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Abstract
Dynamic Bayesian networks such as Hidden Markov

Models (HMMs) are successfully used as probabilistic mod-
els for human motion. The use of hidden variables makes
them expressive models, but inference is only approximate
and requires procedures such as particle filters or Markov
chain Monte Carlo methods. In this work we propose to in-
stead use simple Markov models that only model observed
quantities. We retain a highly expressive dynamic model by
using interactions that are nonlinear and non-parametric.
A presentation of our approach in terms of latent variables
shows logarithmic growth for the computation of exact log-
likelihoods in the number of latent states. We validate
our model on human motion capture data and demonstrate
state-of-the-art performance on action recognition and mo-
tion completion tasks.

1. Introduction
Statistical models for human motion are important in

many areas of computer vision and graphics. In addition
to being interesting in their own right [29, 26, 22], their ap-
plications include areas as diverse as animation, robotics,
tracking [25, 27], and activity recognition [4]. While great
progress has been made in the past decade, the problem re-
mains challenging because of the high dimensionality, non-
linearity and multimodality of natural human motion. Ide-
ally, a good probabilistic model should account for all of
those challenges, but unfortunately expressive models often
result in intractable estimation and inference problems. We
now review the most popular approaches.

1.1. Dynamic Bayesian Networks

In recent years, modelling of human motion has been
tackled from several different perspectives. Among the
most popular methods are latent variable models following
the state-space equations (see also Figure 2a),

zt = f (zt−1, εz) ↔ pz (zt | zt−1) , (1)
xt = g (zt, εx) ↔ px (xt | zt) , (2)

where xt are observable variables such as joint po-
sitions or joint angles, zt are hidden variables, and
εx, εz are random perturbations. Although filtering and
smoothing distributions for zt are within this framework,
they are only tractable for either a discrete state space
(forward(-backward) algorithm) or for linear functions f, g
and additive Gaussian noise (Kalman filter/smoother) [14].
Efficient and exact solutions for the general nonlinear
and/or non-Gaussian cases do not exist [8]. To perform in-
ference we therefore need to resort to approximate methods,
such as the extended Kalman filter and its derivates [19, 18],
or to Sequential Monte Carlo methods like particle fil-
ters [15, 8, 7]. Augmenting the state-space model with dis-
crete switching variables leads to a Switching Linear Dy-
namical System (SLDS). Exact inference in this model is
intractable even for the Gaussian-linear case [2] and learn-
ing has turned out to be a challenge in itself [13].

Equations (1–2) and their extensions form the basis for
a number of statistical models for human motion: Wang
et al. [29] assume a linear combination of nonlinear basis
functions for f, g and additive Gaussian noise for εx, εz .
Marginalizing over f, g leads to a Gaussian Process Dy-
namical Model (GPDM), whose latent trajectories have to
be learned by a combination of Scaled Conjugate Gradi-
ent and a version of EM using Hybrid Monte Carlo tech-
niques. Urtasun et al. [28] extend the GPDM framework
by introducing a prior for latent positions that preserves lo-
cal topological structure. Pavlović et al. [22] use approx-
imate variational inference to learn an SLDS and perform
inference in it. Taylor et al. [26] consider a latent space
consisting of binary variables and use a conditional RBM
to model human motion. While inference tasks are easy
in this model, learning relies on approximations like con-
trastive divergence [16]. Models inspired by physics and
biology include [30] and [31].

1.2. Contributions

In this work we propose to leave out the latent space al-
together. Instead we model human motion by means of an
expressive Markov model that is both simple enough to al-
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low for efficient and exact inference yet flexible enough to
accurately model real human motion data. Due to our non-
parametric representation, we achieve a high level of real-
ism. Specifically, our work makes the following four contri-
butions: 1. We introduce the Dynamic Forest Model (DFM)
and describe its training and regularization, building upon
work on autoregressive trees [20]; 2. We present a formu-
lation of our approach in terms of latent variables, thereby
allowing a direct comparison to Hidden Markov Models;
3. We show how DFMs can be used as accurate and effi-
cient models of human motion data; 4. We empirically val-
idate DFMs on challenging action recognition and motion
completion tasks, outperforming both HMMs and GPDMs.

2. Nonlinear Markov Models

In this section we present our model and its training pro-
cedure. A Markov model describes a conditional distribu-
tion of the present state xt given a limited number of past
observations pa(xt) := x(t−K):(t−1). That is, at each time
step t a fixed number of K previous observations are com-
bined to form a prediction xt. The prediction is then an
order-K Markov process,

p (xt | pa (xt)) = p
(
xt | x(t−K):(t−1)

)
. (3)

If the mean of this distribution can be written as a fixed lin-
ear combination of the previous observations, the Markov
model is said to be linear [11]. When this is not the case,
the model is a nonlinear Markov model.

2.1. Autoregressive Trees

Autoregressive (AR) trees [20] are a type of probabilistic
AR model for time-series data [11] in which the regression
function is given by a decision tree.

To represent the distribution in equation (3) the tree eval-
uates features φ (pa (xt)) ∈ RF extracted from the previous
K frames and, using this information, decides among a set
of simpler distributions stored at its leaf nodes. This is illus-
trated in Figure 1. We store in each leaf ` one multivariate
normal distribution with linearly regressed mean but fixed
covariance matrix. In this case, the predictive expectation
can be obtained by the linear dynamics

E [xt | pa (xt)] = A`φ (pa (xt)) .

Although this is a simple linear prediction, the choice of
which matrix A` is used is governed by the decision tree
and thus a function of φ (pa (xt)).1 For example, by testing
for statistics such as average joint velocities in the past K
frames, the tree may easily distinguish a running from a
walking motion, and hence is able to select the appropriate
linear dynamics.

1In general one can use different features for linear prediction and leaf
node selection.

A1,Σ1 A2,Σ2 A3,Σ3 A4,Σ4

`1 `2 `3 `4

Figure 1: Autoregressive tree. A decision tree is evaluated
on a set of features extracted from K previously observed
frames, φ (pa (xt)). At each leaf `i of the tree a linear au-
toregressive model is stored. If leaf `i is reached, the pre-
dictive filtering distribution is defined as p (xt | pa (xt)) =
N (A`iφ (pa (xt)) ,Σ`i).

In the original work on autoregressive trees a single tree
is learned by greedily optimizing a penalized likelihood ob-
jective [20]. The authors show applications to short-term
forecasting of univariate economic data but note that 95%
of their trees do not contain any splits, i.e., they are com-
mon AR models. Here, we propose extensions to AR trees
that enable us to take advantage of deeper trees and to cope
with high-dimensional inputs, eventually allowing their use
for classification, synthesis and upscaling of complex hu-
man motion data.

2.2. Dynamic Forests

Because a single tree is prone to overfitting and limited
in its expressiveness due to its unimodal predictive distribu-
tion, we will instead learn an ensemble of C > 1 trees,
{Tc}c=1,...,C . Each tree is trained separately using bag-
ging [5], that is, resampling the training set framewise with
replacement. The predictions of the individual trees are then
averaged to produce the prediction of the forest. Since each
tree has a Gaussian posterior, the forest posterior is given
by a multimodal mixture of Gaussians,

p (xt | pa (xt)) =
1

C

C∑
c=1

N
(
xt
∣∣µ`(c,t),Σ`(c,t)) .

Here, `(c, t) := `(c, φ(pa(xt))) denotes the leaf node
that is selected by the c’th tree at the t’th time step and
each mixture component has the mean vector µ`(c,t) :=
A`(c,t) φ(pa(xt)).

We call this new approach a Dynamic Forest Model
(DFM) and continue with a description of its training.

2.3. Training

We provide a bottom-up description of the training pro-
cedure, i.e., we start with the estimation of a leaf model and
then consider the task of learning the tree structure.
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Figure 2: (a) Discrete time Hidden Markov Models represent a probability distribution of a sequence of observations (xt)t by
a Markov model on a sequence of hidden variables zt and a conditional observation distribution p(xt|zt). (b) Marginalization
over the hidden variables yields a joint distribution p(x1:T ) over the observed variables, effectively coupling all variables.
(c) Latent space formulation of our proposed nonlinear Markov model for order K = 2. A decision tree implicitly selects a
latent state and we can view the nonlinear Markov model as an order-K approximation to (b), in which filtering inference
and computation of log-likelihoods of observed sequences is very efficient.

The general setup is as follows: At training time we are
given a set of N sequences, D = (Xi)i=1,...,N . Each se-
quence Xi is a concatenation of Ti frames, hence Xi =

(x
(i)
t )t=1,...,Ti . The t’th frame of the i’th sequence is rep-

resented by a fixed-length vector x(i)t ∈ Rd. We will often
drop the sequence index i to keep the notation uncluttered.

2.3.1 Training the Leaf Model

Learning a model for a leaf node ` amounts to estimating a
regression matrix A` and a covariance matrix Σ`. Each leaf
accommodates a subset {(φ(pa(xt)), xt)}t∈D`

of the train-
ing data, namely those feature vectors and regression targets
that reach it. We use the available data points to estimateA`
using ridge regression [17]. To this end, let Φ denote all
column-wise concatenated feature vectors φ(pa(xt)) that
are assigned to the leaf. Likewise, and in the same order, we
concatenate all the desired predictions column-wise into a
matrix U . The matrix A` now has the closed-form solution

A` := UΦ>
(
ΦΦ> + γI

)−1
,

where γ > 0 is the ridge regularization parameter.
To determine the covariance matrix Σ`, we first use the

ground truth to compute the residual vectors rt := xt −
A`φ(pa(xt)). The set of all the residual vectors is then used
to estimate a matrix Σ̂` by means of the sample covariance.
While the estimate of A` is generally quite accurate, we
observed that the covariance estimate Σ̂` may become inac-
curate for high dimensions and small sample sizes. In some
cases the estimated matrices are even singular. We there-
fore regularize our initial estimate by projecting Σ̂` to an
isotropic target with full rank,

Σ` := d−1 tr
(

Σ̂`

)
I,

a measure that proved to be important for the success of our
approach. We also experimented with a convex combina-
tion of the sample covariance matrix and a diagonal shrink-
age target [24], but it did not improve the results.

2.3.2 Training the Tree Structure

To determine the tree structure, we use a greedy training
procedure, as is commonly used in the literature [6, 10].
We start with a single node and recursively split leaf nodes
by selecting the best among a set of hyperplane splits. Each
candidate split is sampled from a proposal distribution ps,
e.g., by uniformly sampling a data point and a coordinate.
A candidate split s at leaf ` introduces child nodes u and
v, each of which receives a subset of the data present at `.
After estimating a leaf model for u and v according to sec-
tion 2.3.1, we determine the quality of the proposed split by
measuring the resulting reduction in residual error,

Zs := E` − (Eu + Ev) ,

where Eη is given as the sum of squared residuals norms,

Eη :=
∑
t∈Dη

‖rt‖2.

The split that achieves the largest score Zs is selected
and the training proceeds recursively.

Implementation of DFMs is easy and analytical solutions
for the score function and the least squares regressor make
learning very efficient. The required training time can be
controlled by the number of trees, their depth and the num-
ber of tested splits. Algorithm 1 summarizes DFM training.

3. Latent space view and comparison to
Hidden Markov Models

In this section we will compare our Dynamic Forest
Model with the class of Hidden Markov Models. For an
easier comparison we formulate DFMs as a latent variable
model, thereby making explicit the relationship between de-
cision tree leaves and latent states.

Consider a tree Tc with l leaf nodes. By introducing la-
tent variables zt with l states we arrive at the latent variable
model depicted in Figure 2c for order K = 2. In this for-
mulation the joint distribution of an observed sequence X
and latent variables Z is given by



Algorithm 1 Probabilistic DFM training
1: input: time-series data D
2: input: number of ensemble trees C > 1
3: input: number of split tests M ≥ 1
4: input: split proposal distribution ps
5: output: dynamic forest {Tc}c=1,...,C
6: procedure TRAINDFM(D, C,M, ps)
7: for c = 1, . . . , C do
8: Bootstrap resample the training set
9: Tc ← a growable root node ρ

10: while there is a growable leaf ` in Tc do
11: Z∗ ← −∞
12: for m = 1, . . . ,M do
13: Sample split s ∼ ps
14: Partition data at ` w.r.t. s
15: Zs ← Compute score for s
16: if Zs > Z∗ then
17: (s∗, Z∗)← (s, Zs)
18: end if
19: end for
20: Split leaf ` using split s∗

21: end while
22: for leaf ` in tree Tc do
23: Build least squares regressor at `
24: end for
25: end for
26: return Ensemble {Tc}c=1,...,C
27: end procedure

p (X,Z) =

T∏
t=K+1

p (xt | pa (xt)) p (zt | pa (zt)) .

Since the latent states are deterministic predictions from
observations, their distributions can be understood as delta
functions p (zt | pa (zt)) = δ (zt − ` (c, t)).

In the DFM, information between latent variables has to
flow through observed variables, whereas in HMMs the la-
tent variables have a direct interaction. Because the latent
states are determined from observations only they are con-
ditionally independent given the observed sequence. This is
different to Hidden Markov Models. To be precise the DFM
encodes the following conditional independence statements
for all t > K + 1:

zt ⊥⊥ {z1, . . . , zt−1} |pa (zt) ,

xt ⊥⊥
{
x1, . . . , xt−(K+1)

}
|pa (xt) .

It is this factorization that allows to compute the
marginal likelihood in a single summation,

log p (X) = log
∑

zK+1,...,zT

p (X,Z) (4)

=

T∑
t=K+1

log p (xt | xt−K , . . . , xt−1, ` (c, t)) .

Under the assumption of balanced trees, the cost for the
computation of log-likelihoods in a DFM is O (log (l)T ),
which is sublinear in the number of latent states. The time

complexity of Hidden Markov Models for the same task
scales according to O

(
l2T
)
, which is quadratic.

The additional efficiency in our model relies on two im-
plicit assumptions: 1. We assume that we can identify the
correct latent state. At time t, we put the entire probabil-
ity mass on a single latent state that we select based on the
feature vector φ (pa (xt)). Our approach thus stands and
falls with the design of this feature vector and the informa-
tion it encodes. A Hidden Markov Model on the other hand
can incorporate prior knowledge from the application do-
main (e.g., occlusion reasoning, object-object interactions,
or compositionality [3]) by refining the model used for the
hidden state sequence; 2. We assume that long-range de-
pendencies are negligible. Whereas we do not model inter-
actions beyond order K, Hidden Markov Models do have a
long-term memory due to the Markov process on the hidden
state sequence, thereby rendering the observation sequence
non-Markov ([14], Section 1.3.3).

4. Experiments

We demonstrate the usefulness of DFMs on three differ-
ent tasks: action recognition, motion completion and pre-
diction of 3D motion from 2D inputs. Our experiments are
based on the MSRC-12 dataset [12] and a modified version
of the CMU dataset2 as used by Wang et al. [29].

Technically, we represent a human motion sequence of
length T as a temporal sequence of d-dimensional body
poses. This yields a matrix X ∈ Rd×T which can be used
as part of an ensemble training according to section 2. De-
pending on the dataset, the individual poses in the columns
of X are given in either joint angles or world coordinates.
In our experiments, the feature mapping φ (pa (xt)) con-
catenates all vectors in the subsequence pa (xt) and adds a
constant that models an intercept and allows for affine re-
gression functions.

4.1. Human Action Recognition

The MSRC-12 dataset comprises sequences of people
performing a total of 12 iconic and metaphoric gestures.
Every sequence is the output of the Kinect’s human body
tracker, which gives a noisy estimate of 20 joints. These
are defined in xyz-world coordinates, resulting in a d = 60
dimensional vector xt per frame.

We use the iconic gestures from this dataset, which
amounts to 296 sequences of about 1000 frames length
each. The task is to classify sequences to their six iconic
gesture classes

G = {Duck,Goggles,Shoot, . . .
Throw,Change weapon,Kick}.

2Dataset obtained from mocap.cs.cmu.edu.



Table 1: Action classification results. (a) Accuracies and
runtimes of DFMs and four baseline models. DFMs outper-
form all other evaluated methods. (b) Classification accura-
cies of DFMs as a function of depth, order, and number of
trees. The result in bold is shown in more detail in (a).

(a) Comparison to baselines.

Gesture k-NN SVM HMM DTW DFM

+PCA (ours)

Duck 88.0 88.0 94.0 98.0 98.0 96.0
Goggles 70.0 84.0 54.0 70.0 88.0 88.0
Shoot 71.4 79.6 36.7 73.5 46.9 85.7
Throw 84.0 76.0 64.0 90.0 86.0 90.0
Change weapon 60.4 81.3 35.4 77.1 79.2 87.5
Kick 95.9 89.8 98.0 98.0 87.8 98.0

Accuracy 78.4 83.1 63.6 84.4 81.1 90.9

Runtime (sec./seq.) 9.24 189.23 0.50 0.45 107.55 0.23

(b) DFM results.

Trees Depth Markov order

1 2 3

1 4 69.6 69.6 62.5

12

1 86.5 88.2 87.8
2 76.4 88.5 84.1
3 87.8 90.2 89.2
4 87.2 90.9 90.5

Each class comprises approximately 50 sequences coming
from 30 different persons. In order to assess the generaliza-
tion capabilities of our approach across persons, we employ
5-fold leave-person-out cross-validation, i.e., each fold con-
sists of 24 persons for training and 6 persons for testing. We
train |G| different DFMs {T g}g∈G per fold, one for each
gesture, according to Algorithm 1. We report classification
accuracies obtained with dynamic forests consisting of 12
trees, all of which were trained with 210 tested splits. We
use a fixed ridge regularization of 10−5 but vary the tree
depth and Markov order.

In order to assign an unseen test sequence X to its cor-
responding class g∗, we compute the log-likelihood of the
sequence under each of the individual per-gesture models
and assign it to the class maximizing this quantity,

g∗ := argmax
g′∈G

log p (X | T g′) , (5)

where the log-likelihoods are given according to (4).

Baseline methods. We compare DFMs to four different
baseline methods. Two of them, k-nearest neighbours (k-
NN) and Support Vector Machines (SVM), are standard
classification methods, the other two, Hidden Markov Mod-
els (HMM) and Dynamic Time Warping (DTW), are more
specialized dynamic models and tailored to time-series data.

For the k-NN and SVM approaches we classify all
length-four subsequences in a given test sequence. The

class label of the entire sequence is determined by taking
the majority vote over all of those subsequences. In order
to classify a subsequence using k-NN we compare it to all
≈ 256,000 subsequences of the training set and find the k-
nearest neighbours with respect to the Euclidean distance.
The parameter k is set to 6, which yields best performance
on the test set in the range k = 1, . . . , 8. The SVM clas-
sifier is also trained on all ≈ 256,000 subsequences. We
use the implementation [9] with a one-vs-rest classifier and
a Gaussian RBF kernel.

DTW is a powerful time-series classifier that aligns two
sequences by computing a possibly nonlinear warping path
between them, thereby ignoring variations in duration and
speed. We use the reference implementation of the Fast-
DTW authors [23] and vary the search radius between 24

and 28. A test sequence is classified by calculating the
warp distance to all training sequences (normalized by path
length) and assigning it to the class of the training sequence
with minimal warp distance.

For the HMM experiments we use the implementation
of [21], training one HMM per gesture class. The origi-
nal authors tuned their implementation for the same type of
Kinect skeletal data we use. The implementation supports
the use of raw features and PCA-reduced features (+PCA)
and we report results for both options. The PCA features
are obtained by constructing subsequences of length four
and using the coefficients of the first 12 principal compo-
nents. This is a powerful preprocessing step that is neces-
sary for the HMM to work. To find the number of hidden
states, we perform model selection, testing 5, 10, 20, and
40 hidden states, and report the best test performance. At
test-time we classify a sequence by evaluating the marginal
log-likelihood for each HMM and assign the sequence to
the class of highest likelihood.

4.1.1 Results

Table 1a shows the quantitative results of our DFM and
a comparison to the baseline methods. The worst perfor-
mance was delivered by the k-NN approach (78.4%), which
is not surprising given its naı̈ve exhaustive search. Overall
the time-series models tend to perform better than the sim-
ple classification baselines. That said, DTW (81.1%) still
falls short of the SVM accuracy (83.1%), but mostly due to
its weak performance on the “Shoot” class (46.9%). Vary-
ing the search radius does not alleviate this problem and the
maximum is already attained for 24. For the HMM the best
result is obtained with 10 hidden states. Note that the HMM
requires strong preprocessing: Using raw data the perfor-
mance is inferior at 63.6% and only the PCA features make
the HMM perform at 84.4%. Our DFM achieves an accu-
racy of 90.9% and outperforms all other evaluated methods,
notably without relying on any form of preprocessing. This
indicates that DFMs are very robust with respect to the fea-



Table 2: Motion completion results. (a) Walking: Joint angle RMSE of our DFM approach and two
baseline models. LI = Linear Interpolation; GPDM = Gaussian Process Dynamical Model. (b) Jump
forward and golf swing: World coordinate RMSE of our DFM approach as a function of tree depth and
Markov order. Note the decrease of the error with increasing tree depth and/or Markov order.

Seq. no. LI GPDM DFM

B-GPDM 2-MAP (ours)

07-01 88.72 65.38 68.69 28.94
07-02 90.13 64.47 64.43 33.87
08-01 113.71 70.05 72.61 30.47
08-02 112.26 72.11 90.80 28.59
12-02 62.02 37.06 26.60 35.83
12-03 58.87 40.40 23.16 29.79
16-21 68.10 32.87 53.13 24.00
35-03 61.07 12.15 20.74 16.45

Mean 81.86 49.31 52.52 28.49

(a) Joint angle representation: RMSE for 8
walking sequences and different models.
The best results are highlighted in bold.

Gesture Depth Order

1 2 3 4

Golf
swing

1 10.93 7.44 7.06 6.89
2 9.15 9.62 6.19 5.96
3 4.82 5.16 5.79 4.35
4 4.58 4.17 4.75 4.31

Forward
jump

1 17.28 17.07 18.45 16.38
2 39.59 12.01 11.70 10.61
3 12.94 11.47 10.53 10.44
4 11.08 11.27 11.41 9.19

(b) World coordinate representation: RMSE for
two more complex gestures. Results are shown
for different tree depths and Markov orders.

Table 3: 3D from 2D results. RMSE of
predicted 3D trajectory given a 2D input.
Deeper trees perform consistently better,
while the effect of the Markov order varies.

2D Input Depth Markov order

1 2 3 4

Top

1 6.08 6.18 8.17 7.72
2 3.55 3.53 3.44 3.71
3 2.19 1.92 1.71 1.55
4 1.87 1.37 1.24 1.23

Side

1 7.31 8.03 8.96 9.37
2 4.11 4.23 4.62 5.30
3 3.13 3.23 3.35 3.76
4 2.97 3.19 3.39 3.65

tures used. In Table 1b we show DFM results for different
tree depths and Markov orders. For comparison, we also in-
clude accuracies for a single tree of depth 4. The results of
the DFM are both better and more stable, proving the point
that our approach reduces overfitting and increases predic-
tive power.

4.2. Motion Completion

In this experiment we apply the DFM to a motion com-
pletion task on walking sequences and compare our results
to a recent Gaussian Process Dynamical Model (GPDM).
Furthermore, we demonstrate the suitability of the pre-
sented framework for more complex actions and provide
some general insights into training of DFMs. All of our
motion completion experiments use the CMU motion cap-
ture database, a rich and noiseless data source of people
performing different activities. All sequences are given by
56 joint angles and an additional 6 parameters governing the
global translation and orientation.

Motion completion refers to the task of recovering con-
secutively missing frames from a motion sequence. More
specifically, given a complete motion sequence

X =
(
x1:i , x(i+1):(i+j) , x(i+j+1):T

)
∈ Rd×T ,

we remove the subsequence x(i+1):(i+j) of length j in the
middle and estimate x̂(i+1):(i+j) from the remaining frames
based on our model.

As in [29], we use the following three preprocessing
steps for all CMU sequences: 1. A modified skeleton
(reducing the number of degrees of freedom from 62 to 50);
2. Temporal downsampling by a factor of four; 3. Centering
of all variables.

After that, we take the first T = 50 frames of the 8
test sequences listed in Table 2a and consider 12 different
starting positions i ∈ S = {4, . . . , 15} for the removal of

j = 31 frames. The sequences come from 5 different sub-
jects walking at different speeds and with different styles.
Infilling of the missing frames involves training of a DFM
{Tc}c=1,...,C with a total of 29 sequences, all of them pre-
processed in the same way as described above and none of
them part of the test set. The estimate for missing frame
j′ ∈ {1, . . . , 31} in run i is then given by the conditional
expectation

x̂
(i)
i+j′ = E

[
x
(i)
i+j′

∣∣∣pa
(
x
(i)
i+j′

)]
=

1

C

C∑
c=1

A`(c,i+j′)φ
(

pa
(
x
(i)
i+j′

))
.

The estimates x̂(i) = (x̂
(i)
i+j′)j′=1,...,j of all 12 runs are sub-

sequently combined to give an average RMS error per frame

RMSE(X̂) :=
1

|S|
∑
i∈S

√√√√ j∑
j′=1

‖x̂(i)i+j′ − xi+j′‖2
j

as a measure of reconstruction quality.
Although a direct comparison to the GPDM is illustra-

tive, our model is not limited to simple actions such as walk-
ing. In fact, complex actions benefit more from our nonlin-
ear and non-parametric approach. To fortify this claim, we
train two additional DFMs on more challenging gestures:
forward jump and golf swing. In particular, we use the
same set of preprocessing steps as before and train DFMs
on 7 (forward jump) and 8 (golf swing) training sequences,
with 1 sequence in each category reserved for testing. Both
test sequences are missing 31 frames and the RMSE is again
averaged over 12 runs.

While our experiments on walking sequences use a rep-
resentation in joint angles to allow comparison with the re-
sults in [29], our experience has shown that DFMs perform
better when trained on a representation in xyz-world coor-
dinates. In particular, the ability to benefit from deep trees



(a) Input: 2D trajectory (top view). (b) Output: Stick model visualization of predicted 3D trajectory.

(c) Output: SCAPE model visualization of predicted 3D trajectory.

Figure 3: Visualization of a 2D→3D experiment. In (a), we show every third frame of a 2D input sequence for which we
want to reconstruct the red subsequence in 3D. In (b) and (c), we show two animations of the output from our model: A stick
model (top right) and a SCAPE model that was fitted based on our reconstruction (bottom). Ground truth data is shown in
blue/light skin, reconstructions in red/dark skin.

and to map distinct parts of a motion sequence to distinct
linear systems works well in the xyz-domain. We therefore
convert the involved sequences to xyz-coordinates and use
this new representation for our two additional motion com-
pletion experiments.

4.2.1 Results

Table 2a summarizes the quantitative results of the exper-
iments on walking sequences and compares our findings
with simple linear interpolation (LI) and the Gaussian Pro-
cess Dynamical Model (GPDM). As expected, linear inter-
polation performs worst, with an average RMSE of 81.86.
The original authors of the GPDM [29] consider four dif-
ferent learning procedures and we restate the numbers for
the two best performing approaches: B-GPDM, which adds
a balancing term to MAP estimation, and 2-MAP, which is
a two-stage process involving a Hybrid Monte Carlo ver-
sion of EM and Scaled Conjugate Gradient. The former
performs slightly better (49.31 vs. 52.52). We compare
these results with a DFM consisting of 12 trees. Our method
achieves a lower RMSE on 5 out of 8 test sequences.

Table 2b shows our results for the actions ‘forward jump’
and ‘golf swing’. DFMs are suited for these more com-
plex actions just as well. Both gestures take full advan-
tage of our distributed approach and the minimum error is
reached for a tree depth of 4. The Table also suggests that
depth is more important than order: While we do see some
improvement with increasing Markov order, the error de-
creases much more substantially with increasing tree depth.
Our assumption that long-range dependencies are only of
minor importance thus seems to hold.

4.3. Predicting 3D from 2D

For our last demonstration we consider the task of pre-
dicting 3D motion from 2D inputs. In combination with the

output of a pose estimation pipeline, we see potential appli-
cations like automatic character animation from videos.

In particular, we use the same walking sequences and
preprocessing steps as we did in section 4.2 but train our
model with pairs of 2D inputs and 3D outputs, where we
obtain the 2D data from orthographic projections to the xz-
plane (top view) and the yz-plane (side view).

Our results are summarized in Table 3. When using 2D
views from the top, our findings are in accordance with
those in the previous section, i.e., the RMSE decreases con-
siderably when using deeper trees and higher Markov or-
ders, although the former seems to have a higher influence.
For example, note the decrease in error of 84% between the
best performing model, a tree of depth 4 and Markov or-
der 4, and its counterpart of depth 1. For 2D views from
the side, the test sequences cannot take advantage of higher
orders, but the benefit from deep trees still leads to a sub-
stantial improvement of 59% compared to trees of depth 1.

Finally, we want to complement our numerical assess-
ment of the model quality with a visual inspection of the
reconstructed sequences: Figure 3a shows a stickman visu-
alization of the available 2D input data (projections to xz-
plane). Based on the predicted 3D motion trajectories from
our model (Figure 3b), we can then produce a realistic look-
ing animation of a SCAPE model ([1], Figure 3c).

4.4. Computational aspects

One of the major benefits in using DFMs instead of
latent variable models lies in their combination of being
both flexible and tractable. The calculation of an exact
log-likelihood for our action classification experiment takes
only 0.04 sec. when using a dynamic forest with 12 trees of
depth 4. We can thus classify a sequence in around 0.23 sec.
Likewise, one synthesis step in our motion completion ex-
periment takes 0.05 sec. All numbers refer to our Matlab



implementation.3 Table 1a shows how that compares to the
other methods. The DFM is almost twice as fast as an HMM
and magnitudes faster than the remaining methods.

5. Conclusion
We have proposed the Dynamic Forest Model (DFM) as

a new approach to human motion modelling, generalizing
autoregressive trees and introducing new training and regu-
larization techniques. Our presentation of DFMs in terms of
latent variables has allowed a direct comparison to HMMs.
Instead of relying on a latent space, we use a non-parametric
and nonlinear Markov model that allows exact and efficient
inference while at the same time being able to represent
complex conditional mixture distributions. We proposed
the use of bagging to avoid overfitting, which effectively
complements other regularization techniques like ridge re-
gression and isotropic covariance estimation.

The effectiveness of this approach has been demon-
strated in three different application scenarios, namely ac-
tion recognition, motion completion, and prediction of 3D
trajectories from 2D inputs. The comparison with popu-
lar baselines and state-of-the-art latent variable models like
HMMs and GPDMs has shown that DFMs perform excel-
lent in those areas, while still being computationally effi-
cient. Given the positive findings of this work, we believe
that human motion models based on DFMs could be useful
in many areas beyond the ones mentioned in this work, in-
cluding tracking, character animation and pose correction.
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