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A. Preliminaries
In this section we first summarize some results from the
theory of discrete dynamical systems. We also prove a dis-
crete version of a basic convergence theorem for continuous
dynamical systems from Nagarajan & Kolter (2017) which
allows us to make statements about training algorithms for
GANs for finite learning rates. Afterwards, we summarize
some results from Mescheder et al. (2017) about the conver-
gence properties of simultaneous and alternating gradient
descent. Moreover, we state some eigenvalue bounds that
were derived by Nagarajan & Kolter (2017) which we need
to prove Theorem 4.1 on the convergence of the regularized
GAN training dynamics.

A.1. Discrete dynamical systems

In this section, we recall some basic definitions from the the-
ory of discrete nonlinear dynamical systems. For a similar
description of the theory of continuous nonlinear dynamical
systems see for example Khalil (1996) and Nagarajan &
Kolter (2017).

In this paper, we consider continuously differentiable oper-
ators F : Ω → Ω acting on an open set Ω ⊂ Rn. A fixed
point of F is a point x̄ ∈ Ω such that F (x̄) = x̄. We are
interested in stability and convergence of the fixed point iter-
ation F (k)(x) near the fixed point. To this end, we first have
to define what we mean by stability and local convergence:

Definition A.1. Let x̄ ∈ Ω be a fixed point of a continuously
differentiable operator F : Ω→ Ω. We call x̄

• stable if for every ε > 0 there is δ > 0 such that
‖x− x̄‖ < δ implies ‖F (k)(x)− x̄‖ < ε for all k ∈ N.

• asymptotically stable if it is stable and there is δ > 0
such that ‖x− x̄‖ < δ implies that F (k)(x) converges
to x̄

• exponentially stable if there is λ ∈ [0, 1), δ > 0 and
C > 0 such that ‖x− x̄‖ < δ implies

‖F (k)(x)− x̄‖ < C‖x− x̄‖λk (15)

for all k ∈ N.

If x̄ is asymptotically stable fixed point of F , we call the
algorithm obtained by iteratively applying F locally con-
vergent to x̄. If x̄ is exponentially stable, we call the cor-

responding algorithm linearly convergent. Moreover, if x̄
is exponentially stable, we call the infimum of all λ so that
(15) holds for some C > 0 the convergence rate of the fixed
point iteration.

As it turns out, local convergence of fixed point iterations
can be analyzed by examining the spectrum of the Jacobian
of the fixed point operator. We have the following central
Theorem:

Theorem A.2. Let F : Ω → Ω be a C1-mapping on an
open subset Ω of Rn and x̄ ∈ Ω be a fixed point of F .
Assume that the absolute values of the eigenvalues of the
Jacobian F ′(x̄) are all smaller than 1. Then the fixed point
iteration F (k)(x) is locally convergent to x̄. Moreover, the
rate of convergence is at least linear with convergence rate
|λmax| where λmax denotes the eigenvalue of F ′(x̄) with
the largest absolute value.

Proof. See Bertsekas (1999), Proposition 4.4.1.

For the proof of Theorem 4.1 in Section D, we need a gen-
eralization of Theorem A.2 that takes into account submani-
folds of fixed points. The next theorem is a discrete version
of Theorem A.4 from Nagarajan & Kolter (2017) and we
prove it in a similar way:

Theorem A.3. Let F (α, γ) define a C1-mapping that maps
some domain Ω to itself. Assume that there is a local neigh-
borhoodU of 0 such that F (0, γ) = (0, γ) for γ ∈ U . More-
over, assume that all eigenvalues of J := ∇αF (α, 0) |α=0

have absolute value smaller than 1. Then the fixed point iter-
ation defined by F is locally convergent toM := {(0, γ) |
γ ∈ U} with linear convergence rate in a neighborhood of
(0, 0). Moreover, the convergence rate is |λmax| with λmax

the eigenvalue of J with largest absolute value.

Proof. In the following, we write F (α, γ) =
(F1(α, γ), F2(α, γ)), so that the fixed point iteration
can be written as

αk+1 = F1(αk, γk) γk+1 = F2(αk, γk). (16)

We first examine the behavior of F1 near (0, 0). To this end,
we develop F1 into a Taylor-Series

F1(α, γ) = Jα+ g1(α, γ) (17)
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We first show that for any c > 0 we have ‖g1(α, γ)‖ ≤
c‖α‖ sufficiently close to (0, 0): because F1(0, γ) = 0 for
all γ close to 0, g1(α, γ) must be of the form g1(α, γ) =
h1(α, γ)α with h1(0, 0) = 0. This shows that for any c > 0
there is indeed an open neighborhood V of (0, 0) so that
|g1(α, γ)| ≤ c‖α‖ for all (α, γ) ∈ V .

According to Bertsekas (1999), Proposition A 15, we can
select for every ε > 0 a norm ‖ · ‖Q on Rn such that

‖Jα‖Q < (|λmax|+ ε)‖α‖Q (18)

for α ∈ Rn where |λmax| denotes the eigenvalue of J with
the largest absolute value.

Hence, for (α, γ) ∈ V ,

‖F1(α, γ)‖Q ≤ ‖Jα‖Q + ‖g1(α, γ)‖Q
< (|λmax|+ ε+ c)‖α‖Q (19)

Because we can make c+ ε as small as we want, this shows
that ‖αk‖ ≤ Cλk‖α0‖ for some C > 0 and λ ∈ [0, 1), if
α0 and all γl for l = 0, . . . , k− 1 are sufficiently close to 0 .
We therefore have to show that the iterates γk stay in a given
local neighborhood of 0, i.e. ‖γk‖ ≤ d for some d > 0,
when α0 and γ0 are initialized sufficiently close to 0.

To show this, we develop F2 into a Taylor-series around 0:

F2(α, γ) = γ + g2(α, γ). (20)

Again, we see that g2 must be of the form g2(α, γ) =
h2(α, γ)α, showing that ‖g2(α, γ)‖ ≤ c′‖α‖Q for some
fixed constant c′ > 0 (note that in general h2(0, 0) 6= 0).
We therefore have

‖γk − γ0‖ ≤
k−1∑
l=0

‖g2(αl, γl)‖ ≤
k−1∑
l=0

c′‖αl‖Q

≤
k−1∑
l=0

Cc′λl‖α0‖Q ≤
Cc′

1− λ
‖α0‖Q (21)

Hence, if we initialize α0 within ‖α0‖Q ≤ 1−λ
2CC′ d and

γ0 within ‖γ0‖ ≤ d
2 , we have ‖γk‖ ≤ d for all k ∈ N,

concluding the proof.

A.2. Simultaneous and Alternating Gradient Descent

In this section, we recall some results by Mescheder et al.
(2017) about the convergence properties of simultaneous
and alternating gradient descent as algorithms for training
generative adversarial networks.

Recall that simultaneous gradient descent can be described
by an update operator of the form

Fh(θ, ψ) =

(
θ − h∇θL(θ, ψ)
ψ + h∇ψL(θ, ψ)

)
(22)

where L(θ, ψ) is the GAN training objective defined in (1).

Similarly, alternating gradient descent can be described by
an update operator of the form Fh = F2,h ◦F1,h where F1,h

and F2,h are given by

F1,h(θ, ψ) =

(
θ − h∇θL(θ, ψ)

ψ

)
(23)

F2,h(θ, ψ) =

(
θ

ψ + h∇ψL(θ, ψ)

)
. (24)

Moreover, we defined the gradient vector field

v(θ, ψ) =

(
−∇θL(θ, ψ)
∇ψL(θ, ψ)

)
. (25)

To understand convergence of simultaneous and alternating
gradient descent, we have to understand when the Jacobian
of the corresponding update operator has only eigenvalues
with absolute value smaller than 1.

Lemma A.4. The eigenvalues of the Jacobian of the update
operator for simultaneous gradient descent are given by
λ = 1 + hµ with µ the eigenvalues of v′(θ∗, ψ∗). Assume
that v′(θ∗, ψ∗) has only eigenvalues with negative real part.
The eigenvalues of the Jacobian of the update operator Fh
for simultaneous gradient descent are then all in the unit
circle if and only if

h <
1

|Re(λ)|
2

1 +
(

Im(λ)
Re(λ)

)2 (26)

for all eigenvalues λ of v′(θ∗, ψ∗).

Proof. For simultaneous gradient descent we have

Fh(θ, ψ) = (θ, ψ) + hv(θ, ψ) (27)

and hence F ′h(θ∗, ψ∗) = I + hv′(θ∗, ψ∗). Therefore the
eigenvalues are given by λ = 1 +hµ with µ the eigenvalues
of v′(θ∗, ψ∗).

To see when |λ| < 1, we write µ = −a+ ib with a, b ∈ R
and a > 0. Then

|λ|2 = (1− ha)2 + h2b2 (28)

which is smaller than 1 if and only if

h <
2a

a2 + b2
. (29)

Dividing both the numerator and denominator by a2 shows
the assertion.

Lemma A.5. Assume that v′(θ∗, ψ∗) has only eigenval-
ues with negative real part. For h > 0 small enough, the
eigenvalues of the Jacobian of the update operator Fh for
alternating gradient descent are then all in the unit circle.
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Proof. The Jacobian of the update operatorFh = Fh,2◦Fh,1
at an equilibrium is

F ′h(θ∗, ψ∗) = F ′h,2(θ∗, ψ∗) · F ′h,1(θ∗, ψ∗). (30)

However, we have

F ′h,i(θ
∗, ψ∗) = I + hv′i(θ

∗, ψ∗) (31)

for i ∈ {1, 2} where

v1(θ, ψ) =

(
−∇θL(θ, ψ)

0

)
(32)

v2(θ, ψ) =

(
0

∇ψL(θ, ψ)

)
(33)

denote the components of the gradient vector field. Hence

F ′h(θ∗, ψ∗) = I + h(v′1(θ∗, ψ∗) + v′2(θ∗, ψ∗))

+ h2v′2(θ∗, ψ∗)v′1(θ∗, ψ∗)

= I + h(v′(θ∗, ψ∗) + hR(θ∗, ψ∗)). (34)

with R(θ∗, ψ∗) := v′2(θ∗, ψ∗)v′1(θ∗, ψ∗). For h > 0 small
enough, all eigenvalues of v′(θ∗, ψ∗) + hR(θ∗, ψ∗) will be
arbitrarily close to the eigenvalues of v′(θ∗, ψ∗). Because
all eigenvalues of v′(θ∗, ψ∗) have negative real-part, all
eigenvalues of F ′h(θ∗, ψ∗) will hence lie inside the unit
circle for h > 0 small enough.

In the proof of Theorem 4.1 we will use local coordinates,
i.e. a diffeomorphism φ that maps a local neighborhood of
(θ∗, ψ∗) to an open subset of Rn+m. The vector field v and
the update operator F then have the following representation
in the local coordinates:

Fφh (α) := φ ◦ Fh ◦ φ−1(α) (35)

vφ(α) = φ′(θ, ψ) · (v ◦ φ−1(α)) (36)

While in local coordinates, the simple relationships be-
tween Fφh (α) and vφ(α) needed to prove Lemma A.4 and
Lemma A.5 do not hold anymore, the spectrum can be de-
scribed in the same way:

Remark A.6. Assume (θ∗, ψ∗) is a fixed point of Fh and a
stationary point of v. Let α∗ = φ(θ∗, ψ∗). Then

(Fφh )′(α∗) = φ′(θ∗, ψ∗)F ′h(θ∗, ψ∗)φ′(θ∗, ψ∗)−1 (37)

(vφ)′(α∗) = φ′(θ∗, ψ∗)v′(θ∗, ψ∗)φ′(θ∗, ψ∗)−1 (38)

Hence, (Fφh )′(α∗) and F ′h(θ∗, ψ∗) have the same spectrum.
The same also holds for (vφ)′(α∗) and v′(θ∗, ψ∗).

Proof. This follows from the chain and product rules by
using the fact that Fh(θ∗, ψ∗) = (θ∗, ψ∗) and v(θ∗, ψ∗) =
0.

As we will see in the proof of Theorem 4.1, Remark A.6
allows us to apply Theorem A.3 to situations where the sta-
tionary points lie on a lower dimensional manifold instead
of a space of the form {0}k × Rn+m−k.

A.3. Eigenvalue bounds

When analyzing the convergence properties of GANs, we
have to analyze the spectrum of real-valued matrices of the
from (

0 −BT

B −Q

)
(39)

with Q symmetric positive definite. To this end, we need
the following important theorem from Nagarajan & Kolter
(2017) which gives explicit bounds on the real part of the
eigenvalues:

Theorem A.7. Assume J ∈ R(n+m)×(n+m) is of the fol-
lowing form:

J =

(
0 −BT

B −Q

)
(40)

where Q ∈ Rm×m is a symmetric positive definite matrix
and B ∈ Rm×n has full column rank. Then all eigenvalues
λ of J satisfy Re(λ) < 0. More precisely

• if Im(λ) = 0

Re(λ) ≤ − λmin(Q)λmin(BTB)

λmax(Q)λmin(Q) + λmin(BTB)
(41)

• if Im(λ) 6= 0

Re(λ) ≤ −λmin(Q)

2
(42)

Proof. See Nagarajan & Kolter (2017), Lemma G.2.

In Section E.1, we need a generalization of Theorem A.7.
Using almost exactly the same proof as for Theorem A.7,
we obtain

Theorem A.8. Assume J ∈ R(n+m)×(n+m) is of the fol-
lowing form:

J =

(
−P −BT

B −Q

)
(43)

where P ∈ Rn×n is a symmetric positive semi-definite
matrix, Q ∈ Rm×m is a symmetric positive definite matrix
and B ∈ Rm×n has full column rank. Then all eigenvalues
λ of J satisfy Re(λ) < 0.

Proof. Let vT = (aT, bT) denote some eigenvector of
J with corresponding eigenvalues λ = λr + iλi, where
λr, λi ∈ R. Then

λr =
1

2
v̄T(J + JT)v = −āTPa− b̄TQb. (44)
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Because both P and Q are positive semi-definite, we have
λr ≤ 0. Because Q is positive definite, it suffices to show
that b 6= 0 to prove λr < 0.

Assume that b = 0. Because v is an eigenvector of J , we
have Ba − Qb = λb and therefore Ba = 0. Because B
has full-column rank, this shows a = 0 and hence v = 0.
However, this contradicts the fact that v is an eigenvector of
J . All in all, this show that b 6= 0 and thus λr ≤ −b̄TQb <
0 as required.

For applying Theorems A.2, we have to show that the Ja-
cobian of the update operator Fh only has eigenvalues with
absolute value smaller than 1. For simultaneous and alter-
nating gradient descent this can be achieved (Lemma A.4
and A.5), if the Jacobian of the gradient vector field v only
has eigenvalues with negative real-part. While this condi-
tion suffices to prove convergence for small learning rates,
Mescheder et al. (2017) showed that simultaneous and alter-
nating gradient descent might still require intractably small
learning rates if the imaginary part of the eigenvalues is
large. However, in our case we have the following simple
bound on the imaginary part of the eigenvalues:

Lemma A.9. Let

J =

(
−P −BT

B −Q

)
(45)

where P ∈ Rn×n and Q ∈ Rm×m are symmetric. All
eigenvalues λ of J then satisfy

| Im(λ)| ≤
√
λmax(BTB). (46)

Note that this bound is independent from P and Q.

Proof. Assume v, ‖v‖ = 1, is an eigenvector of J with
eigenvalue λ. Then

Im(λ) = v̄TJav. (47)

with Ja := 1
2i (J − JT). Hence, by the Cauchy-Schwarz

inequality

| Im(λ)| ≤ ‖v‖‖Jav‖ = ‖Jav‖. (48)

But, if vT = (aT, bT),

‖Jav‖2 = bBBTb+ aBTBa ≤ λmax(BTB). (49)

This shows

| Im(λ)| ≤
√
λmax(BTB). (50)

B. Proofs for the Dirac-GAN
This section contains the proofs for our results from Sec-
tion 2 and Section 3 on the properties of the Dirac-GAN.

Lemma 2.2. The unique equilibrium point of the training
objective in (4) is given by θ = ψ = 0. Moreover, the
Jacobian of the gradient vector field at the equilibrium point
has the two eigenvalues ±f ′(0) i which are both on the
imaginary axis.

Proof. The loss in (4) can be rewritten as

L(θ, ψ) = f(θψ) + const (51)

It is easy to check that the gradient vector field is given by

v(θ, ψ) =

(
−f ′(θψ)ψ
f ′(θψ)θ

)
. (52)

Because L(θ, 0) = L(0, ψ) = const for all θ, ψ ∈ R,
(θ, ψ) = (0, 0) is indeed a Nash-equilibrium for the game
defined by (51). Because we assume f ′(t) 6= 0 for all t ∈ R,
we have v(θ, ψ) = 0 if and only if (θ, ψ) = (0, 0), showing
that (0, 0) is indeed the unique Nash-equilibrium.

Moreover, the Jacobian v′(θ, ψ) of v is given by(
−f ′′(θψ)ψ2 −f ′(θψ)− f ′′(θψ)θψ

f ′(θψ) + f ′′(θψ)θψ f ′′(θψ)θ2

)
. (53)

Evaluating it at the Nash equilibrium θ = ψ = 0, we obtain

v′(0, 0) =

(
0 −f ′(0)

f ′(0) 0

)
(54)

which has the eigenvalues ±f ′(0)i.

Lemma 2.3. The integral curves of the gradient vector field
v(θ, ψ) do not converge to the Nash-equilibrium. More
specifically, every integral curve (θ(t), ψ(t)) of the gradient
vector field v(θ, ψ) satisfies θ(t)2 + ψ(t)2 = const for all
t ∈ [0,∞).

Proof. Let R(θ, ψ) := 1
2 (θ2 + ψ2). Then

d

dt
R(θ(t), ψ(t))

= θ(t)v1(θ(t), ψ(t)) + ψ(t)v2(θ(t), ψ(t)) = 0, (55)

showing that R(θ, ψ) is indeed constant for all t ∈ [0,∞).

Lemma 2.4. For simultaneous gradient descent, the Ja-
cobian of the update operator Fh(θ, ψ) has eigenvalues
λ1/2 = 1 ± hf ′(0)i with absolute values

√
1 + h2f ′(0)2

at the Nash-equilibrium. Independently of the learning rate,
simultaneous gradient descent is therefore not stable near
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the equilibrium. Even stronger, for every initial condition
and learning rate h > 0, the norm of the iterates (θk, ψk)
obtained by simultaneous gradient descent is monotonically
increasing.

Proof. The first part is a direct consequence of Lemma A.4
and Lemma 2.2.

To see the the norms of the iterates (θk, ψk) is monotonically
increasing, we calculate

θ2k+1 + ψ2
k+1

= (θk − hf ′(θkψk)ψk)2 + (ψk + hf ′(θkψk)θk)2

= θ2k + ψ2
k + h2f ′(θkψk)2(θ2k + ψ2

k)

≥ θ2k + ψ2
k. (56)

Lemma 2.5. For alternating gradient descent with ng gen-
erator and nd discriminator updates, the Jacobian of the
update operator Fh(θ, ψ) has eigenvalues

λ1/2 = 1− α2

2
±

√(
1− α2

2

)2

− 1. (5)

with α :=
√
ngndhf

′(0). For α ≤ 2, all eigenvalues are
hence on the unit circle. Moreover for α > 2, there are
eigenvalues outside the unit circle.

Proof. The update operators for alternating gradient descent
are given by

F1(θ, ψ) =

(
θ − hf ′(θψ)ψ

ψ

)
(57)

F2(θ, ψ) =

(
θ

ψ + hf ′(θψ)θ

)
. (58)

Hence, the Jacobians of these operators at 0 are given by

F ′1(0, 0) =

(
1 −hf ′(0)
0 1

)
(59)

F ′2(0, 0) =

(
1 0

hf ′(0) 1

)
. (60)

As a result, the Jacobian of the combined update operator is

(Fnd2 ◦ F
ng
1 )′(0, 0) = F ′2(0, 0)nd · F ′1(0, 0)ng

=

(
1 −nghf ′(0)

ndhf
′(0) −ngndh2f ′(0)2 + 1

)
. (61)

An easy calculation shows that the eigenvalues of this matrix
are

λ1/2 = 1− α2

2
±

√(
1− α2

2

)2

− 1 (62)

with α =
√
ngndhf

′(0) which are on the unit circle if and
only if α ≤ 2.

Lemma 3.1. WGANs trained with simultaneous or alternat-
ing gradient descent with a fixed number of discriminator
updates per generator update and a fixed learning rate
h > 0 do generally not converge to the Nash equilibrium
for the Dirac-GAN.

Proof. First, consider simultaneous gradient descent. As-
sume that the iterates (θk, ψk) converge towards the equilib-
rium point (0, 0). Note that (θk+1, ψk+1) 6= 0 if (θk, ψk) 6=
0. We can therefore assume without loss of generality that
(θk, ψk) 6= 0 for all k ∈ N.

Because limk→∞ ψk = 0, there exists k0 such that for all
k ≥ k0 we have |ψk| < 1. For k ≥ k0 we therefore have(

θk+1

ψk+1

)
=

(
1 −h
h 1

)(
θk
ψk

)
. (63)

For k ≥ k0, the iterates are therefore given by(
θk
ψk

)
= Ak−k0

(
θk0
ψk0

)
with A =

(
1 −h
h 1

)
. (64)

However, the eigenvalues of A are given by λ1/2 = 1 ±
hi which both have absolute value

√
1 + h2 > 1. This

contradicts the assumption that (θk, ψk) converges to (0, 0).

A similar argument also hold for alternating gradient descent.
In this case, A is given by(

1 0
h 1

)nd (1 −h
0 1

)ng
=

(
1 −hng
hnd 1− h2ngnd

)
. (65)

The eigenvalues of A as in (65) are given by

1− h2ngnh
2

±

√(
1− h2ngnh

2

)2

− 1. (66)

At least one of these eigenvalues has absolute value greater
or equal to 1. Note that for almost all initial conditions
(θ0, ψ0), the the inner product between the eigenvector cor-
responding to the eigenvalue with modulus bigger than 1
will be nonzero for all k ∈ N. Since the recursion in (63)
is linear, this contradicts the fact that (θk, ψk) → (0, 0),
showing that alternating gradient descent generally does not
converge to the Nash-equilibrium either.

Lemma 3.2. When using Gaussian instance noise with stan-
dard deviation σ, the eigenvalues of the Jacobian of the
gradient vector field are given by

λ1/2 = f ′′(0)σ2 ±
√
f ′′(0)2σ4 − f ′(0)2. (6)



Which Training Methods for GANs do actually Converge?

In particular, all eigenvalues of the Jacobian have negative
real-part at the Nash-equilibrium if f ′′(0) < 0 and σ > 0.
Hence, simultaneous and alternating gradient descent are
both locally convergent for small enough learning rates.

Proof. When using instance noise, the GAN training objec-
tive (1) is given by

Eθ̃∼N (θ,σ2)

[
f(θ̃ψ)

]
+ Ex∼N (0,σ2) [f(−xψ)] . (67)

The corresponding gradient vector field is hence given by

ṽ(θ, ψ) = Eθ̃,x

(
−ψf ′(θ̃ψ)

θ̃f ′(θ̃ψ)− xf ′(−xψ)

)
. (68)

The Jacobian ṽ′(θ, ψ) is therefore

Eθ̃,x

(
−f ′′(θ̃ψ)ψ2 −f ′(θ̃ψ)− f ′′(θ̃ψ)θ̃ψ

f ′(θ̃ψ) + f ′′(θ̃ψ)θ̃ψ f ′′(θ̃ψ)θ̃2 + x2f(−xψ)

)
(69)

Evaluating it at θ = ψ = 0 yields

ṽ′(0, 0) =

(
0 −f ′(0)

f ′(0) 2f ′′(0)σ2

)
(70)

whose eigenvalues are given by

λ1/2 = f ′′(0)σ2 ±
√
f ′′(0)2σ4 − f ′(0)2. (71)

Lemma 3.3. The eigenvalues of the Jacobian of the gra-
dient vector field for the gradient-regularized GAN at the
equilibrium point are given by

λ1/2 = −γ
2
±
√
γ2

4
− f ′(0)2. (8)

In particular, for γ > 0 all eigenvalues have negative real
part. Hence, simultaneous and alternating gradient descent
are both locally convergent for small enough learning rates.

Proof. The regularized gradient vector field becomes

ṽ(θ, ψ) =

(
−f ′(θψ)ψ

f ′(θψ)θ − γψ

)
. (72)

The Jacobian ṽ′(θ, ψ) is therefore given by(
−f ′′(θψ)ψ2 −f ′(θψ)− f ′′(θψ)θψ

f ′(θψ) + f ′′(θψ)θψ f ′′(θψ)θ2 − γ

)
. (73)

Evaluating it at θ = ψ = 0 yields

ṽ′(0, 0) =

(
0 −f ′(0)

f ′(0) −γ

)
(74)

whose eigenvalues are given by

λ1/2 = −γ
2
±
√
γ2

4
− f ′(0)2. (75)

C. Other regularization strategies
In this section we discuss further regularization techniques
for GANs on our example problem that were omitted in the
main text due to space constraints.

C.1. Nonsaturating GAN

Especially in the beginning of training, the discriminator
can reject samples produced by the generator with high
confidence (Goodfellow et al., 2014). When this happens,
the loss for the generator may saturate so that the generator
receives almost no gradient information anymore.

To circumvent this problem Goodfellow et al. (2014) in-
troduced a nonsaturating objective for the generator. In
nonsaturating GANs, the generator objective is replaced
with7

max
θ

Epθ(x)f(−Dψ(x)). (76)

In our example, this is maxθ f(−ψθ).

While the nonsaturating generator objective was originally
motivated by global stability considerations, we investigate
its effect on local convergence. A linear analysis similar to
normal GANs yields

Lemma C.1. The unique Nash-equilibrium for the nonsatu-
rating GAN on the example problem is given by θ = ψ = 0.
The eigenvalues of the Jacobian of the gradient vector field
at the equilibrium are ±f ′(0)i which are both on the imagi-
nary axis.

Proof. The gradient vector field for the nonsaturating GAN
is given by

v(θ, ψ) =

(
−f ′(−θψ)ψ
f ′(θψ)θ

)
. (77)

As in the proof of Lemma 2.2, we see that (ψ, θ) = (0, 0)
defines the unique Nash-equilibrium for the nonsaturating
GAN.

Moreover, the Jacobian v′(θ, ψ) is(
f ′′(−θψ)ψ2 −f ′(−θψ) + f ′′(−θψ)θψ

f ′(θψ) + f ′′(θψ)θψ f ′′(θψ)θ2

)
.

(78)
At θ = ψ = 0 we therefore have

v′(0, 0) =

(
0 −f ′(0)

f ′(0) 0

)
. (79)

with eigenvalues λ1/2 = ±f ′(0)i.

Lemma C.1 implies that simultaneous gradient descent is
not locally convergent for a nonsaturating GAN and any

7 Goodfellow et al. (2014) used f(t) = − log(1 + exp(−t)).
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learning rate h > 0, because the eigenvalues of the Jacobian
of the corresponding update operator Fh all have absolute
value larger than 1 (Lemma A.4). While Lemma C.1 also
rules out linear convergence towards the Nash-equilibrium
in the continuous case (i.e. for h → 0), the continuous
training dynamics could in principle still converge with a
sublinear convergence rate. Indeed, we find this to be the
case for the Dirac-GAN. We have

Lemma C.2. For every integral curve of the gradient vector
field of the nonsaturating Dirac-GAN we have

d

dt
(θ(t)2 + ψ(t)2) = 2 [f ′(θψ)− f ′(−θψ)] θψ. (80)

For concave f this is nonpositive. Moreover, for f ′′(0) <
0, the continuous training dynamics of the nonsaturating
Dirac-GAN converge with logarithmic convergence rate.

Proof. The gradient vector field for the nonsaturating Dirac-
GAN is given by

v(θ, ψ) =

(
−f ′(−θψ)ψ
f ′(θψ)θ

)
. (81)

Hence, we have

d

dt
(θ(t)2 + ψ(t)2) = v1(θ, ψ)θ + v2(θ, ψ)ψ

= 2θψ [f ′(θψ)− f ′(−θψ)] . (82)

For concave f , we have

f ′(θψ)− f ′(−θψ)

2θψ
≤ 0 (83)

and hence
d

dt
(θ(t)2 + ψ(t)2) ≤ 0. (84)

Now assume that f ′(0) 6= 0 and f ′′(0) < 0.

To intuitively understand why the continuous system con-
verges with logarithmic convergence rate, note that near the
equilibrium point we asymptotically have in polar coordi-
nates (θ, ψ) = (

√
w cos(φ),

√
w sin(φ)):

φ̇ = f ′(0) +O(|w|1/2) (85)

ẇ = 4f ′′(0)θ2ψ2 +O(|θψ|4) (86)

= f ′′(0)w2 sin2(2φ) +O(|w|4). (87)

When we ignore higher order terms, we can solve this sys-

tem explicitly8 for φ and w:

φ(t) = f ′(0)(t− t0) (89)

w(t) =
2

−f ′′(0)t+ f ′′(0)
4f ′(0) sin(4f ′(0)(t− t0)) + c

(90)

The training dynamics are hence convergent with logarith-
mic convergence rate O

(
1√
t

)
.

For a more formal proof, first note that w is nonincreasing
by the first part of the proof. Moreover, for every ε > 0
there is δ > 0 such that for w < δ:

f ′(0)− ε ≤ φ̇ ≤ f ′(0) + ε (91)

ẇ ≤ (f ′′(0) sin2(2φ) + ε)w2. (92)

This implies that for every time interval [0, T ], φ(t) is in⋃
k∈Z

[
π

8
+ k

π

2
,

3π

8
+ k

π

2

]
(93)

for t in a union of intervals QT ⊆ [0, T ] with total length
at least βbαT c with some constants α, β > 0 which are
independent of T .

For these t ∈ QT we have sin2(2φ(t)) ≥ 1
2 . Because

f ′′(0) < 0, this shows

ẇ(t) ≤
(

1

2
f ′′(0) + ε

)
w(t)2 (94)

for t ∈ QT and ε small enough. Solving the right hand
formally yields

w(t) ≤ 1

−( 1
2f
′′(0) + ε)t+ c

. (95)

As w(t) is nonincreasing for t /∈ QT and the total length of
QT is at least βbαT c this shows that

w(T ) ≤ 1

−( 1
2f
′′(0) + ε)βbαT c+ c

. (96)

The training dynamics hence converge with logarithmic
convergence rate O

(
1√
t

)
.

Note that the standard choice f(t) = − log(1 + exp(−t))
is concave and satisfies f ′′(0) = − 1

4 < 0. Lemma C.1 is
hence applicable and shows that the GAN training dynam-
ics for the standard choice of f converge with logarithmic
convergence rate in the continuous case. The training be-
havior of the nonsaturating GAN on our example problem
is visualized in Figure 3b.

8 For solving the ODE we use the separation of variables-
technique and the identity∫

2 sin2(ax)dx = x− sin(2ax)

2a
. (88)
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C.2. Wasserstein GAN-GP

In practice, it can be hard to enforce the Lipschitz-constraint
for WGANs. A practical solution to this problem was given
by Gulrajani et al. (2017), who derived a simple gradient
penalty with a similar effect as the Lipschitz-constraint.
The resulting training objective is commonly referred to as
WGAN-GP.

Similarly to WGANs, we find that WGAN-GP does not con-
verge for the Dirac-GAN. A similar analysis also applies to
the DRAGAN-regularizer proposed in (Kodali et al., 2017).

The regularizer proposed by Gulrajani et al. (2017) is given
by

R(ψ) =
γ

2
Ex̂ (‖∇xDψ(x̂)‖ − g0)

2 (97)

where x̂ is sampled uniformly on the line segment between
two random points x1 ∼ pθ(x1), x2 ∼ pD(x2).

For the Dirac-GAN, it simplifies to

R(ψ) =
γ

2
(|ψ| − g0)2 (98)

The corresponding gradient vector field is given by

ṽ(θ, ψ) =

(
−ψ

θ − sign(ψ)γ(|ψ| − g0)

)
. (99)

Note that the gradient vector field has a discontinuity at
the equilibrium point, as the gradient vector field takes on
values with norm bigger than some fixed constant in every
neighborhood of the equilibrium point. As a result, we have

Lemma C.3. WGAN-GP trained with simultaneous or al-
ternating gradient descent with a fixed number of generator
and discriminator updates and a fixed learning rate h > 0
does not converge locally to the Nash equilibrium for the
Dirac-GAN.

Proof. First, consider simultaneous gradient descent. As-
sume that the iterates (θk, ψk) converge towards the equilib-
rium point (0, 0). For almost all initial conditions9 we have
(θk, ψk) 6= (0, 0) for all k ∈ N. This implies

|ψk+1 − ψk| = h|θk − γψk − sign(ψk)g0| (100)

and hence limk→∞ |ψk+1 − ψk| = h|g0| 6= 0, showing
that (θk, ψk) is not a Cauchy sequence. This contradicts the
assumption that (θk, ψk) converges to the equilibrium point
(0, 0).

A similar argument also holds for alternating gradient de-
scent.

The training behavior of WGAN-GP on our example prob-
lem is visualized in Figure 3d.

9 Depending on γ, h and g0 modulo a set of measure 0.

As for WGANs, we stress that this analysis only holds if the
discriminator is trained with a fixed number of discriminator
updates per generator update. Again, more careful training
that ensures that the discriminator is kept exactly optimal or
two-timescale training (Heusel et al., 2017) might be able
to ensure convergence for WGAN-GP.

C.3. Consensus optimization

Consensus optimization (Mescheder et al., 2017) is an algo-
rithm that attempts to solve the problem of eigenvalues with
zero real-part by introducing a regularization term that ex-
plicitly moves the eigenvalues to the left. The regularization
term in consensus optimization is given by

R(θ, ψ) =
γ

2
‖v(θ, ψ)‖2

=
γ

2
(‖∇θL(θ, ψ)‖2 + ‖∇ψL(θ, ψ)‖2). (101)

As was proved by Mescheder et al. (2017), consensus op-
timization converges locally for small learning rates h > 0
provided that the Jacobian v′(θ∗, ψ∗) is invertible.10

Indeed, for the Dirac-GAN we have

Lemma C.4. The eigenvalues of the Jacobian of the gradi-
ent vector field for consensus optimization at the equilibrium
point are given by

λ1/2 = −γf ′(0)2 ± if ′(0) (102)

In particular, all eigenvalues have a negative real part
−γf ′(0)2. Hence, simultaneous and alternating gradient
descent are both locally convergent using consensus opti-
mization for small enough learning rates.

Proof. As was shown by Mescheder et al. (2017), the Jaco-
bian of the modified vector field ṽ at the equilibrium point
is

ṽ′(0, 0) = v′(0, 0)− γv′(0, 0)ᵀv′(0, 0). (103)

In our case, this is(
−γf ′(0)2 −f ′(0)
f ′(0) −γf ′(0)2.

)
(104)

A simple calculation shows that the eigenvalues of ṽ′(0, 0)
are given by

λ1/2 = −γf ′(0)2 ± if ′(0). (105)

This concludes the proof.

10 Mescheder et al. (2017) considered only the case of isolated
equilibrium points. However, by applying Theorem A.3, it is
straightforward to generalize their proof to the case where we are
confronted with a submanifold of equivalent equilibrium points.
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A visualization of consensus optimization for the Dirac-
GAN is given in Figure 3e.

Unfortunately, consensus optimization has the drawback
that it can introduce new spurious points of attraction to the
GAN training dynamics. While this is usually not a problem
for simple examples, it can be a problem for more complex
ones like deep neural networks.

A similar regularization term as in consensus optimization
was also independently proposed by Nagarajan & Kolter
(2017). However, Nagarajan & Kolter (2017) proposed to
only regularize the component ∇ψL(θ, ψ) of the gradient
vector field corresponding to the discriminator parameters.
Moreover, the regularization term is only added to the gen-
erator objective to give the generator more foresight. It can
be shown (Nagarajan & Kolter, 2017) that this simplified
regularization term can in certain situations also make the
training dynamics locally convergent, but might be better
behaved at stationary points of the GAN training dynamics
that do not correspond to a local Nash-equilibrium. In-
deed, a more detailed analysis shows that this simplified
regularization term behaves similarly to instance noise and
gradient penalties (which we discussed in Section 3.2 and
Section 3.3) for the Dirac-GAN.

D. General convergence results
In this section, we prove Theorem 4.1. To this end, we
extend the convergence proof by Nagarajan & Kolter (2017)
to our setting. We show that by introducing the gradient
penalty termsRi(θ, ψ), we can get rid of the assumption that
the generator and data distributions locally have the same
support. As we have seen, this makes the theory applicable
to more realistic cases, where both the generator and data
distributions typically lie on lower dimensional manifolds.

D.1. Convergence proof

To prove Theorem 4.1, we first need to understand the local
structure of the gradient vector field v(θ, ψ). Recall that the
gradient vector field v(θ, ψ) is defined as

v(θ, ψ) :=

(
−∇θL(θ, ψ)
∇ψL(θ, ψ)

)
(106)

with

L(θ, ψ) = Ep(z) [f(Dψ(Gθ(z)))]

+ EpD(x) [f(−Dψ(x))] . (107)

Lemma D.1. The gradient of L(θ, ψ) with respect to θ is
given by

∇θL(θ, ψ) = Ep(z)
[
f ′(Dψ(Gθ(z)) [∇θGθ(z)]T

· ∇xDψ(Gθ(z))
]
. (108)

Similarly, the gradient of L(θ, ψ) with respect to ψ is given
by

∇ψL(θ, ψ) = Epθ(x) [f ′(Dψ(x))∇ψDψ(x)]

− EpD(x) [f ′(−Dψ(x))∇ψDψ(x)] . (109)

Proof. This is just the chain rule.

Lemma D.2. Assume that (θ∗, ψ∗) satisfies Assumption I.
The Jacobian of the gradient vector field v(θ, ψ) at (θ∗, ψ∗)
is then

v′(θ∗, ψ∗) =

(
0 −KT

DG

KDG KDD

)
. (110)

The terms KDD and KDG are given by

KDD = 2f ′′(0) EpD(x) [∇ψDψ∗(x)∇ψDψ∗(x)T] (111)
KDG = f ′(0)∇θ Epθ(x) [∇ψDψ∗(x)] |θ=θ∗ (112)

Proof. First note that by the definition of v(θ, ψ) in (106),
the Jacobian v′(θ∗, ψ∗) of v(θ, ψ) is given by(

−∇2
θL(θ∗, ψ∗) −∇2

θ,ψL(θ∗, ψ∗)

∇2
θ,ψL(θ∗, ψ∗) ∇2

ψL(θ∗, ψ∗)

)
. (113)

By Assumption I, Dψ∗(x) = 0 in some neighborhood
of supp pD. Hence, we also have ∇xDψ∗(x) = 0 and
∇2
xDψ∗(x) = 0 for x ∈ supp pD. By taking the deriva-

tive of (108) with respect to θ and using ∇xDψ∗(x) =
0 and ∇2

xDψ∗(x) = 0 for x ∈ supp pD we see that
∇2
θL(θ∗, ψ∗) = 0.

To show (111) and (112), simply take the derivative of
(109) with respect to θ and ψ and evaluate at it at (θ, ψ) =
(θ∗, ψ∗).

We now take a closer look at the regularized vector field.
Recall that we consider the two regularization terms

R1(θ, ψ) :=
γ

2
EpD(x)

[
‖∇xDψ(x)‖2

]
(114)

R2(θ, ψ) :=
γ

2
Epθ(x)

[
‖∇xDψ(x)‖2

]
. (115)

As discussed in Section 4.1, the regularization is only ap-
plied to the discriminator. The regularized vector field is
hence given by

ṽ(θ, ψ) :=

(
−∇θL(θ, ψ)

∇ψL(θ, ψ)−∇ψRi(θ, ψ)

)
. (116)

Lemma D.3. The gradient ∇ψRi(θ, ψ) of the regulariza-
tion terms Ri, i ∈ {1, 2}, with respect to ψ are

∇ψR1(θ, ψ) = γ EpD(x)
[∇ψ,xDψ(x)∇xDψ(x)] (117)

∇ψR2(θ, ψ) = γ Epθ(x) [∇ψ,xDψ(x)∇xDψ(x)] . (118)
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Proof. These equations can be derived by taking the deriva-
tive of (114) and (115) with respect to ψ.

Lemma D.4. The second derivatives∇2
ψRi(θ

∗, ψ∗) of the
regularization terms Ri, i ∈ {1, 2}, with respect to ψ at
(θ∗, ψ∗) are both given by

LDD := γ EpD(x) [∇ψ,xDψ∗(x)∇ψ,xDψ∗(x)T] . (119)

Moreover, both regularization terms satisfy
∇θ,ψRi(θ∗, ψ∗) = 0.

Proof. ∇2
ψRi(θ

∗, ψ∗), i ∈ {1, 2}, can be computed by tak-
ing the derivative of (117) and (118) with respect to ψ and
using the fact that ∇xDψ∗(x) = 0 in a neighborhood of
supp pD.

Moreover, we clearly have ∇θ,ψR1(θ∗, ψ∗) = 0, because
R1 does not depend on θ. To see that ∇θ,ψR2(θ∗, ψ∗) = 0,
take the derivative of (118) with respect to θ and use the
fact that ∇xDψ∗(x) = 0 and ∇2

xDψ∗(x) = 0 for x ∈
supp pD.

As a result, the Jacobian ṽ′(θ∗, ψ∗) of the regularized gradi-
ent vector field at the equilibrium point is given by

ṽ′(θ∗, ψ∗) =

(
0 −KT

DG

KDG KDD − LDD

)
. (120)

For brevity, we define MDD := KDD − LDD.

To prove Theorem 4.1, we have to show that ṽ′(θ∗, ψ∗) is
well behaved when restricting it to the space orthogonal to
the tangent space ofMG ×MD at (θ∗, ψ∗):

Lemma D.5. Assume that Assumptions II and III hold.
If v 6= 0 is not in the tangent space of MD at ψ∗, then
v̄TMDDv < 0.

Proof. By Lemma D.2, we have

vTKDDv = 2f ′′(0) EpD(x)

[
(∇ψDψ∗(x)Tv)

2
]

(121)

and by Lemma D.4

vTLDDv = γ EpD(x)

[
‖∇x,ψDψ∗(x)v‖2

]
. (122)

By Assumption II, we have f ′′(0) < 0. Hence, vTMDDv ≤
0 and vTMDDv = 0 implies

∇ψDψ∗(x)Tv = 0 and ∇x,ψDψ∗(x)v = 0 (123)

for all x ∈ supp pD.

Let

h(ψ) := EpD(x)

[
|Dψ(x)|2 + ‖∇xDψ(x)‖2

]
. (124)

Using the fact that Dψ(x) = 0 and ∇xDψ(x) = 0 for
x ∈ supp pD, we see that the Hessian of h(ψ) at ψ∗ is

∇2
ψh(ψ∗) = 2 EpD(x)

[
∇ψDψ(x)∇ψDψ(x)T

+∇ψ,xDψ(x)∇ψ,xDψ(x)T
]

(125)

The second directional derivate ∂2vh(ψ) is therefore

∂2vh(ψ) = 2 EpD(x)

[
|∇ψDψ(x)Tv|2

+ ‖∇x,ψDψ(x)v‖2
]

= 0. (126)

By Assumption III, this can only hold if v is in the tangent
space ofMD at ψ∗.

Lemma D.6. Assume that Assumption III holds. If w 6= 0
is not in the tangent space ofMG at θ∗, then KDGw 6= 0.

Proof. By Lemma D.2, we have

KDGw = f ′(0)
[
∇θ Epθ(x) [∇ψDψ∗(x)] |θ=θ∗

]
w

= f ′(0)∂wg(θ). (127)

for
g(θ) := Epθ(x) [∇ψDψ∗(x)] . (128)

By Assumption III, this implies KDGw 6= 0 if w is not in
the tangent space ofMG at θ∗.

We are now ready to prove Theorem 4.1:

Theorem 4.1. Assume Assumption I, II and III hold for
(θ∗, ψ∗). For small enough learning rates, simultaneous
and alternating gradient descent for ṽ1 and ṽ2 are both
convergent toMG ×MD in a neighborhood of (θ∗, ψ∗).
Moreover, the rate of convergence is at least linear.

Proof. First note that by Lemma D.1 and Lemma D.3
v(θ, ψ) = 0 for all points (θ, ψ) ∈ MG ×MD, because
Dψ(x) = 0 and ∇xDψ(x) = 0 for all x ∈ supp pD and
ψ ∈MD. Hence,MG×MD consists only of equilibrium
points of the regularized gradient vector fields.

Let Tθ∗MG and Tψ∗MD denote the tangent spaces ofMG

andMD at θ∗ and ψ∗.

We now want to show that both simultaneous and alternating
gradient descent are locally convergent toMG ×MD for
the regularized gradient vector field ṽ(θ, ψ). To this end,
we want to apply Theorem A.3. By choosing local coordi-
nates θ(α, γG) and ψ(β, γD) forMG andMD and using
Remark A.6, we can assume without loss of generality that
θ∗ = 0, ψ∗ = 0 as well as

MG = Tθ∗MG = {0}k × Rn−k (129)

MD = Tψ∗MD = {0}l × Rm−l. (130)
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This allows us to write11 ṽ(θ, ψ) = ṽ(α, γG, β, γD)
In order to apply Theorem A.3, we have to show that
∇(α,β)ṽ(θ∗, ψ∗) only has eigenvalues with negative real-
part.

By Lemma D.2, ∇(α,β)ṽ(θ∗, ψ∗) is of the form(
0 −K̃T

DG

K̃DG K̃DD − L̃DD

)
(131)

where K̃DD, K̃DG and L̃DD denote the submatrices of
KDD, KDG and LDD corresponding to the (α, β) coordi-
nates.

We now show that M̃DD := K̃DD − L̃DD is negative defi-
nite and K̃DG has full column rank.

To this end, first note that

ṽTM̃DDṽ = vTMDDv (132)

with vT := (ṽT, 0). Note that v /∈ Tψ∗MD for ṽ 6= 0.
Hence, by Lemma D.5 we have that ṽTM̃DDṽ < 0 if ṽ 6= 0.
As a result, we see that M̃DD is symmetric negative definite.

Similarly, for wT := (w̃T, 0), the components of KDGw
corresponding to the β-coordinates are given by K̃DGw̃.
Again, we have w /∈ Tθ∗MG for w̃ 6= 0. Hence, by
Lemma D.6 we have thatKDGw 6= 0 if w̃ 6= 0. Because the
components of KDGw corresponding to the γD coordinates
are 0, this shows that K̃DGw̃ 6= 0. K̃DG therefore has full
column rank.

Theorem A.7 now implies that all eigenvalues of
∇(α,β)ṽ(θ∗, ψ∗) have negative real part. By Lemma A.4,
Lemma A.5 and Theorem A.3, simultaneous and alter-
nating gradient descent are therefore both convergent to
MG ×MD near (θ∗, ψ∗) for small enough learning rates.
Moreover, the rate of convergence is at least linear.

D.2. Extensions

In the proof of Theorem 4.1 we have assumed that f ′′(0) <
0. This excludes the function f(t) = t which is used in
Wasserstein-GANs. We now show that our convergence
proof extends to the case where f(t) = t when we modify
Assumption III as little bit:

Remark D.7. When we replace h(ψ) with

h̃(ψ) := EpD(x)

[
‖∇xDψ(x)‖2

]
(133)

and MD with M̃D := {ψ | h̃(ψ) = 0} the results of
Theorem 4.1 still hold for f(t) = t.

Proof. Almost everything in the proof of Theorem 4.1 still
holds for these modified assumptions. The only thing that

11 By abuse of notation, we simply write θ = (α, γG) and
ψ = (β, γD).

we have to show is thatMG ×MD still consists only of
equilibrium points and that Lemma D.5 still holds in this
setting.

To see the former, note that by Lemma D.1 we still have
∇θL(θ, ψ) = 0 for (θ, ψ) ∈MG ×MD, because we have
∇xDψ(x) = 0 for ψ ∈ MD and x ∈ supp pD. On the
other hand, for f(t) = t we also have ∇ψL(θ, ψ) = 0
if θ ∈ MG, because for θ ∈ MG the definition of MG

implies that pθ = pD and hence, by Lemma D.1,

∇ψL(θ, ψ) = Ex∼pD [∇ψDψ(x)]

− Ex∼pD [∇ψDψ(x)] = 0. (134)

To see why Lemma D.5 still holds, first note that for f(t) =
t, we have f ′′(0) = 0, so that by Lemma D.2 KDD = 0.
Hence,

vTMDDv = −vTLDDv. (135)

We therefore have to show that vTLDDv 6= 0 if v is not in
the tangent space ofMD.

However, we have seen in the proof of Lemma D.5 that

vTLDDv = γ EpD(x)

[
‖∇x,ψDψ∗(x)v‖2

]
. (136)

Hence vTLDDv = 0 implies ∇x,ψDψ∗(x)v = 0 for x ∈
supp pD and thus

∂2vh(ψ) = 2 EpD(x)

[
‖∇x,ψDψ(x)v‖2

]
= 0. (137)

By Assumption III, this can only be the case if v is in the
tangent space ofMD. This concludes the proof.

In Section D.1, we showed that both regularizers R1 and R2

from Section 4.1 make the GAN training dynamics locally
convergent. A similar, but slightly more complex regularizer
was also proposed by Roth et al. (2017) who tried to find a
computationally efficient approximation to instance noise.
The regularizer proposed by Roth et al. (2017) is given by
a linear combination of R1 and R2 where the weighting is
adaptively chosen depending on the logits of Dψ(x) of the
current discriminator at a data point x:

RRoth(θ, ψ) = Epθ(x)
[
(1− σ(Dψ(x)))2‖∇xDψ(x)‖2

]
+ EpD(x)

[
σ(Dψ(x)))2‖∇xDψ(x)‖2

]
(138)

Indeed, we can show that our convergence proof extends
to this regularizer (and a slightly more general class of
regularizers):

Remark D.8. When we replace the regularization terms R1

and R2 with

R3(θ, ψ) = Epθ(x)
[
w1(Dψ(x))‖∇xDψ(x)‖2

]
+ EpD(x)

[
w2(Dψ(x))‖∇xDψ(x)‖2

]
(139)
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so that w1(0) > 0 and w2(0) > 0, the results of Theo-
rem 4.1 still hold.

Proof. Again, we have to show thatMG ×MD still con-
sists only of equilibrium points and that Lemma D.5 still
holds in this setting.

However, by using ∇xDψ(x) = 0 for x ∈ supp pD and
ψ ∈ MD, it is easy to see that ∇ψR3(θ, ψ) = 0 for all
(θ, ψ) ∈MG ×MD, which implies thatMG ×MD still
consists only of equilibrium points.

To see why Lemma D.5 still holds in this setting, note that
(after a little bit of algebra) we still have∇θ,ψR3(θ∗, ψ∗) =
0 and

∇2
ψR3(θ∗, ψ∗) =

1

γ
(w1(0) + w2(0))LDD. (140)

The proof of Lemma D.5 therefore still applies in this setting.

E. Stable equilibria for unregularized GAN
training

In Section 2, we have seen that unregularized GAN training
is not always locally convergent to the equilibrium point.
Moreover, in Section 4, we have shown that zero-centered
gradient penalties make general GANs locally convergent
under some suitable assumptions.

While our results demonstrate that we cannot expect un-
regularized GAN training to lead to local convergence for
general GAN architectures, there can be situations where
unregularized GAN training has stable equilibria. Such equi-
libria usually require additional assumptions on the class of
representable discriminators.

In this section, we identify two types of stable equilibria.
For the first class of stable equilibria, which we call Energy
Solutions, the equilibrium discriminator forms an energy
function for the true data distributions and might be a partial
explanation for the success of autoencoder-based discrim-
inators (Zhao et al., 2016; Berthelot et al., 2017). For the
second class, which we call Full-rank solutions, the discrim-
inator learns a representation of the data distribution with
certain properties and might be a partial explanation for the
success of batch-normalization for training GANs (Radford
et al., 2015).

E.1. Energy Solutions

For technical reasons, we assume that supp pD defines a
C1-manifold in this section.

Energy solutions are solutions where the discriminator forms
a potential function for the true data distribution. Such
solutions (θ∗, ψ∗) satisfy the following property:

Assumption I′. We have pθ∗ = pD, Dψ∗(x) = 0,
∇xDψ∗(x) = 0 and vT∇2

xDψ∗(x)v > 0 for all x ∈
supp pD and v not in the tangent space of supp pD at x.

We also need a modified version of Assumption III which
ensures certain regularity properties of the reparameteriza-
tion manifoldsMG andMD near the equilibrium (θ∗, ψ∗).
To formulate Assumption III′, we need

g̃(ψ) := ∇θ Epθ(x) [Dψ(x)]
∣∣
θ=θ∗

. (141)

Assumption III′. There are ε-balls Bε(θ∗) and Bε(ψ
∗)

around θ∗ and ψ∗ so thatMG∩Bε(θ∗) andMD∩Bε(ψ∗)
define C1- manifolds. Moreover, the following holds:

(i) if v is not in the tangent space of MD at ψ∗, then
∂v g̃(ψ∗) 6= 0.

(ii) ifw is not in the tangent space ofMG at θ∗, then there
is a latent code z ∈ Rk so that ∇θGθ∗(z)w is not in
the tangent space of supp pD at Gθ∗(z) ∈ supp pD.

The first part of Assumption III′ implies that the genera-
tor gradients become nonzero whenever the discriminator
moves away from an equilibrium discriminator. The second
part of Assumption III′ means that every time the generator
leaves the equilibrium, it pushes some data point aways
from supp pD, i.e. the generator is not simply redistributing
mass on supp pD.

In Theorem E.2 we show that energy solutions lead to local
convergence of the unregularized GAN training dynamics.
For the proof, we first need a generalization of Lemma D.2:

Lemma E.1. Assume that (θ∗, ψ∗) satisfies Assumption I′.
The Jacobian of the gradient vector field v(θ, ψ) at (θ∗, ψ∗)
is then given by

v′(θ∗, ψ∗) =

(
KGG −KT

DG

KDG KDD

)
. (142)

The terms KDD and KDG are given by

KGG = −f ′(0) Ep(z)
[
[∇θGθ∗(z)]T

∇2
xDψ∗(Gθ∗(z))∇θGθ∗(z)

] (143)

KDD = 2f ′′(0) EpD(x) [∇ψDψ∗(x)∇ψDψ∗(x)T] (144)

KDG = f ′(0)
[
∇θ Epθ(x) [∇ψDψ∗(x)] |θ=θ∗

]T (145)

Proof. Almost all parts of the proof of Lemma D.2 are
still valid. The only thing that remains to show is that
∇2
θL(θ∗, ψ∗) = −KGG. To see this, just take the derivative

of (108) with respect to θ and use the fact that∇xDψ(x) =
0 for x ∈ supp pD.

We are now ready to formulate our convergence result for
energy solutions:
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Theorem E.2. Assume Assumption I′, II and III′ hold for
(θ∗, ψ∗). Moreover, assume that f ′(0) > 0. For small
enough learning rates, simultaneous and alternating gra-
dient descent for the (unregularized) gradient vector field
v are both convergent toMG ×MD in a neighborhood
of (θ∗, ψ∗). Moreover, the rate of convergence is at least
linear.

Proof (Sketch). The proof is similar to the proof of Theo-
rem 4.1.

First, note that MG ×MD still only consists of equilib-
rium points. Next, we introduce local coordinates and show
that for v not in the tangent space ofMG at θ∗, we have
vTKGGv < 0. This can be shown using Lemma E.1, As-
sumption I′ and the second part of Assumption III′.

Moreover, we need to show that for w not in the tangent
space of MD at ψ∗, we have KT

DGw 6= 0. This can be
shown by applying the first part of Assumption III′.

The rest of the proof is the same as the proof of Theorem 4.1,
except that we have to apply Theorem A.8 instead of Theo-
rem A.7.

Note that energy solutions are only possible, if the discrim-
inator is able to satisfy Assumption III′. This is not the
case for the Dirac-GAN from Section 2. However, if we
use a quadratic discriminator instead, there are also energy
solutions to the unregularized GAN training dynamics for
the Dirac-GAN. To see this, we can parameterize Dψ(x) as

Dψ(x) := ψ1x
2 + ψ2x. (146)

It is easy to check that the Dirac-GAN with a discrimina-
tor as in (146) indeed has energy solutions: every (θ, ψ)
with θ = 0 and ψ2 = 0 defines an equilibrium point of
the Dirac-GAN and the GAN-training dynamics are locally
convergent near this point if ψ1 > 0. Note however, that
even though all equilbria with ψ1 > 0 are points of attrac-
tion for the continuous GAN training dynamics, they may
not be attractors for the discretized system when ψ1 is large
and the learning rate h is fixed. In general, the conditioning
of energy solutions depends on the condition numbers of
the Hessians ∇2

xDψ∗(x) at all x ∈ supp pD. Indeed, the
presence of ill-conditioned energy solutions might be one
possible explanation why WGAN-GP often works well in
practice although it is not even locally convergent for the
Dirac-GAN.

E.2. Full-Rank Solutions

In practice, Dψ(x) is usually implemented by a deep neural
network. Such discriminators can be described by functions
of the form

Dψ(x) = ψT
1 ηψ2(x) (147)

with a vector-valued C1-functions ηψ2
and ψ = (ψ1, ψ2).

ηψ2 can be regarded as a feature-representation of the data
point x.

We now state several assumptions that lead to local conver-
gence in this situation.

The first assumption can be seen as a variant of Assumption I
adapted to this specific situation:

Assumption I′′. We have pθ∗ = pD and ψ∗1 = 0.

We again consider reparameterization manifolds, which we
define as follows in this section:

MG := {θ | pθ = pD} M′D := {ψ | ψ1 = 0}. (148)

Moreover, let

g(θ) = Epθ(x)
[
ηψ∗2 (x)

]
. (149)

Assumption III now becomes:

Assumption III′′. There is an ε-ball Bε(θ∗) around θ∗ so
thatMG defines a C1- manifold12. Moreover, the following
holds:

(i) The matrix EpD(x)

[
ηψ∗2 (x)ηψ∗2 (x)T

]
has full rank.

(ii) if w is not in the tangent space of MG at θ∗, then
∂wg(θ∗) 6= 0.

We call a function ηψ∗2 that satisfies the first part of As-
sumption III′′ a full-rank representation of pD. Moreover,
if ηψ∗2 satisfies the second part of Assumption III′′, we call
ηψ∗2 a complete representations, because the second part
of Assumption III′′ implies that every deviation from the
Nash-equilibrium pθ∗ = pD is detectable using ηψ∗2 .

In practice, complete full-rank representations might only
exist if the class of discriminators is very powerful or the
class of generators is limited. Especially the second part of
Assumption III′′ might be hard to satisfy in practice. More-
over, finding such representations might be much harder
than finding equilibria for the regularized GAN-training
dynamics from Section 4.

Nonetheless, we have the following convergence result for
GANs that allow for complete full-rank representations:

Theorem E.3. Assume Assumption I′, Assumption II and
III′ hold for (θ∗, ψ∗). For small enough learning rates,
simultaneous and alternating gradient descent for the (un-
regularized) gradient vector field v are both convergent to
MG ×M′D in a neighborhood of (θ∗, ψ∗). Moreover, the
rate of convergence is at least linear.

Proof (Sketch). The proof is again similar to the proof of
Theorem 4.1. We again introduce local coordinates and

12 Note thatM′
D is a C1-manifold by definition in this setup.
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show that for w not in the tangent space ofM′D at ψ∗, we
have wTKDDw < 0. To see this, note that w must have a
nonzero ψ1 component if it is not in the tangent space of
M′D at ψ∗. However, using (111), we see that the submatrix
of KDD corresponding to the ψ1 coordinates is given by

K̃DD = 2f ′′(0) EpD(x)

[
ηψ∗2 (x)ηψ∗2 (x)T

]
. (150)

This matrix is negative definite by Assumption II and the
first part of Assumption III′′.

Moreover, by applying (112), we see that the component
of KDGw, w ∈ Rn, corresponding to the ψ1 coordinates is
given by

∂wg(θ∗) = f ′(0)∇θ Epθ(x)
[
ηψ∗2 (x)

] ∣∣
θ=θ∗

w. (151)

Using the second part of Assumption III′′, we therefore see
that for w not in the tangent space ofMG at θ∗, we have
KDGw 6= 0.

The rest of the proof is the same as the proof of Theorem 4.1.

For the Dirac-GAN from Section 2, we can obtain a com-
plete full-rank representation, when we parameterize the
discriminator Dψ as Dψ(x) = ψ exp(x), i.e. if we set
ψ1 := ψ and ηψ2(x) := exp(x). It is easy to check that ηψ2

indeed defines a complete full-rank representation and that
the Dirac-GAN is locally convergent to (θ∗, ψ∗) = (0, 0)
for this parameterization of Dψ(x).

F. Experiments
In this section, we describe additional experiments and give
more details on our experimental setup. If not noted other-
wise, we always use the nonsaturating GAN-objective intro-
duced by Goodfellow et al. (2014) for training the generator.
For WGAN-GP we use the generator and discriminator ob-
jectives introduced by Gulrajani et al. (2017).

2D-Problems For the 2D-problems, we run unregularized
GAN training, R1-regularized and R2-regularized GAN
training as well WGAN-GP with 1 and 5 discriminator
update per generator update. We run each method on 4
different 2D-examples for 6 different GAN architectures.
The 4 data-distributions are visualized in Figure 8. All 6
GAN architectures consist of 4-layer fully connected neural
networks for both the generator and discriminator, where
we select the number of hidden units from {8, 16, 32} and
use select either leaky RELUs (i.e. ϕ(t) = max(t, 0.2t)) or
Tanh-activation functions.

For each method, we try both Stochastic Gradient De-
scent (SGD) and RMS-Prop with 4 different learning
rates: for SGD, we select the learning rate from {5 ·

10−3, 10−2, 2 · 10−2, 5 · 10−2}. For RMSProp, we select
it from {5 · 10−5, 10−4, 2 · 10−4, 5 · 10−4}. For the R1-,
R2- and WGAN-GP-regularizers we try the regularization
parameters γ = 1, γ = 3 and γ = 10. For each method
and architecture, we pick the hyperparameter setting which
achieves the lowest Wasserstein-1-distance to the true data
distribution. We train all methods for 50k iterations and
we report the Wasserstein-1-distance averaged over the last
10k iterations. We estimate the Wasserstein-1-distance us-
ing the Python Optimal Transport package13 by drawing
2048 samples from both the generator and the true data
distributions.

The best solution found by each method on the “Circle”-
distribution is shown in Figure 9. We see that the R1- and
R2-regularizers converge to solutions for which the discrim-
inator is 0 in a neighborhood of the true data distribution.
On the other hand, unregularized training and WGAN-GP
converge to energy solutions where the discriminator forms
a potential for the true data distribution. Please see Sec-
tion E.1 for details.

CIFAR-10 To test our theory on real-world tasks, we train
a DC-GAN architecture (Radford et al., 2015) with 3 convo-
lutional layers and no batch-normalization on the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). We apply different
regularization strategies to stabilize the training. To com-
pare the different regularization strategies, we measure the
inception score (Salimans et al., 2016) over Wall-clock-time.
We implemented the network in the Tensorflow framework
(Abadi et al., 2016). For all regularization techniques, we
use the RMSProp optimizer (Tieleman & Hinton, 2012)
with α = 0.9 and a learning rate of 10−4.

For the R1 and R2 regularizers from Section 4.1 we use a
regularization parameter of γ = 10. For the WGAN-GP
regularizer we also use a regularization parameter of γ = 10
as suggested by Gulrajani et al. (2017). We train all methods
using 1 discriminator update per generator update except
for WGAN-GP, for which we try both 1 and 5 discriminator
updates

The inception score (Salimans et al., 2016) over time for
the different regularization strategies is shown in Figure 6.
As predicted by our theory, we see that the R1 and R2 reg-
ularizers from Section 4.1 lead to stable training whereas
unregularized GAN training is not stable. We also see that
WGAN-GP with 1 or 5 discriminator updates per generator
update lead to similar final inception scores on this architec-
ture. The good behavior of WGAN-GP is surprising consid-
ering the fact that it does not even converge locally for the
Dirac-GAN. One possible explanation is that WGAN-GP
oscillates in narrow circles around the equilibrium which
might be enough to produce images of sufficiently high

13http://pot.readthedocs.io

http://pot.readthedocs.io
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quality. Another possible explanation is that WGAN-GP
converges to an energy or a full-rank solution (Section E)
for this example.

Imagenet For the Imagenet experiment, we use ResNet-
architectures for the generator and discriminator, both hav-
ing 55 layers in total. Both the generator and discriminator
are conditioned on the labels of the input data. The archi-
tectures for the generator and discriminator are shown in
Table 3. We use preactivation ResNet-blocks and Leaky
RELU-nonlinearities everywhere. We also multiply the out-
put of the ResNet blocks with 0.1. For the generator, we
sample a latent variable z from a 256-dimensional uniform
distribution on [−1, 1]256 and concatenate it with a 256
dimensional embedding of the labels. The resulting 512-
dimensional vector is then fed into the first fully connected
layer of the generator. The discriminator takes as input an
image and outputs a 1000 dimensional vector. Depending
on the label of the input, we select the corresponding index
in this vector and use it as the logits for the GAN-objective.

We implemented the network in the Pytorch framework
(Paszke et al., 2017) and use the RMSProp optimizer with
α = 0.99, ε = 10−5 and an initial learning rate of 10−4.
We use a batch size of 128 and we train the networks on
4 GeForce GTX 1080 Ti GPUs for 35 epochs. Every 10
epochs, we anneal the learning rate by a factor of 2.

We find that while training this GAN without any regu-
larization quickly leads to mode collapse, using the R1-
regularizers from Section 4.1 leads to stable training.

Some random (unconditional) samples can be seen in Fig-
ure 10. Moreover, Figure 11 and Figure 12 show conditional
samples for some selected Imagenet classes. While not com-
pletely photorealistic, we find that our model can produce
convincing samples from all 1000 Imagenet classes.

We also compare the R1-regularizer with WGAN-GP (with
1 discriminator update per generator update) on a slightly
smaller architecture14 and no learning rate annealing. The
resulting inception score15 over the number of iterations is
visualized in Figure 7. We find that for this dataset and archi-
tecture we can achieve higher inception scores when using
the R1-regularizer in place of the WGAN-GP regularizer.

celebA and LSUN To see if the R1-regularizers helps to
train GANs for high-resolution image distributions, we ap-
ply our method to the celebA dataset (Liu et al., 2015) and
to 4 subsets of the LSUN dataset (Yu et al., 2015) with reso-
lution 256× 256. We use a similar training setup as for the

14 For computational reasons we only use 2 instead of 4
RESNET-blocks in each level for this experiment.

15 For measuring the inception score, we use the pub-
lic implementation from http://github.com/sbarratt/
inception-score-pytorch.

Figure 6. Inception score over time for various regularization strate-
gies when training on CIFAR-10. While the inception score can be
problematic for evaluating probabilistic models (Barratt & Sharma,
2018), it still gives a rough idea about the convergence and stability
properties of different training methods.

Imagenet experiment, but we use a slightly different architec-
ture (Table 4). As in the Imagenet-experiment, we use pre-
activation ResNet-blocks and Leaky RELU-nonlinearities
everywhere and we multiply the output of the ResNet-blocks
with 0.1. We implemented the network in the Pytorch frame-
work and use the RMSProp optimizer with α = 0.99 and a
learning rate of 10−4. As a regularization term, we use the
R1-regularizer with γ = 10. For the latent code z, we use
a 256 dimensional Gaussian distribution. The batch size is
64.

We find that theR1 successfully stabilizes training of this ar-
chitecture. Some random samples can be seen in Figures 13,
14, 15, 16 and 17.

celebA-HQ In addition to the generative model for celebA
with resolution 256× 256, we train a GAN on celebA-HQ
(Karras et al., 2017) with resolution 1024× 1024. We use
almost the same architecture as for celebA (Table 4), but add
two more levels to increase the resolution from 256× 256
to 1024× 1024 and decrease the number of features from
64 to 16. Because of memory constraints, we also decrease
the batch size to 24. In contrast to Karras et al. (2017),
we train our model end-to-end during the whole course of
training, i.e. we do not use progressive growing of the
GAN-architectures (nor any of the other techniques used by
Karras et al. (2017) to stabilize the training). We find that
the simple R1-regularizer stabilizes the training, allowing
our model to converge to a good (albeit not perfect) solution
without using a progressively growing GAN. Some random
samples are shown in Figure 18.

http://github.com/sbarratt/inception-score-pytorch
http://github.com/sbarratt/inception-score-pytorch
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Figure 7. Inception score over the number of iterations for GAN
training with R1- and WGAN-GP-regularization when training on
Imagenet. We find that R1-regularization leads to higher inception
scores for this dataset and GAN-architecture.

Layer output size filter

Fully Connected 256 · 4 · 4 256→ 256 · 4 · 4
Reshape 256× 4× 4 -
TransposedConv2D 128× 8× 8 256→ 128
TransposedConv2D 64× 16× 16 128→ 64
TransposedConv2D 3× 32× 32 64→ 3

(a) Generator architecture

Layer output size filter

Conv2D 64× 16× 16 3→ 64
Conv2D 128× 8× 8 64→ 128
Conv2D 256× 4× 4 128→ 256
Reshape 256 · 4 · 4 -
Fully Connected 256 · 4 · 4 256 · 4 · 4→ 1

(b) Discriminator architecture

Table 2. Architectures for CIFAR-10-experiment.

Layer output size filter

Fully Connected 1024 · 4 · 4 512→ 1024 · 4 · 4
Reshape 1024× 4× 4 -

Resnet-Block (4x) 1024× 4× 4 1024→ 512→ 1024
NN-Upsampling 1024× 8× 8 -

Conv2D 1024× 8× 8 1024→ 1024
Resnet-Block (4x) 1024× 8× 8 1024→ 512→ 1024
NN-Upsampling 1024× 16× 16 -

Conv2D 512× 16× 16 1024→ 512
Resnet-Block (4x) 512× 16× 16 512→ 256→ 512
NN-Upsampling 512× 32× 32 -

Conv2D 256× 32× 32 512→ 256
Resnet-Block (4x) 256× 32× 32 256→ 128→ 256
NN-Upsampling 256× 64× 64 -

Conv2D 128× 64× 64 256→ 128
Resnet-Block (4x) 128× 64× 64 128→ 64→ 128
NN-Upsampling 128× 128× 128 -

Conv2D 64× 128× 128 128→ 64
Resnet-Block (4x) 64× 128× 128 64→ 32→ 64
Conv2D 3× 128× 128 16→ 3

(a) Generator architecture

Layer output size filter

Conv2D 64× 128× 128 3→ 64

Resnet-Block (4x) 64× 128× 128 64→ 32→ 64
Conv2D 128× 64× 64 64→ 128

Resnet-Block (4x) 128× 64× 64 128→ 64→ 128
Conv2D 256× 32× 32 128→ 256

Resnet-Block (4x) 256× 32× 32 256→ 128→ 256
Conv2D 512× 16× 16 256→ 512

Resnet-Block (4x) 512× 16× 16 512→ 256→ 512
Conv2D 1024× 8× 8 512→ 1024

Resnet-Block (4x) 1024× 8× 8 1024→ 512→ 1024
Conv2D 1024× 4× 4 1024→ 1024

Resnet-Block (4x) 1024× 4× 4 1024→ 512→ 1024
Reshape 1024 · 4 · 4 -

Fully Connected 1024 · 4 · 4 1024 · 4 · 4→ 1000

(b) Discriminator architecture

Table 3. Architectures for Imagenet-experiment.
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(a) 2D-Gaussian (b) Line (c) Circle (d) Four lines

Figure 8. The four 2D-data distributions on which we test the different algorithms.

(a) unregularized (b) R1 (c) R2 (d) WGAN-GP-1 (e) WGAN-GP-5

Figure 9. Best solutions found by the different algorithms for learning a circle. The blue points are samples from the true data distribution,
the orange points are samples from the generator distribution. The colored areas visualize the gradient magnitude of the equilibrium
discriminator. We find that while the R1- and R2-regularizers converge to equilibrium discriminators that are 0 in a neighborhood of the
true data distribution, unregularized training and WGAN-GP converge to energy solutions (Section E.1).

(a) Training distribution (b) Random samples

Figure 10. Unconditional results on the Imagenet dataset (Russakovsky et al., 2015) with resolution 128× 128. The final inception score
is 18.5± 0.4.
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(a) tench (b) papillon (c) weevil

(d) admiral (e) lighthouse (f) bell cote

(g) castle (h) dam (i) dock

Figure 11. Class conditional results on the Imagenet dataset.
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(a) home theater (b) jack-o’-lantern (c) passenger car

(d) police van (e) rugby ball (f) ski

(g) trifle (h) pizza (i) valley

Figure 12. Class conditional results on the Imagenet dataset.
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Figure 13. Results on the celebA dataset (Liu et al., 2015) (256 × 256) for a DC-GAN (Radford et al., 2015) based architecture with
additional residual connections (He et al., 2016). For both the generator and the discriminator, we do not use batch normalization.
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Figure 14. Results on the LSUN-bedroom dataset (Yu et al., 2015) (256× 256) for a DC-GAN (Radford et al., 2015) based architecture
with additional residual connections (He et al., 2016). For both the generator and the discriminator, we do not use batch normalization.
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Figure 15. Results on the LSUN-church dataset (Yu et al., 2015) (256× 256) for a DC-GAN (Radford et al., 2015) based architecture
with additional residual connections (He et al., 2016). For both the generator and the discriminator, we do not use batch normalization.
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Figure 16. Results on the LSUN-bridge dataset (Yu et al., 2015) (256× 256) for a DC-GAN (Radford et al., 2015) based architecture
with additional residual connections (He et al., 2016). For both the generator and the discriminator, we do not use batch normalization.
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Figure 17. Results on the LSUN-tower dataset (Yu et al., 2015) (256× 256) for a DC-GAN (Radford et al., 2015) based architecture with
additional residual connections (He et al., 2016). For both the generator and the discriminator, we do not use batch normalization.
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Figure 18. Results on the celebA-HQ dataset (Karras et al., 2017) (1024× 1024) for a DC-GAN (Radford et al., 2015) based architecture
with additional residual connections (He et al., 2016). During the whole course of training, we directly train the full-resolution generator
and discriminator end-to-end, i.e. we do not use any of the techniques described in Karras et al. (2017) to stabilize the training.
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Layer output size filter

Fully Connected 1024 · 4 · 4 512→ 1024 · 4 · 4
Reshape 1024× 4× 4 -

Resnet-Block 1024× 4× 4 1024→ 1024→ 1024
NN-Upsampling 1024× 8× 8 -

Resnet-Block 1024× 8× 8 1024→ 1024→ 1024
NN-Upsampling 1024× 16× 16 -

Resnet-Block 512× 16× 16 1024→ 512→ 512
NN-Upsampling 512× 32× 32 -

Resnet-Block 256× 32× 32 512→ 256→ 256
NN-Upsampling 256× 64× 64 -

Resnet-Block 128× 64× 64 256→ 128→ 128
NN-Upsampling 128× 128× 128 -

Resnet-Block 64× 128× 128 128→ 64→ 64
NN-Upsampling 64× 256× 256 -

Resnet-Block 64× 256× 256 64→ 64→ 64
Conv2D 3× 256× 256 3→ 3

(a) Generator architecture

Layer output size filter

Conv2D 64× 256× 256 3→ 64

Resnet-Block 64× 256× 256 64→ 64→ 64
Avg-Pool2D 64× 128× 128 -

Resnet-Block 128× 128× 128 64→ 64→ 128
Avg-Pool2D 128× 64× 64 -

Resnet-Block 256× 64× 64 128→ 128→ 256
Avg-Pool2D 256× 32× 32 -

Resnet-Block 512× 32× 32 256→ 256→ 512
Avg-Pool2D 512× 16× 16 -

Resnet-Block 1024× 16× 16 512→ 512→ 1024
Avg-Pool2D 1024× 8× 8 -

Resnet-Block 1024× 8× 8 1024→ 1024→ 1024
Avg-Pool2D 1024× 4× 4 -

Fully Connected 1024 · 4 · 4 1024 · 4 · 4→ 1000

(b) Discriminator architecture

Table 4. Architectures for LSUN- and celebA-experiments.

(a) Standard GAN (b) Non-saturating GAN

(c) WGAN (d) WGAN-GP

(e) Consensus optimization (f) Instance noise

(g) Gradient penalty (h) Gradient penalty (CR)

Figure 19. Convergence properties of different GAN training algo-
rithms using simultaneous gradient descent. The shaded area in
Figure 19c visualizes the set of forbidden values for the discrimi-
nator parameter ψ. The starting iterate is marked in red.
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(a) Standard GAN (b) Non-saturating GAN

(c) WGAN (d) WGAN-GP

(e) Consensus optimization (f) Instance noise

(g) Gradient penalty (h) Gradient penalty (CR)

Figure 20. Convergence properties of different GAN training al-
gorithms using alternating gradient descent with 1 discriminator
update per generator update The shaded area in Figure 20c visual-
izes the set of forbidden values for the discriminator parameter ψ.
The starting iterate is marked in red.

(a) Standard GAN (b) Non-saturating GAN

(c) WGAN (d) WGAN-GP

(e) Consensus optimization (f) Instance noise

(g) Gradient penalty (h) Gradient penalty (CR)

Figure 21. Convergence properties of different GAN training al-
gorithms using alternating gradient descent with 5 discriminator
updates per generator update. The shaded area in Figure 21c visu-
alizes the set of forbidden values for the discriminator parameter
ψ. The starting iterate is marked in red.



Which Training Methods for GANs do actually Converge?

(a) SimGD (b) AltGD (nd = 1) (c) AltGD (nd = 5)

Figure 22. Convergence properties of our GAN using two time-scale training as proposed by Heusel et al. (2017). For the Dirac-GAN, we
do not see any sign of convergence when training with two time-scales. The starting iterate is marked in red.


