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Abstract

Recent work has shown local convergence of
GAN training for absolutely continuous data and
generator distributions. In this paper, we show
that the requirement of absolute continuity is nec-
essary: we describe a simple yet prototypical
counterexample showing that in the more real-
istic case of distributions that are not absolutely
continuous, unregularized GAN training is not
always convergent. Furthermore, we discuss reg-
ularization strategies that were recently proposed
to stabilize GAN training. Our analysis shows
that GAN training with instance noise or zero-
centered gradient penalties converges. On the
other hand, we show that Wasserstein-GANs and
WGAN-GP with a finite number of discriminator
updates per generator update do not always con-
verge to the equilibrium point. We discuss these
results, leading us to a new explanation for the
stability problems of GAN training. Based on
our analysis, we extend our convergence results
to more general GANs and prove local conver-
gence for simplified gradient penalties even if the
generator and data distributions lie on lower di-
mensional manifolds. We find these penalties to
work well in practice and use them to learn high-
resolution generative image models for a variety
of datasets with little hyperparameter tuning.

1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) are powerful latent variable models that can be
used to learn complex real-world distributions. Especially
for images, GANs have emerged as one of the dominant
approaches for generating new realistically looking samples
after the model has been trained on some dataset.
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Method Local
convergence
(a.c. case)

Local
convergence

(general case)

unregularized (Goodfellow et al., 2014) 3 7
WGAN (Arjovsky et al., 2017) 7 7
WGAN-GP (Gulrajani et al., 2017) 7 7
DRAGAN (Kodali et al., 2017) 3 7
Instance noise (Sønderby et al., 2016) 3 3
ConOpt (Mescheder et al., 2017) 3 3
Gradient penalties (Roth et al., 2017) 3 3
Gradient penalty on real data only 3 3
Gradient penalty on fake data only 3 3

Table 1. Convergence properties of different GAN training algo-
rithms for general GAN-architectures. Here, we distinguish be-
tween the case where both the data and generator distributions are
absolute continuous (a.c.) and the general case where they may lie
on lower dimensional manifolds.

However, while very powerful, GANs can be hard to train
and in practice it is often observed that gradient descent
based GAN optimization does not lead to convergence. As
a result, a lot of recent research has focused on finding
better training algorithms (Arjovsky et al., 2017; Gulrajani
et al., 2017; Kodali et al., 2017; Sønderby et al., 2016; Roth
et al., 2017) for GANs as well as gaining better theoretically
understanding of their training dynamics (Arjovsky et al.,
2017; Arjovsky & Bottou, 2017; Mescheder et al., 2017;
Nagarajan & Kolter, 2017; Heusel et al., 2017).

Despite practical advances, the training dynamics of GANs
are still not completely understood. Recently, Mescheder
et al. (2017) and Nagarajan & Kolter (2017) showed that
local convergence and stability properties of GAN train-
ing can be analyzed by examining the eigenvalues of the
Jacobian of the the associated gradient vector field: if the
Jacobian has only eigenvalues with negative real-part at the
equilibrium point, GAN training converges locally for small
enough learning rates. On the other hand, if the Jacobian has
eigenvalues on the imaginary axis, it is generally not locally
convergent. Moreover, Mescheder et al. (2017) showed that
if there are eigenvalues close but not on the imaginary axis,
the training algorithm can require intractably small learning
rates to achieve convergence. While Mescheder et al. (2017)
observe eigenvalues close to the imaginary axis in practice,
this observation does not answer the question if eigenvalues
close to the imaginary axis are a general phenomenon and if
yes, whether they are indeed the root cause for the training
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instabilities that people observe in practice.

A partial answer to this question was given by Nagarajan
& Kolter (2017), who showed that for absolutely continu-
ous data and generator distributions1 all eigenvalues of the
Jacobian have negative real-part. As a result, GANs are lo-
cally convergent for small enough learning rates in this case.
However, the assumption of absolute continuity is not true
for common use cases of GANs, where both distributions
lie on lower dimensional manifolds (Sønderby et al., 2016;
Arjovsky & Bottou, 2017).

In this paper we show that this assumption is indeed nec-
essary: by considering a simple yet prototypical example
of GAN training we analytically show that (unregularized)
GAN training is not always locally convergent. We also
discuss how recent techniques for stabilizing GAN train-
ing affect local convergence on our example problem. Our
findings show that neither Wasserstein GANs (WGANs) (Ar-
jovsky et al., 2017) nor Wasserstein GANs with Gradient
Penalty (WGAN-GP) (Gulrajani et al., 2017) nor DRAGAN
(Kodali et al., 2017) converge on this simple example for a
fixed number of discriminator updates per generator update.
On the other hand, we show that instance noise (Sønderby
et al., 2016; Arjovsky & Bottou, 2017), zero-centered gradi-
ent penalties (Roth et al., 2017) and consensus optimization
(Mescheder et al., 2017) lead to local convergence.

Based on our analysis, we give a new explanation for the
instabilities commonly observed when training GANs based
on discriminator gradients orthogonal to the tangent space
of the data manifold. We also introduce simplified gradient
penalties for which we prove local convergence. We find
that these gradient penalties work well in practice, allowing
us, among others, to learn a generative image model of all
1000 Imagenet classes in a single GAN.

In summary, our contributions are as follows:

• We identify a simple yet prototypical counterexample
showing that (unregularized) gradient descent based
GAN optimization is not always locally convergent

• We discuss if and how recently introduced regulariza-
tion techniques stabilize the training

• We introduce simplified gradient penalties and prove
local convergence for the regularized GAN training
dynamics

All proofs can be found in the supplementary material.

1 Nagarajan & Kolter (2017) also proved local convergence for
a slightly more general family of probability distributions where
the support of the generator is equal to the support of the true data
distribution near the equilibrium point. Alternatively, they show
that their results also hold when the discriminator satisfies certain
(strong) smoothness conditions. However, these conditions are
usually hard to satisfy in practice without prior knowledge about
the support of the true data distribution.

2. Instabilities in GAN training
2.1. Background

GANs are defined by a min-max two-player game between
a discriminative network Dψ(x) and generative network
Gθ(z). While the discriminator tries to distinguish between
real data point and data points produced by the generator,
the generator tries to fool the discriminator. It can be shown
(Goodfellow et al., 2014) that if both the generator and
discriminator are powerful enough to approximate any real-
valued function, the unique Nash-equilibrium of this two
player game is given by a generator that produces the true
data distribution and a discriminator which is 0 everywhere
on the data distribution.

Following the notation of Nagarajan & Kolter (2017), the
training objective for the two players can be described by
an objective function of the form

L(θ, ψ) = Ep(z) [f(Dψ(Gθ(z)))]

+ EpD(x) [f(−Dψ(x))] (1)

for some real-valued function f . The common choice
f(t) = − log(1 + exp(−t)) leads to the loss function con-
sidered in the original GAN paper (Goodfellow et al., 2014).
For technical reasons we assume that f is continuously dif-
ferentiable and satisfies f ′(t) 6= 0 for all t ∈ R.

The goal of the generator is to minimize this loss whereas
the discriminator tries to maximize it. Our goal when train-
ing GANs is to find a Nash-equilibrium, i.e. a parameter
assignment (θ∗, ψ∗) where neither the discriminator nor the
generator can improve their utilities.

GANs are usually trained using Simultaneous or Alternating
Gradient Descent (SimGD and AltGD). Both algorithms
can be described as fixed point algorithms (Mescheder et al.,
2017) that apply some operator Fh(θ, ψ) to the parameter
values (θ, ψ) of the generator and discriminator, respectively.
For example, simultaneous gradient descent corresponds to
the operator Fh(θ, ψ) = (θ, ψ) + h v(θ, ψ), where v(θ, ψ)
denotes the gradient vector field

v(θ, ψ) :=

(
−∇θL(θ, ψ)
∇ψL(θ, ψ)

)
. (2)

Similarly, alternating gradient descent can be described by
an operator Fh = F2,h ◦ F1,h where F1,h and F2,h perform
an update for the generator and discriminator, respectively.

Recently, it was shown (Mescheder et al., 2017) that local
convergence of GAN training near an equilibrium point
(θ∗, ψ∗) can be analyzed by looking at the spectrum of the
Jacobian F ′h(θ∗, ψ∗) at the equilibrium: if F ′h(θ∗, ψ∗) has
eigenvalues with absolute value bigger than 1 , the training
algorithm will generally not converge to (θ∗, ψ∗). On the
other hand, if all eigenvalues have absolute value smaller
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Figure 1. Visualization of the counterexample showing that in the
general case, gradient descent GAN optimization is not convergent:
(a) In the beginning, the discriminator pushes the generator towards
the true data distribution and the discriminator’s slope increases.
(b) When the generator reaches the target distribution, the slope of
the discriminator is largest, pushing the generator away from the
target distribution. This results in oscillatory training dynamics
that never converge.

than 1, the training algorithm will converge to (θ∗, ψ∗) with
linear rate O(|λmax|k) where λmax is the eigenvalue of
F ′(θ∗, ψ∗) with the biggest absolute value. If all eigenval-
ues F ′(θ∗, ψ∗) are on the unit circle, the algorithm can be
convergent, divergent or neither, but if it is convergent it will
generally converge with a sublinear rate. A similar result
(Khalil, 1996; Nagarajan & Kolter, 2017) also holds for the
(idealized) continuous system(

θ̇(t)

ψ̇(t)

)
=

(
−∇ψL(θ, ψ)
∇θL(θ, ψ)

)
(3)

which corresponds to training the GAN with infinitely small
learning rate: if all eigenvalues of the Jacobian v′(θ∗, ψ∗)
at a stationary point (θ∗, ψ∗) have negative real-part, the
continuous system converges locally to (θ∗, ψ∗) with lin-
ear convergence rate. On the other hand, if v′(θ∗, ψ∗) has
eigenvalues with positive real-part, the continuous system
is not locally convergent. If all eigenvalues have zero real-
part, it can be convergent, divergent or neither, but if it is
convergent, it will generally converge with a sublinear rate.

For simultaneous gradient descent linear convergence can
be achieved if and only if all eigenvalues of the Jacobian
of the gradient vector field v(θ, ψ) have negative real part
(Mescheder et al., 2017). This situation was also considered
by Nagarajan & Kolter (2017) who examined the asymptotic
case of step sizes h that go to 0 and proved local convergence
for absolutely continuous generator and data distributions
under certain regularity assumptions.

2.2. The Dirac-GAN

Simple experiments, simple theorems are the building
blocks that help us understand more complicated systems.

Ali Rahimi - Test of Time Award speech, NIPS 2017

In this section, we describe a simple yet prototypical coun-
terexample which shows that in the general case, unregular-
ized GAN training is neither locally nor globally convergent.

Definition 2.1. In the Dirac-GAN, the true (univariate) data
distribution pD is given by pD = δ0 and the generator is
given by pθ = δθ. The discriminator is given given by a
linear function: Dψ(x) = ψ · x.

Note that in the Dirac-GAN, both the generator and the
discriminator have exactly one parameter. This situation
is visualized in Figure 1. In this setup, the GAN training
objective (1) is given by

L(θ, ψ) = f(ψθ) + f(0) (4)

While using linear discriminators might appear restrictive,
the class of linear discriminators is in fact as powerful as
the class of all real-valued functions for this example: when
we use f(t) = − log(1 + exp(−t)) and we take the supre-
mum over ψ in (4), we obtain (up to scalar and additive
constants) the Jensen-Shannon divergence between pθ and
pD. The same holds true for the Wasserstein-divergence,
when we use f(t) = t and put a Lipschitz constraint on the
discriminator (see Section 3.1).

We show that the training dynamics of GANs lead to diver-
gent behavior in this simple setup.

Lemma 2.2. The unique equilibrium point of the training
objective in (4) is given by θ = ψ = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium point
has the two eigenvalues ±f ′(0) i which are both on the
imaginary axis.

We now take a closer look at the training dynamics produced
by various algorithms for training the Dirac-GAN. First, we
consider the (idealized) continuous system in (3): while
Lemma 2.2 shows that the continuous system is generally
not linearly convergent to the equilibrium point, it could
in principle converge with a sublinear convergence rate.
However, this is not the case as the next lemma shows:

Lemma 2.3. The integral curves of the gradient vector field
v(θ, ψ) do not converge to the Nash-equilibrium. More
specifically, every integral curve (θ(t), ψ(t)) of the gradient
vector field v(θ, ψ) satisfies θ(t)2 + ψ(t)2 = const for all
t ∈ [0,∞).

Note that our results do not contradict the results of Nagara-
jan & Kolter (2017) and Heusel et al. (2017): our example
violates Assumption IV in Nagarajan & Kolter (2017) that
the support of the generator distribution is equal to the sup-
port of the true data distribution near the equilibrium. It also
violates the assumption in Heusel et al. (2017) that the opti-
mal discriminator parameter vector is a continuous function
of the current generator parameters2. In fact, unless θ = 0,

2 This assumption is usually even violated by Wasserstein-
GANs, as the optimal discriminator parameter vector as a function
of the current generator parameters can have discontinuities near
the Nash-equilibrium. See Section 3.1 for details.
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(a) SimGD (b) AltGD

Figure 2. Training behavior of the Dirac-GAN. The starting iterate
is marked in red.

there is not even an optimal discriminator parameter vec-
tor for the Dirac-GAN. Indeed, we find that two-time scale
updates as suggested by Heusel et al. (2017) do not help con-
vergence towards the Nash-equilibrium (see Figure 22 in the
supplementary material). However, our example seems to
be a prototypical situation for (unregularized) GAN training
which usually deals with distributions that are concentrated
on lower dimensional manifolds (Arjovsky & Bottou, 2017).

We now take a closer look at the discretized system.

Lemma 2.4. For simultaneous gradient descent, the Ja-
cobian of the update operator Fh(θ, ψ) has eigenvalues
λ1/2 = 1 ± hf ′(0)i with absolute values

√
1 + h2f ′(0)2

at the Nash-equilibrium. Independently of the learning rate,
simultaneous gradient descent is therefore not stable near
the equilibrium. Even stronger, for every initial condition
and learning rate h > 0, the norm of the iterates (θk, ψk)
obtained by simultaneous gradient descent is monotonically
increasing.

The behavior of simultaneous gradient descent on our exam-
ple problem is visualized in Figure 2a.

Similarly, for alternating gradient descent we have

Lemma 2.5. For alternating gradient descent with ng gen-
erator and nd discriminator updates, the Jacobian of the
update operator Fh(θ, ψ) has eigenvalues

λ1/2 = 1− α2

2
±

√(
1− α2

2

)2

− 1. (5)

with α :=
√
ngndhf

′(0). For α ≤ 2, all eigenvalues are
hence on the unit circle. Moreover for α > 2, there are
eigenvalues outside the unit circle.

Even though Lemma 2.5 shows that alternating gradient
descent does not converge linearly to the Nash-equilibrium,
it could in principle converge with a sublinear convergence
rate. However, this is very unlikely because – as Lemma 2.3
shows – even the continuous system does not converge. In-
deed, we empirically found that alternating gradient descent
oscillates in stable cycles around the equilibrium and shows
no sign of convergence (Figure 2b).

2.3. Where do instabilities come from?

Our simple example shows that naive gradient based GAN
optimization does not always converge to the equilibrium
point. To get a better understanding of what can go wrong
for more complicated GANs, it is instructive to analyze
these instabilities in depth for this simple example problem.

To understand the instabilities, we have to take a closer
look at the oscillatory behavior that GANs exhibit both for
the Dirac-GAN and for more complex systems. An intu-
itive explanation for the oscillations is given in Figure 1:
when the generator is far from the true data distribution,
the discriminator pushes the generator towards the true data
distribution. At the same time, the discriminator becomes
more certain, which increases the discriminator’s slope (Fig-
ure 1a). Now, when the generator reaches the target distri-
bution (Figure 1b), the slope of the discriminator is largest,
pushing the generator away from the target distribution. As
a result, the generator moves away again from the true data
distribution and the discriminator has to change its slope
from positive to negative. After a while, we end up with a
similar situation as in the beginning of training, only on the
other side of the true data distribution. This process repeats
indefinitely and does not converge.

Another way to look at this is to consider the local behavior
of the training algorithm near the Nash-equilibrium. Indeed,
near the Nash-equilibrium, there is nothing that pushes the
discriminator towards having zero slope on the true data
distribution. Even if the generator is initialized exactly on
the target distribution, there is no incentive for the discrimi-
nator to move to the equilibrium discriminator. As a result,
training is unstable near the equilibrium point.

This phenomenon of discriminator gradients orthogonal to
the data distribution can also arise for more complex exam-
ples: as long as the data distribution is concentrated on a
low dimensional manifold and the class of discriminators
is big enough, there is no incentive for the discriminator to
produce zero gradients orthogonal to the tangent space of
the data manifold and hence converge to the equilibrium
discriminator. Even if the generator produces exactly the
true data distribution, there is no incentive for the discrim-
inator to produce zero gradients orthogonal to the tangent
space. When this happens, the discriminator does not pro-
vide useful gradients for the generator orthogonal to the data
distribution and the generator does not converge.

Note that these instabilities can only arise if the true data
distribution is concentrated on a lower dimensional man-
ifold. Indeed, Nagarajan & Kolter (2017) showed that -
under some suitable assumptions - gradient descent based
GAN optimization is locally convergent for absolutely con-
tinuous distributions. Unfortunately, this assumption may
not be satisfied for data distributions like natural images to
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(a) Standard GAN (b) Non-saturating GAN

(c) WGAN (nd = 5) (d) WGAN-GP (nd = 5)

(e) Consensus optimization (f) Instance noise

(g) Gradient penalty (h) Gradient penalty (CR)

Figure 3. Convergence properties of different GAN training al-
gorithms using alternating gradient descent with recommended
number of discriminator updates per generator update (nd = 1
if not noted otherwise). The shaded area in Figure 3c visualizes
the set of forbidden values for the discriminator parameter ψ. The
starting iterate is marked in red.

which GANs are commonly applied (Arjovsky & Bottou,
2017). Moreover, even if the data distribution is absolutely
continuous but concentrated along some lower dimensional
manifold, the eigenvalues of the Jacobian of the gradient
vector field will be very close to the imaginary axis, result-
ing in a highly ill-conditioned problem. This was observed
by Mescheder et al. (2017) who examined the spectrum
of the Jacobian for a data distribution given by a circular
mixture of Gaussians with small variance.

3. Regularization strategies
As we have seen in Section 2, unregularized GAN training
does not always converge to the Nash-equilibrium. In this
section, we discuss how several regularization techniques
that have recently been proposed, influence convergence of
the Dirac-GAN.

Interestingly, we also find that the non-saturating loss pro-

posed in the original GAN paper (Goodfellow et al., 2014)
leads to convergence of the continuous system, albeit with
an extremely slow convergence rate. A more detailed discus-
sion and an analysis of Consensus optimization (Mescheder
et al., 2017) can be found in the supplementary material.

3.1. Wasserstein GAN

The two-player GAN game can be interpreted as minimizing
a probabilistic divergence between the true data distribution
and the distribution produced by the generator (Nowozin
et al., 2016; Goodfellow et al., 2014). This divergence is
obtained by considering the best-response strategy for the
discriminator, resulting in an objective function that only
contains the generator parameters. Many recent regular-
ization techniques for GANs are based on the observation
(Arjovsky & Bottou, 2017) that this divergence may be dis-
continuous with respect to the parameters of the generator
or may even take on infinite values if the support of the data
distribution and the generator distribution do not match.

To make the divergence continuous with respect to the pa-
rameters of the generator, Wasserstein GANs (WGANs)
Arjovsky et al. (2017) replace the Jensen-Shannon diver-
gence used in the original derivation of GANs (Goodfellow
et al., 2014) with the Wasserstein-divergence. As a result,
Arjovsky et al. (2017) propose to use f(t) = t and restrict
the class of discriminators to Lipschitz continuous functions
with Lipschitz constant equal to some g0 > 0. While a
WGAN converges if the discriminator is always trained un-
til convergence, in practice WGANs are usually trained by
running only a fixed finite number of discriminator updates
per generator update. However, near the Nash-equilibrium
the optimal discriminator parameters can have a disconti-
nuity as a function of the current generator parameters: in
the Dirac-GAN, the optimal discriminator has to move from
ψ = −1 to ψ = 1 when θ changes signs. As the gradients
get smaller near the equilibrium point, the gradient updates
do not lead to convergence for the discriminator. Overall,
the training dynamics are again determined by the Jacobian
of the gradient vector field near the Nash-equilibrium:

Lemma 3.1. WGANs trained with simultaneous or alternat-
ing gradient descent with a fixed number of discriminator
updates per generator update and a fixed learning rate
h > 0 do generally not converge to the Nash equilibrium
for the Dirac-GAN.

The training behavior of the WGAN is visualized in Fig-
ure 3c. We stress that this analysis only holds if the discrimi-
nator is trained with a fixed number of discriminator updates
(as it is usually done in practice). More careful training that
ensures that the discriminator is kept exactly optimal or
two-timescale training (Heusel et al., 2017) might be able
to ensure convergence for WGANs.
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Figure 4. Dirac-GAN with instance noise. While unregularized
GAN training is inherently unstable, instance noise can stabilize it:
(a) Near the Nash-equilibrium, the discriminator is pushed towards
the zero discriminator. (b) As we increase the noise level σ from
0 to σcritical, the real part of the eigenvalues at the equilibrium
point becomes negative and the absolute value of the imaginary
part becomes smaller. For noise levels bigger than σcritical all
eigenvalues are real-valued and GAN training hence behaves like
a normal optimization problem.

The convergence properties of WGANs were also consid-
ered by Nagarajan & Kolter (2017) who showed that even
for absolutely continuous densities and infinitesimal learn-
ing rates, WGANs are not always locally convergent.

We also found that WGAN-GP (Gulrajani et al., 2017) does
not converge for the Dirac-GAN (Figure 3d). Please see the
supplementary material for details.3

3.2. Instance noise

A common technique to stabilize GANs is to add instance
noise (Sønderby et al., 2016; Arjovsky & Bottou, 2017), i.e.
independent Gaussian noise, to the data points. While the
original motivation was to make the probabilistic divergence
between data and generator distribution well-defined for dis-
tributions that do not have common support, this does not
clarify the effects of instance noise on the training algorithm
itself and its ability to find a Nash-equilibrium. Interestingly,
however, it was recently shown (Nagarajan & Kolter, 2017)
that in the case of absolutely continuous distributions, gra-
dient descent based GAN optimization is - under suitable
assumptions - locally convergent.

Indeed, for the Dirac-GAN we have:

Lemma 3.2. When using Gaussian instance noise with stan-
dard deviation σ, the eigenvalues of the Jacobian of the
gradient vector field are given by

λ1/2 = f ′′(0)σ2 ±
√
f ′′(0)2σ4 − f ′(0)2. (6)

In particular, all eigenvalues of the Jacobian have negative
real-part at the Nash-equilibrium if f ′′(0) < 0 and σ > 0.
Hence, simultaneous and alternating gradient descent are
both locally convergent for small enough learning rates.

3 Despite these negative results, WGAN-GP has been success-
fully applied in practice (Gulrajani et al., 2017; Karras et al., 2017)
and we leave a theoretical analysis of these empirical results to
future research.

Interestingly, Lemma 3.2 shows that there is a critical noise
level given by σ2

critical = |f ′(0)|/|f ′′(0)|. If the noise level
is smaller than the critical noise level, the eigenvalues of
the Jacobian have non-zero imaginary part which results
in a rotational component in the gradient vector field near
the equilibrium point. If the noise level is larger than the
critical noise level, all eigenvalues of the Jacobian become
real-valued and the rotational component in the gradient
vector field disappears. The optimization problem is best
behaved when we select σ = σcritical: in this case we can
even achieve quadratic convergence for h = |f ′(0)|−1. The
effect of instance noise on the eigenvalues is visualized in
Figure 4b, which shows the traces of the two eigenvalues as
we increase σ from 0 to 2σcritical.

Figure 3f shows the training behavior of the GAN with
instance noise, showing that instance noise indeed creates a
strong radial component in the gradient vector field which
makes the training algorithm converge.

3.3. Zero-centered gradient penalties

Motivated by the success of instance noise to make the f -
divergence between two distributions well-defined, Roth
et al. (2017) derived a local approximation to instance noise
that results in a zero-centered4 gradient penalty for the dis-
criminator.

In our simple example, a penalty on the squared norm of the
gradients of the discriminator (no matter where) results in
the regularizer

R(ψ) =
γ

2
ψ2. (7)

This regularizer does not include the weighting terms con-
sidered by Roth et al. (2017). However, the same analysis
can also be applied to the regularizer with the additional
weighting, yielding almost exactly the same results (see
Section D.2 of the supplementary material).

Lemma 3.3. The eigenvalues of the Jacobian of the gra-
dient vector field for the gradient-regularized GAN at the
equilibrium point are given by

λ1/2 = −γ
2
±
√
γ2

4
− f ′(0)2. (8)

In particular, for γ > 0 all eigenvalues have negative real
part. Hence, simultaneous and alternating gradient descent
are both locally convergent for small enough learning rates.

As for instance noise, there is a critical regularization pa-
rameter γcritical = 2|f ′(0)| that results in a locally rotation
free vector field. A visualization of the training behavior of
the Dirac-GAN with gradient penalty is shown in Figure 3g.
Figure 3h illustrates the training behavior of the GAN with

4 In contrast to the gradient regularizers used in WGAN-GP
and DRAGAN which are not zero-centered.
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gradient penalty and critical regularization (CR). In particu-
lar, we see that near the Nash-equilibrium the vector field
does not have a rotational component anymore and hence
behaves like a normal optimization problem.

4. General convergence results
In Section 3 we analyzed the convergence properties of var-
ious regularization strategies for the Dirac-GAN. In this
section, we consider general GAN problems. First, we intro-
duce two simplified versions of the zero-centered gradient
penalty proposed by Roth et al. (2017). We then show that
these gradient penalties allow us to extend the convergence
proof by Nagarajan & Kolter (2017) to the case where the
generator and data distribution do not locally have the same
support.5 As a result, our convergence proof for the regular-
ized training dynamics also holds for the more realistic case
where both the generator and data distributions may lie on
lower dimensional manifolds.

4.1. Simplified gradient penalties

Our analysis suggests that the main effect of the zero-
centered gradient penalties proposed by Roth et al. (2017)
on local stability is to penalize the discriminator for deviat-
ing from the Nash-equilibrium. The simplest way to achieve
this is to penalize the gradient on real data alone: when the
generator distribution produces the true data distribution
and the discriminator is equal to 0 on the data manifold, the
gradient penalty ensures that the discriminator cannot create
a non-zero gradient orthogonal to the data manifold without
suffering a loss in the GAN game.

This leads to the following regularization term:

R1(ψ) :=
γ

2
EpD(x)

[
‖∇Dψ(x)‖2

]
. (9)

Note that this regularizer is a simplified version of to the
regularizer derived by Roth et al. (2017). However, our
regularizer does not contain the additional weighting terms
and penalizes the discriminator gradients only on the true
data distribution.

We also consider a similar regularization term given by

R2(θ, ψ) :=
γ

2
Epθ(x)

[
‖∇Dψ(x)‖2

]
(10)

where we penalize the discriminator gradients on the current
generator distribution instead of the true data distribution.

Note that on the Dirac-GAN from Section 2, both regulariz-
ers reduce to the gradient penalty from Section 3.3 whose
behavior is visualized in Figure 3g and Figure 3h.

5 Assumption IV in Nagarajan & Kolter (2017)

4.2. Convergence

In this section we present convergence results for the regular-
ized GAN-training dynamics for both regularization terms
R1(ψ) and R2(ψ) under some suitable assumptions.6

Let (θ∗, ψ∗) denote an equilibrium point of the regularized
training dynamics. In our convergence analysis, we consider
the realizable case, i.e. we assume that there are generator
parameters that make the generator produce the true data
distribution:

Assumption I. We have pθ∗ = pD and Dψ∗(x) = 0 in
some local neighborhood of supp pD.

Like Nagarajan & Kolter (2017), we assume that f satisfies
the following property:

Assumption II. We have f ′(0) 6= 0 and f ′′(0) < 0.

An extension of our convergence proof for f(t) = t (as in
WGANs) can be found in the supplementary material.

The convergence proof is complicated by the fact that for
neural networks, there generally is not a single equilibrium
point (θ∗, ψ∗), but a submanifold of equivalent equilibria
corresponding to different parameterizations of the same
function. We therefore define the reparameterization mani-
foldsMG andMD. To this end, let

h(ψ) := EpD(x)

[
|Dψ(x)|2 + ‖∇xDψ(x)‖2

]
. (11)

The reparameterization manifolds are then defined as

MG := {θ | pθ = pD} MD := {ψ | h(ψ) = 0}. (12)

To prove local convergence, we have to assume some reg-
ularity properties for MG and MD near the equilibrium
point. To state these assumptions, we need

g(θ) := Epθ(x) [∇ψDψ(x)|ψ=ψ∗ ] . (13)

Assumption III. There are ε-balls Bε(θ∗) and Bε(ψ
∗)

around θ∗ and ψ∗ so thatMG∩Bε(θ∗) andMD∩Bε(ψ∗)
define C1- manifolds. Moreover, the following holds:

(i) if v ∈ Rn is not in the tangent space ofMD at ψ∗,
then ∂2vh(ψ∗) 6= 0.

(ii) if w ∈ Rm is not in the tangent space ofMG at θ∗,
then ∂wg(θ∗) 6= 0.

While formally similar, the two conditions in Assumption III
have very different meanings: the first condition is a simple
regularity property that means that the geometry of MD

can be locally described by the second derivative of h. The
second condition implies that the discriminator is strong

6 Our results also hold for any convex combination of R1 and
R2 and the regularizer with the additional weighting terms derived
by Roth et al. (2017). See the supplementary material for details.
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enough so that it can detect any deviation from the equilib-
rium generator distribution. Indeed, this is the only point
where we assume that the class of representable discrimi-
nators is sufficiently expressive (and excludes, for example,
the trivial case Dψ = 0 for all ψ).

We are now ready to state our main convergence result. To
this end, consider the regularized gradient vector field

ṽi(θ, ψ) :=

(
−∇θL(θ, ψ)

∇ψL(θ, ψ)−∇ψRi(θ, ψ)

)
. (14)

Theorem 4.1. Assume Assumption I, II and III hold for
(θ∗, ψ∗). For small enough learning rates, simultaneous
and alternating gradient descent for ṽ1 and ṽ2 are both
convergent toMG ×MD in a neighborhood of (θ∗, ψ∗).
Moreover, the rate of convergence is at least linear.

Theorem 4.1 shows that GAN training with our gradient
penalties is convergent when initialized sufficiently close
the equilibrium point. While this does not show that the
method is globally convergent, it at least shows that near the
equilibrium the method is well-behaved.

4.3. Stable equilibria for unregularized GAN training

As we have seen in Section 2, unregularized GAN training
does not always converge to the Nash-equilibrium. However,
this does not rule out the existence of stable equilibria for
every GAN architecture. In Section E of the supplementary
material, we identify two forms of stable equilibria that may
exist for unregularized GAN training (Energy Solutions and
Full-Rank Solutions). However, it is not yet clear under
what conditions such solutions exist for high dimensional
data distributions.

5. Experiments
2D-Problems Measuring convergence for GANs is hard
for high dimensional problems, because we lack an evalua-
tion metric that can reliably detect non-convergent behavior.
We therefore first examine the behavior of the different reg-
ularizers on simple 2D examples where we can assess con-
vergence using an estimate of the Wasserstein-1-distance.

To this end, we run 5 different training algorithms on 4 dif-
ferent 2D-examples for 6 different GAN architectures. For
each method, we try both stochastic gradient descent and
RMS-Prop with 4 different learning rates. For the R1-, R2-
and WGAN-GP-regularizers we try 3 different regulariza-
tion parameters. We train all methods for 50k iterations and
report the results for the best hyperparameter setup. Please
see the supplementary material for details.

The results are shown in Figure 5. We see that the R1- and
R2-regularizers perform similarly and they achieve slightly
better results than unregularized training or training with

(a) 2D Gaussian (b) Line segment

(c) Circle (d) Four line segments

Figure 5. Wasserstein-1-distance to true data distribution for 4 dif-
ferent 2D-data-distributions, 6 different architectures (small bars)
and 5 different training methods. Here, we abbreviate WGAN-
GP with 1 and 5 discriminator update(s) per generator update as
WGP-1 and WGP-5.

WGAN-GP. In the supplementary material we show that the
R1- and R2-regularizers find solutions where the discrim-
inator is 0 in a neighborhood of the true data distribution,
whereas unregularized training and WGAN-GP converge
to energy solutions which we define in Section E.1 of the
supplementary material.

Imagenet To test how well the gradient penalties from
Section 4.1 perform on more complicated tasks, we train a
convolutional GAN consisting of ResNet-architectures (He
et al., 2016) for both the generator and discriminator on
the ILSVRC dataset (Russakovsky et al., 2015). While we
find that unregularized GAN training quickly leads to mode-
collapse on this architecture, our simple R1-regularizer en-
ables stable training. Some samples from the model after
35 epochs of training and more details on the experimental
setup can be found in the supplementary material.

6. Conclusion
In this paper, we analyzed the stability of GAN training on
a simple yet prototypical example. Due to the simplicity of
the example, we were able to analyze the convergence prop-
erties of the training dynamics analytically and we showed
that (unregularized) gradient based GAN optimization is
not always locally convergent. Our findings also show that
WGANs and WGAN-GP do not always lead to local con-
vergence whereas instance noise and zero-centered gradient
penalties do. Based on our analysis, we extended our results
to more general GANs and we proved local convergence for
simplified zero-centered gradient penalties under suitable
assumptions. In the future, we would like to extend our
theory to the non-realizable case and examine the effect of
finite sampling sizes on the GAN training dynamics.
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