Supplementary Materials: Weighted Substructure Mining for Image Analysis

Sebastian Nowozin, Koji Tsuda Max Planck Institute for Biological Cybernetics Spemannstrasse 38, 72076 Tübingen, Germany

{sebastian.nowozin,koji.tsuda}@tuebingen.mpg.de

Takeaki Uno

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan

uno@nii.jp

Taku Kudo

Google Japan Inc., Cerulean Tower 6F, 26-1 Sakuragaoka-cho, Shibuya-ku, Tokyo, 150-8512, Japan

taku@google.com

Gökhan Bakır

Google GmbH, Freigutstrasse 12, 8002 Zurich, Switzerland

ghb@google.com

1. LPBoost

Some details have been omitted from the main presentation for space reasons and clarity of presentation. Here we additionally provide a description of the LPBoost algorithm and a detailed motivation and derivation of the 1.5-class ν -LPBoost variant.

We also provide a larger image of the unsupervised ranking results.

1.1. LPBoost Algorithm

The LPBoost algorithm is summarized in Algorithm 1. We use \mathcal{H} to denote the space of possible hypothesis. For weighted substructure mining applications this is $\mathcal{H} = \{h(\cdot; t, \omega) | (t, \omega) \in \mathcal{T} \times \Omega\}$. We denote by h_i the hypothesis selected at iteration *i*.

Algorithm 1 Linear Programming Boosting (LPBoost)

Input: Training set $X = \{x_1, \dots, x_\ell\}, x_i \in \mathcal{X}$, labels $Y = \{y_1, \dots, y_\ell\}, y_i \in \{-1, 1\}$. convergence threshold $\theta \ge 0$.

Output: The classification function $f(\boldsymbol{x}) : \mathcal{X} \to \mathbb{R}$.

1: $\lambda_n \leftarrow \frac{1}{\ell}, \forall n = 1, \dots, \ell$ 2: $\gamma \leftarrow 0, J \leftarrow 1$ 3: loop

4:
$$h \leftarrow \operatorname{argmax}_{h \in \mathcal{H}} \sum_{n=1}^{\ell} y_n \lambda_n h(\boldsymbol{x}_n)$$

5: **if**
$$\sum_{n=1}^{t} y_n \lambda_n h(\boldsymbol{x}_n) \leq \gamma + \theta$$
 then

7: **end if**

- 8: $h_J \leftarrow h$
- 9: $J \leftarrow J + 1$
- 10: $(\lambda, \gamma) \leftarrow$ solution to the dual of the LP problem, where γ is the objective function value.
- 11: $\alpha \leftarrow \text{Lagrangian multipliers of solution to dual LP}$ problem
- 12: end loop

13:
$$f(\boldsymbol{x}) := \operatorname{sign}\left(\sum_{j=1}^{J} \alpha_j h_j(\boldsymbol{x})\right)$$

1.2. 1.5-class LPBoost

In Figures 1-3 the behaviour of the 1-class, 2-class and 1.5-class classifiers is shown schematically for a 2D toy example.

Given a set of positive samples $X_1 = \{x_{1,1}, \dots, x_{1,N}\}$

Figure 1. 2-class classifier: Learning a separation of positive and negative samples in feature space.

Figure 2. 1-class classifier: Learning a description of the positive class in feature space using the positive training samples only.

Figure 3. 1.5-class classifier: Learning a description of the positive class in feature space using both positive and negative training samples.

using the following dual LP problem.

Figure 4. Separation as achieved by the 1.5-class LPBoost formulation: the positive samples are separated from the origin by ρ_1 , while the output for negative samples is kept below ρ_2 .

and a set of negative samples $X_2 = \{x_{2,1}, \ldots, x_{2,M}\}$, we derive the following new "1.5-class LPBoost" formulation.

$$\min \quad \rho_2 - \rho_1 + \frac{1}{\nu N} \sum_{n=1}^N \xi_{1,n} + \frac{1}{\nu M} \sum_{m=1}^M \xi_{2,m} \quad (1)$$

sb.t.
$$\sum_{\boldsymbol{t} \in \mathcal{T}} \alpha_{\boldsymbol{t}} h(\boldsymbol{x}_{1,n}; \boldsymbol{t}) \ge \rho_1 - \xi_{1,n}, \ n = 1, \dots, N$$
$$\sum_{\boldsymbol{t} \in \mathcal{T}} \alpha_{\boldsymbol{t}} h(\boldsymbol{x}_{2,m}; \boldsymbol{t}) \le \rho_2 + \xi_{2,m}, \ m = 1, \dots, M$$
$$\sum_{\boldsymbol{t} \in \mathcal{T}} \alpha_{\boldsymbol{t}} = 1,$$
$$\alpha \in \mathbb{R}_+^{|\mathcal{T}|}, \rho_1, \rho_2 \in \mathbb{R}_+, \boldsymbol{\xi}_1 \in \mathbb{R}_+^N, \boldsymbol{\xi}_2 \in \mathbb{R}_+^M$$

where we directly maximize a soft-margin $(\rho_1 - \rho_2)$ that separates positive from negative training samples as illustrated in Figure 4. The hypotheses are decision stumps that reward the presence of a pattern:

$$h(\boldsymbol{x};\boldsymbol{t}) = \begin{cases} 1 & \boldsymbol{t} \subseteq \boldsymbol{x} \\ 0 & \text{otherwise.} \end{cases}$$
(2)

The class decision function is given by thresholding at the margin's center $(\rho_1 + \rho_2)/2$, such that

$$f(\boldsymbol{x}) = \operatorname{sign}\left(\sum_{\boldsymbol{t}\in\mathcal{T}} \alpha_{\boldsymbol{t}} h(\boldsymbol{x};\boldsymbol{t}) - \frac{\rho_1 + \rho_2}{2}\right). \quad (3)$$

Problem (1) can be solved by the LPBoost algorithm [1]

$$\begin{split} \max_{\boldsymbol{\lambda},\boldsymbol{\mu},\boldsymbol{\gamma}} & -\boldsymbol{\gamma} & (4) \\ \text{sb.t.} & \sum_{n=1}^{N} \lambda_n h(\boldsymbol{x}_{1,n}; \boldsymbol{t}) - \sum_{m=1}^{M} \mu_m h(\boldsymbol{x}_{2,m}; \boldsymbol{t}) \leq \boldsymbol{\gamma}, \\ & \boldsymbol{t} \in \mathcal{T} & (5) \\ & \sum_{n=1}^{N} \lambda_n \geq 1 \\ & \sum_{m=1}^{M} \mu_m \leq 1 \\ & 0 \leq \lambda_n \leq \frac{1}{\nu N}, \quad n = 1, \dots, N \\ & 0 \leq \mu_m \leq \frac{1}{\nu M}, \quad m = 1, \dots, M. \end{split}$$

For solving Problem (4) we again use column-generation techniques, incrementally adding the most violated constraint.

Similarly to the original 2-class LPBoost formulation we derive the gain function from the constraints on the hypotheses outputs of the dual of (1) to obtain

$$\hat{h} = \underset{h \in \mathcal{H}}{\operatorname{argmax}} \left[\sum_{n=1}^{N} \lambda_n h(\boldsymbol{x}_{1,n}) - \sum_{m=1}^{M} \mu_m h(\boldsymbol{x}_{2,m}) \right], \quad (6)$$

which is the same as for the 2-class case, except that the set of samples are explicitly split into two sums. For performing weighted substructure mining efficiently we need a bound on the gain for a pattern t'. The bound shall be evaluated using only t, where $t \subseteq t'$ is subpattern of t'; this allows efficient pruning in the mining algorithm. For the new formulation we derive the following new bound on the gain function. Using the anti-monotonicity property [2] for

any $t \subseteq t'$ we have

$$gain(\boldsymbol{t}') = \sum_{n=1}^{N} \lambda_n h(\boldsymbol{x}_{1,n}; \boldsymbol{t}') - \sum_{m=1}^{M} \mu_m h(\boldsymbol{x}_{2,m}; \boldsymbol{t}')$$
$$= \sum_{n=1}^{N} \lambda_n I(\boldsymbol{t}' \subseteq \boldsymbol{x}_{1,n}) - \sum_{m=1}^{M} \mu_m I(\boldsymbol{t}' \subseteq \boldsymbol{x}_{2,m})$$
$$\leq \sum_{n=1}^{N} \lambda_n I(\boldsymbol{t}' \subseteq \boldsymbol{x}_{1,n})$$
$$\leq \sum_{n=1}^{N} \lambda_n I(\boldsymbol{t} \subseteq \boldsymbol{x}_{1,n}).$$

A drawback of the new formulation (1) is the violation of the closed-under-complementation assumption of Demiriz et al. [1], hence we are not guaranteed to obtain the optimal solution (H, α) among all possible sets and weightings. In practice this never caused any problems and the convergence behavior measured by an independent test error is very similar to the 2-class case.

The 1.5-class formulation (1) is a generalization of 1class ν -Boosting in Rätsch et al. [3] and we recover the original formulation when M = 0, that is, when no negative samples are available.

References

- A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting via column generation. *Journal of Machine Learning*, 46:225–254, 2002.
- [2] S. Morishita. Computing optimal hypotheses efficiently for boosting. In S. Arikawa and A. Shinohara, editors, *Progress* in Discovery Science, volume 2281 of Lecture Notes in Computer Science, pages 471–481. Springer, 2002.
- [3] G. Rätsch, B. Schölkopf, S. Mika, and K.-R. Müller. SVM and boosting: One class. Technical report, 2000.

Figure 5. Top seven most influential patterns for the unsupervised ranking task. (This is an enlarged version of the figure in the paper.)