frequent item sets are found in a
search tree as in Figure 1. The key idea of efficient mining
is to exploit the anti-monotonicity, namely the frequency of
a pattern is always smaller than or equal to that of its sub-
pattern,

t ⊆ t′ ⇒ support(t;X) ≥ support(t′, X).

The tree is generated from the root with an empty pattern,
and the pattern of a child node is made by adding one item.
As the pattern gets larger, the frequency decreases monoton-
ically. If the frequency of the generated pattern t is less than
m, it is guaranteed that the frequency of any superpattern of
t′ ⊇ t is also less than m. Therefore, the exploration is
stopped there (i.e., tree pruning). By repeating node gener-
ation until all possibilities are checked, all frequent patterns
are enumerated.

The runtime complexity of LCM is output linear, namely
the time is linear to the number of visited nodes in the search
space. So if the minimum support threshold is large and the
search space is limited well, LCM finishes in a short time.
It is hard to theoretically relate the complexity to the num-
ber of examples `, but practically LCM shows linear time
growth (see Figure 2). In our experience, item set boost-
ing was much faster than the support vector machine taking
O(`2) time with a nonlinear kernel. We set the threshold
τ such that the k most frequent patterns T = {t1, . . . , tk}
are extracted. For each image xi, a binary vector is built as
Vi = [I(t1 ⊆ xi), . . . , I(tk ⊆ xi)], Vi ∈ {0, 1}k, which is

the new representation for each image. On this new repre-
sentation we train a 1-class ν-SVM classifier with a linear
kernel [14]. The ν-SVM has a high response for “proto-
typical” samples. Thus, we establish a ranking by ordering
the samples according to the output of the trained classifier.
Samples on top of the list are more likely to contain what
the user is looking for.

2.2. Experiments and Results

To evaluate the performance of our ranking approach we
use the dataset of 5245 images from Fritz and Schiele [6].
The images were obtained by keyword searches for “mo-
torbikes” and vary widely in shape, orientation, type and
background scene. All images were assigned labels based
on whether they actually show a motorbike or not; the labels
are only used to measure the performance of the method and
are never used in the training phase. Of all downloaded im-
ages, 194 images do not contain motorbikes and our task is
to identify these outliers.

While model selection in unsupervised settings can be
difficult, our algorithm has only two free parameters, the
number of patterns k to mine and the SVM ν-parameter.
The SVM ν parameter is an upper bound on the fraction of
outliers the final classifier will produce and thus can be cho-
sen to be roughly equal to the expected number of outliers.
As we only consider the relative ranking of the images, the
choice of ν turned out to be not critical and the results are
consistent over a large range of values. The number of pat-
terns k is fixed to k = 128 across all runs because initial
experiments have shown this value is a good tradeoff be-
tween the extreme cases of having too few patterns – some
samples contain no selected pattern at all – and too many
patterns, most of which are not very discriminative.

The results for the unsupervised ranking are shown in Ta-
ble 1.2 The ROC curve produced by our approach is shown
in Figure 3, the top 100 and bottom 100 images are shown in
Figure 6. The interpretability of the most influential patterns
is shown in Figure 5, the distribution of weights for the indi-
vidual frequent patterns is given by Figure 4. The “baseline
histogram” results are obtained by normalizing the bag-of-
words vector and applying a linear 1-class ν-SVM. For the
80 Harris-Laplace and the dense 300 Hessian-Laplace bags
we used a codebook size of 64 and 192 words, respectively.
This choice is rather arbitrary, but the performance is com-
parable over large variations of the codebook sizes.

The runtime of the item set ranking is dominated by the
feature extraction and training of the 1-class classifier. The
mining step is very fast, as shown on Figure 2.3

2The ROC Equal Error Rate (EER) score shown for the results from
Fritz and Schiele [6] is measured from their ROC curve, as the numerical
value is not explicitly given.

3The measurements were taken on a P4 2.4 GHz system.
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Figure 2. Runtimes of the LCM item set
mining, averaged over 10 runs. The top 20
frequent item sets are returned for different
number of input images, each with 300 dis-
crete elements.
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Figure 3. ROC curve of the unsuper-
vised ranking approach on the Fritz and
Schiele [6] data set.
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Figure 4. Distribution of weights assigned
by the 1-class ν-SVM to the 128 frequent
item set patterns (line 4 in table 1).

Figure 5. Top five most influential patterns. Each row shows the response of the global top five and global bottom five samples for one item
set pattern, where each pattern carries a positive weight. In each image the features responding to the pattern are drawn in blue. As in the
experiment k = 128 has been used and the top five images all have the same total sum as they all contain all frequent patterns. The obvious
mistake in image 5243 is due to particularly low resolution of the image (77x54 pixels). The patterns are interpretable, for example pattern
#19 (second row) captures a wheel and handlebar in the shown images; pattern #100 (third row) captures features on the wheels.

Method EER
Fritz and Schiele [6], appearance 0.66
Fritz and Schiele [6], appearance+struct. 0.71
Item Set based, appearance, 80 HarLap 0.6701
Item Set based, appearance, 300 HesLap 0.7268
baseline histogram, 80 HarLap 0.5514
baseline histogram, 300 HesLap 0.5914

Table 1. Results for the unsupervised image ranking experiment.
The scores are ROC equal error rates (EER).

2.3. Discussion

The baseline results clearly demonstrate that a combina-
tion of individual features alone is not informative enough

for ranking, whereas the item set representation and its use
of combinations of features is achieving state-of-the-art re-
sults. The interpretability of the results is difficult to evalu-
ate quantitatively but clearly responses on background clut-
ter and proper hits on object features and their quantitative
influence can be identified quickly as is illustrated in Fig-
ure 5.

3. Supervised object classification

For supervised two-class object classification we are
given a set of images with known class labels. For the train-
ing phase we assume each image is member of only one
class.



Figure 6. Top 100 vs. bottom 100 ranked samples. The top 100 samples relevant for most web retrieval tasks do not contain any outlier
images. The bottom 100 also contain a considerable number of motorcycles, but this is often due to small resolution images.

3.1. Classification rule

Our classification function is a linear combination of
simple classification stumps h(x; t, ω) and has the form

f(x) =
∑

(t,ω)∈T ×Ω

αt,ωh(x; t, ω). (1)

The individual stumps h(·; t, ω) are parametrized by the
pattern t and additional parameters ω ∈ Ω. We will use
Ω = {−1, 1} and h(x; t, ω) = ω(2I(t ⊆ x) − 1). Also
αt,ω is a weight for pattern t and parameters ω such that∑

(t,ω)∈T ×Ω αt,ω = 1 and αt,ω ≥ 0. This is a linear
discriminant function in an intractably large dimensional
space. To obtain an interpretable rule, we need to obtain
a sparse weight vector α, where only a few weights are
nonzero. In the following, we will present a linear pro-
gramming approach for efficiently capturing patterns with
non-zero weights.

3.2. LPBoost 2-class formulation.

To obtain a sparse weight vector, we use the for-
mulation of LPBoost [2]. Given the training images
{xn, yn}`n=1, yn ∈ {−1, 1}, the training problem is for-
mulated as

min
α,

ξ∈R`
+,

ρ∈R

−ρ+D
∑̀
n=1

ξn (2)

sb.t.
∑

(t,ω)∈T ×Ω

ynαt,ωh(xn; t, ω) + ξn ≥ ρ,

n = 1, . . . , ` (3)∑
(t,ω)∈T ×Ω

αt,ω = 1,

where ρ is the soft-margin, separating negative from pos-
itive examples, D = 1

ν` , ν ∈ (0, 1) is a parameter con-
trolling the cost of misclassification which has to be found

using model selection techniques, such as cross-validation.
Solving the optimization problem (2) is very hard, due to
the large number of variables in α. So we solve the follow-
ing equivalent dual problem instead.

min
λ∈R`

+,
γ∈R

γ (4)

sb.t.
∑̀
n=1

λnynh(xn; t, ω) ≤ γ, (t, ω) ∈ T × Ω

∑̀
n=1

λn = 1

0 ≤ λn ≤ D, n = 1, . . . , `

After solving the dual problem, the primal solution α is ob-
tained from the Lagrange multipliers [2]. The dual problem
has a limited number of variables, but a huge number of
constraints. Such a linear program can be efficiently solved
by column generation techniques: Starting with an empty
pattern set, the pattern whose corresponding constraint is
violated the most is identified and added iteratively. Each
time a pattern is added, the optimal solution is updated by
solving the reduced dual problem.

After one iteration has been completed, the objective
function value γ at the solution of the dual is used to check
for convergence in the next iteration. The next iteration’s
optimal ĥ has to satisfy

∑`
n=1 ynλnĥ(xn) > γ + θ, where

θ is a convergence threshold. For θ = 0, if ĥ does not satisfy
the inequality we converged to the globally optimal solution
and stop iterating.

3.3. Weighted substructure mining

In each iteration of LPBoost we add one constraint to
the linear program. Selecting the constraint to add is the
computationally most expensive step. Therefore the ef-
ficiency of LPBoost depends on how efficiently the pat-
tern corresponding to the most violated constraint of the



dual (4) can be found. The search problem is formulated
as (t̂, ω̂) = argmax

(t,ω)∈T ×Ω

gain(t, ω), where

gain(t, ω) =
∑̀
n=1

λnynh(xn; t, ω). (5)

Problem (5) can be solved using the following generaliza-
tion of frequent substructure mining in which each sample
xn is assigned a weight λn ∈ R.

Problem 2 (Weighted substructure mining) Given a set
X = {x1, . . . ,xN}, xi ∈ T , associated weights
L = {λ1, . . . , λN}, λi ∈ R, and a threshold τ ,
find the complete set of patterns and parameters Tw =
{(t1, ω1), . . . , (t|T |, ω|T |)}, ti ∈ T , ωi ∈ Ω such that for
all ti holds:

∑
n λnh(xn; ti, ωi) ≥ τ .

This problem is more difficult than the frequent substruc-
ture mining, because we need to search with respect to a
non-monotonic score function (5). So we use the following
monotonic bound, gain(t, ω) ≤ µ(t),

µ(t) = max { 2
∑
{n|yn=+1,t⊆xn} λn −

∑`
n=1 ynλn,

2
∑
{n|yn=−1,t⊆xn} λn +

∑`
n=1 ynλn } .

The pattern set Tw is enumerated by branch-and-bound pro-
cedure based on this bound. In the enumeration problem
(Problem 2), the threshold τ is fixed in the whole search
process. To obtain the best pattern, the algorithm should be
slightly modified such that τ is always updated to the cur-
rent best value [7].

Like linear SVM, LPBoost is a very efficient method.
The main computation is to solve a linear program where
the number of variables is equal to the number of images
and the number of constraints is kept small by the column
generation technique. Experimentally, Derimiz et al. [2] ob-
served a linear time growth to the number of examples in
many benchmark datasets.

3.4. Graph Boosting

The bag-of-words model used in item set boosting dis-
cards all information about geometric relationships be-
tween the individual local features. Using graphs of lo-
cal image features we can additionally model the geome-
try. For graphs the weighted substructure mining problem
is tractable using graph mining algorithms; therefore our
framework stays the same and we only replace item sets
with graphs and weighted item set mining with weighted
graph mining. We now define the graphs we use and spec-
ify how geometry is encoded; then briefly discuss which
graph mining algorithm is used.

We define graphs on images as follows. Each interest
point is represented by one vertex and its descriptor be-
comes the corresponding vertex label. We connect all ver-
tices by undirected edges to obtain a completely connected

graph. For each edge a temporary continuous-valued edge
label vector A = [a1, a2, a3] is derived from its adjacent
vertices’ interest points p1, p2, where

a1 = |log (p1.scale/p2.scale)| ,

a2 =
‖p1.coords− p2.coords‖
min{p1.scale, p2.scale}

,

a3 = |sin (max {atan2 (V,W ) , atan2 (−V,−W )})|
V = p1.coords.y − p2.coords.y

W = p1.coords.x− p2.coords.x

These attributes are used to encode the ratio of scales, a
normalized distance and a horizontal orientation measure,
respectively. For a set of graphs, each individual attribute
is normalized across the set to zero mean and unit variance.
The continuous attributes will be discretized.

Graph discretization. A per-class codebook is created
from the continuous vertex and edge attributes using k-
means clustering. The codebooks are concatenated such
that one global vertex codebook and one global edge code-
book is obtained. For each vertex, its continuous attribute
is discretized by searching the nearest neighbor codeword
in the vertex codebook. Let di(x) denote the Euclidean
distance of the i’th nearest neighbor codeword to x. If
d1(x)/d2(x) ≥ σ, we also assign the label of the second
codeword to the node. For all our experiments σ = 0.95.
The above is done analogously to discretize edge attributes.

Weighted graph mining. Yan and Han [19] describe
gSpan, an efficient algorithm to mine frequent subgraphs
for a given set of labeled connected graphs. We use the ex-
tended gSpan version of Kudo et al. [7] to solve Problem 2
for arbitrary weights.

3.5. 1.5-class Classification

For a discriminative classification task, the 2-class LP-
Boost formulation (2) is a good choice. But in a general
object detection and classification setting on natural images
we can have multiple objects within one image, such that
the sample has multiple output labels. Additionally our
training data might contain multiple objects per image or
background clutter.

For such weakly- and multi-labeled data it is more ap-
propriate to describe each object class using a one-class
decision function. In a pure one-class setting a function
f : X → R+ is trained using positive examples from one
class such that f(x) has a high output where x belongs to
the positive class and a low output otherwise. One-class
classifiers based on LPBoost, such as the formulation of
Rätsch et al. [12] do not make use of known negative sam-
ples. Modifications of one-class classifiers incorporating



negative samples are known in the literature as “one class
with negative examples” and rejection-classification prob-
lem [20]; here we call them “1.5-class” classifiers.

The boosting formulation (2) can be changed into a
1.5-class formulation by constraining the base hypotheses
h(·; t, ω) to positive outputs. This way, the classification
stumps cannot reward the absence of a feature as an indica-
tor for a positive class decision. We set Ω = ∅ such that the
new stumps have the form

h(x; t) =
{

1 t ⊆ x
0 otherwise. (6)

The detailed derivation of our novel modification to the LP-
Boost algorithm is included in the supplementary materials.

3.6. Experiments and Results

We evaluate our supervised classification approach us-
ing the VOC2005 dataset [4]. We perform model selection
by training on the training set (“train”) and minimizing the
test error on the validation set (“val”). The optimal param-
eters are then used to train one classifier on the combined
(“train+val”) set. This classifier is evaluated on the two test
sets (“test1” and “test2”). We use the same experimental
procedure as used in the official VOC challenge report [3].

To extract local image features we use the Harris-
Laplace interest point operator and the SIFT feature de-
scriptor [9, 10], extracted by the binaries provided by Miko-
lajczyk4. The interest point operator threshold is adjusted
for each image such that a fixed number of features is ex-
tracted (n = 80, for all our experiments). The exact same
features are used for all experiments. Often, a much larger
number is used in the object classification literature. How-
ever, we want to focus on the relative classification accuracy
of the methods and thus use a small number of features,
such that we can still apply the graph mining exhaustively.

Relative comparison. To compare the relative perfor-
mance of our method with another approach we also imple-
mented the method of Zhang et. al [22], which performed
best in the VOC2005 object classification challenge. In
Zhang’s approach each image is represented by a histogram
of local image feature descriptors. The descriptors are as-
signed to histogram bins by means of a codebook generated
using clustering, as described in Section 3.4. One Support
Vector Machine is trained per class in a one-vs-rest fash-
ion. The kernel function used is the χ2-kernel [5] between
two N -element normalized histograms h, h′.5 Here, A is a
normalization constant set to the mean of the χ2-distances
between all training samples.

4http://www.robots.ox.ac.uk/˜vgg/research/
affine/

5K(h, h′) = exp

„
− 1

A

»
1
2

P
{n:hn+h′

n>0}
(hn−h′

n)2

hn+h′
n

–«
.

Results. The results for five different methods on the su-
pervised classification experiment are shown in Table 2.
The first, χ2-SVM uses histogram features and has a code-
book size of 1024 words. The 1.5-class graph boosting
method uses ν = 0.4 and a codebook of size 64 and 192
for nodes and edges, respectively; the 2-class graph boost-
ing has ν = 0.15 and codebook sizes of 48 and 96. The two
item set boosting results use codebooks of size 512 and 384
and ν = 0.4 and ν = 0.2, respectively.

The results in the supervised object classification task are
competitive to the χ2-SVM approach. Generally and as ex-
pected the graph boosting is doing better than the item set
boosting approach. Also the 1.5-class formulation is on av-
erage doing better than the 2-class LPBoosting. For the eas-
ier test set (“test1”), our boosting approach is consistently
a bit worse than the χ2-SVM one, but for the more difficult
test set (“test2”) the equal error rates of our 1.5-class graph
boosting approach are on-par with the χ2-SVM.

Analyzing the resulting classifiers, in the 1.5-class for-
mulation, for both item set and graph boosting the number
of active patterns in each one-vs-rest classifier, measured by∑
t I(αt ≥ 10−6), is between 25-45.

3.7. Discussion

Considering the results of our supervised approach it is
particularly interesting that we achieve respectable results
using only a linear combination a small number of simple
features. This is the case because our formulation is able
to explicitly select discriminative features from a very large
feature space. The theoretical number of possible item sets
is O(2n), where n is the number of codewords, whereas
the limit for the theoretical number of possible subgraphs is
even larger.

The absolute EER results of the χ2-SVM approach are
below the ones reported in the VOC report [3], but we use
a more sparse representation of only 80 features per image
in order to make a relative comparison of the approaches; in
comparison, for the results reported in [3] Zhang et al. [22]
used an average of over 3000 features per image. For
such a large number of features, the resulting completely-
connected graphs are too large to be mined exhaustively
with current graph mining techniques.

4. Conclusion
Object classification in natural images, supervised or un-

supervised, is a remarkably difficult task. The best per-
forming approaches from the literature based on non-linear
SVMs or sophisticated probabilistic models do not offer an
accessible interpretation of the model parameters. In this
paper we proposed a way to bridge the gap between high
prediction performance and interpretability.

The contribution of this paper is threefold; first, we have



ROC Equal Error Rates
Test set 1, classes Test set 2, classes

Method 1 2 3 4 1 2 3 4
χ2 SVM 0.829 0.728 0.738 0.858 0.665 0.631 0.599 0.687
Graph Boosting, 1.5-class 0.806 0.690 0.668 0.807 0.662 0.621 0.621 0.634
Graph Boosting, 2-class 0.764 0.663 0.679 0.775 0.643 0.564 0.596 0.649
Item Set Boosting, 1.5-class 0.764 0.649 0.655 0.786 0.643 0.569 0.584 0.673
Item Set Boosting, 2-class 0.745 0.647 0.679 0.812 0.615 0.574 0.601 0.667

Table 2. Results for the VOC 2005 data set. The classes are motorbike (1), bike (2), person (3) and car (4). Test set 1 is from the same
distribution as the training set, test set 2 is much more difficult. For all results above, 80 Harris-Laplace features per image have been used.

shown that weighted pattern mining algorithms are well
suited for cluttered image data because they are able to ig-
nore non-discriminate or non-frequent parts. For suitable
patterns they are both efficient and allow interpretability.
Second, we derived and validated two practical methods for
unsupervised ranking and supervised object classification
based on the LPBoost formulation. Third, we introduced
and experimentally validated a 1.5-class generalization to
1-class ν-LPBoosting.

In the future, we plan to overcome the limitations of
a sparse image representation by using a densely sampled
representation efficiently with weighted item set mining in
order to scale the approach to more images and video data.
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