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1. LPBoost
Some details have been omitted from the main presenta-

tion for space reasons and clarity of presentation. Here we
additionally provide a description of the LPBoost algorithm
and a detailed motivation and derivation of the 1.5-class ν-
LPBoost variant.

We also provide a larger image of the unsupervised rank-
ing results.

1.1. LPBoost Algorithm

The LPBoost algorithm is summarized in Algorithm 1.
We use H to denote the space of possible hypothesis. For
weighted substructure mining applications this is H =
{h(·; t, ω)|(t, ω) ∈ T ×Ω}. We denote by hi the hypothesis
selected at iteration i.

Algorithm 1 Linear Programming Boosting (LPBoost)
Input: Training set X = {x1, . . . ,x`},xi ∈ X ,

labels Y = {y1, . . . , y`}, yi ∈ {−1, 1}.
convergence threshold θ ≥ 0.

Output: The classification function f(x) : X → R.
1: λn ← 1

` ,∀n = 1, . . . , `
2: γ ← 0, J ← 1
3: loop
4: ĥ← argmaxh∈H

∑`
n=1 ynλnh(xn)

5: if
∑`
n=1 ynλnĥ(xn) ≤ γ + θ then

6: break
7: end if
8: hJ ← ĥ
9: J ← J + 1

10: (λ, γ) ← solution to the dual of the LP problem,
where γ is the objective function value.

11: α ← Lagrangian multipliers of solution to dual LP
problem

12: end loop
13: f(x) := sign

(∑J
j=1 αjhj(x)

)

1.2. 1.5-class LPBoost

In Figures 1-3 the behaviour of the 1-class, 2-class and
1.5-class classifiers is shown schematically for a 2D toy ex-
ample.

Given a set of positive samples X1 = {x1,1, . . . ,x1,N}
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Figure 1. 2-class classifier: Learning a sep-
aration of positive and negative samples in
feature space.
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Figure 2. 1-class classifier: Learning a de-
scription of the positive class in feature
space using the positive training samples
only.

positive

Figure 3. 1.5-class classifier: Learning a
description of the positive class in feature
space using both positive and negative train-
ing samples.
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Figure 4. Separation as achieved by the 1.5-class LPBoost formu-
lation: the positive samples are separated from the origin by ρ1,
while the output for negative samples is kept below ρ2.

and a set of negative samples X2 = {x2,1, . . . ,x2,M}, we
derive the following new “1.5-class LPBoost” formulation.

min ρ2 − ρ1 +
1
νN

N∑
n=1

ξ1,n +
1
νM

M∑
m=1

ξ2,m (1)

sb.t.
∑
t∈T

αth(x1,n; t) ≥ ρ1 − ξ1,n, n = 1, . . . , N∑
t∈T

αth(x2,m; t) ≤ ρ2 + ξ2,m, m = 1, . . . ,M∑
t∈T

αt = 1,

α ∈ R|T |+ , ρ1, ρ2 ∈ R+, ξ1 ∈ RN+ , ξ2 ∈ RM+

where we directly maximize a soft-margin (ρ1 − ρ2) that
separates positive from negative training samples as illus-
trated in Figure 4. The hypotheses are decision stumps that
reward the presence of a pattern:

h(x; t) =
{

1 t ⊆ x
0 otherwise. (2)

The class decision function is given by thresholding at
the margin’s center (ρ1 + ρ2)/2, such that

f(x) = sign

(∑
t∈T

αth(x; t)− ρ1 + ρ2

2

)
. (3)

Problem (1) can be solved by the LPBoost algorithm [1]

using the following dual LP problem.

max
λ,µ,γ

−γ (4)

sb.t.
N∑
n=1

λnh(x1,n; t)−
M∑
m=1

µmh(x2,m; t) ≤ γ,

t ∈ T (5)
N∑
n=1

λn ≥ 1

M∑
m=1

µm ≤ 1

0 ≤ λn ≤
1
νN

, n = 1, . . . , N

0 ≤ µm ≤
1
νM

, m = 1, . . . ,M.

For solving Problem (4) we again use column-generation
techniques, incrementally adding the most violated con-
straint.

Similarly to the original 2-class LPBoost formulation we
derive the gain function from the constraints on the hypothe-
ses outputs of the dual of (1) to obtain

ĥ = argmax
h∈H

[
N∑
n=1

λnh(x1,n)−
M∑
m=1

µmh(x2,m)

]
, (6)

which is the same as for the 2-class case, except that the
set of samples are explicitly split into two sums. For per-
forming weighted substructure mining efficiently we need
a bound on the gain for a pattern t′. The bound shall be
evaluated using only t, where t ⊆ t′ is subpattern of t′; this
allows efficient pruning in the mining algorithm. For the
new formulation we derive the following new bound on the
gain function. Using the anti-monotonicity property [2] for



any t ⊆ t′ we have

gain(t′) =
N∑
n=1

λnh(x1,n; t′)−
M∑
m=1

µmh(x2,m; t′)

=
N∑
n=1

λnI(t′ ⊆ x1,n)−
M∑
m=1

µmI(t′ ⊆ x2,m)

≤
N∑
n=1

λnI(t′ ⊆ x1,n)

≤
N∑
n=1

λnI(t ⊆ x1,n).

A drawback of the new formulation (1) is the violation of
the closed-under-complementation assumption of Demiriz
et al. [1], hence we are not guaranteed to obtain the op-
timal solution (H,α) among all possible sets and weight-
ings. In practice this never caused any problems and the
convergence behavior measured by an independent test er-
ror is very similar to the 2-class case.

The 1.5-class formulation (1) is a generalization of 1-
class ν-Boosting in Rätsch et al. [3] and we recover the
original formulation when M = 0, that is, when no neg-
ative samples are available.
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