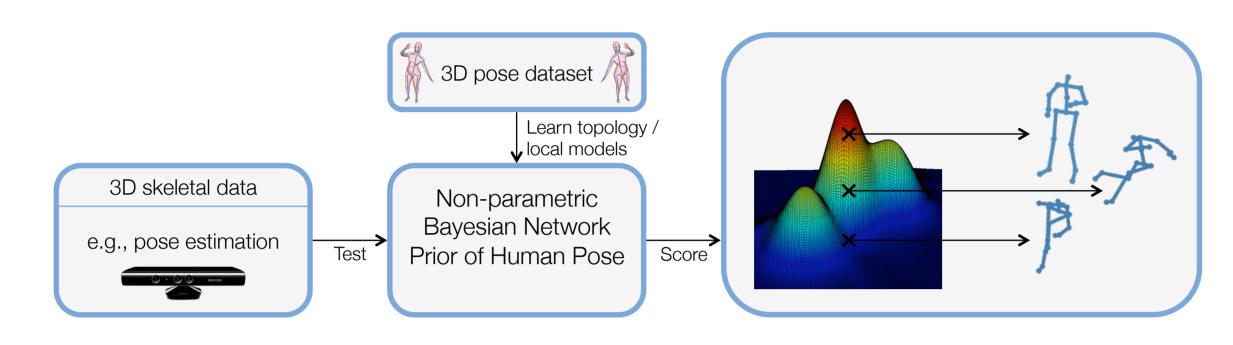


MAX-PLANCK-GESELLSCHAFT • We propose a general-purpose Bayesian network prior of human pose.

Research

Microsoft



- Fully non-parametric: Estimation of both optimal information-theoretic topology and local conditional distributions from data.
- **Compositional:** Effective handling of the combinatorial explosion of articulated objects, thereby improving generalization.
- Superior performance: Better data representation than traditional global models and parametric networks on the large Human 3.6M dataset.
- **Real-time:** Fast and accurate computation of approximate likelihoods on datasets with up to 100k training poses.

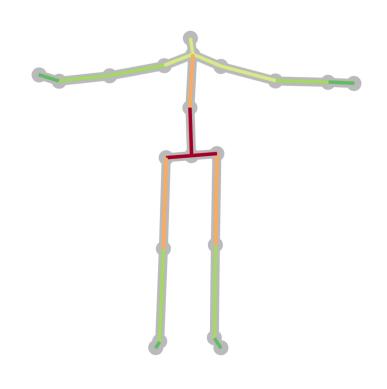
Non-parametric Networks

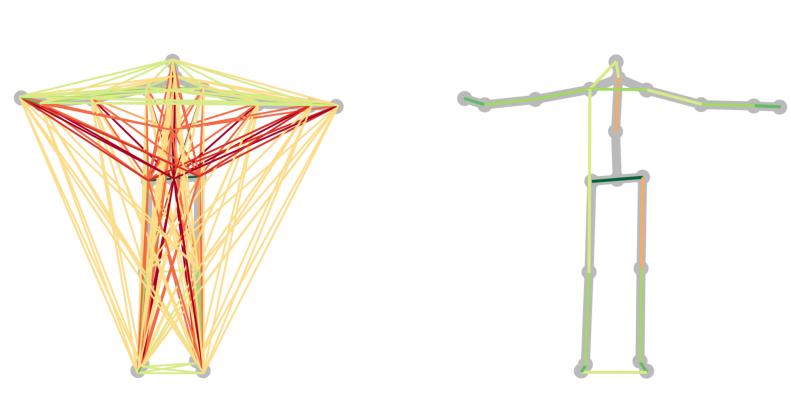
Learn a sparse and non-parametric Bayesian network $B = (p, \mathcal{G}(V, E))$.

• Learning the graph structure: Minimize KL-divergence between the high-dimensional pose distribution $q(\mathbf{X})$ and the tree-structured network $p(\mathbf{X}) = \prod_{j=1}^{|V|} p(X_j | X_{\mathrm{pa}(j)}),$

$$\mathcal{G} := \operatorname*{argmin}_{pa} \operatorname{KL} \left(q(\mathbf{X}) \parallel p(\mathbf{X}) \right) = \operatorname{MST}(\mathcal{G}'),$$

where \mathcal{G}' is the complete graph with edge weights $e_{ik} = MI(X_i, X_k)$.





Kinematic chain

Mutual information

Chow-Liu tree

A Non-parametric Bayesian Network Prior of Human Pose

 \mathbf{C}

• Learning the conditional distributions: We use a conditional kernel density estimate (CKDE) to learn the local models of the inferred tree,

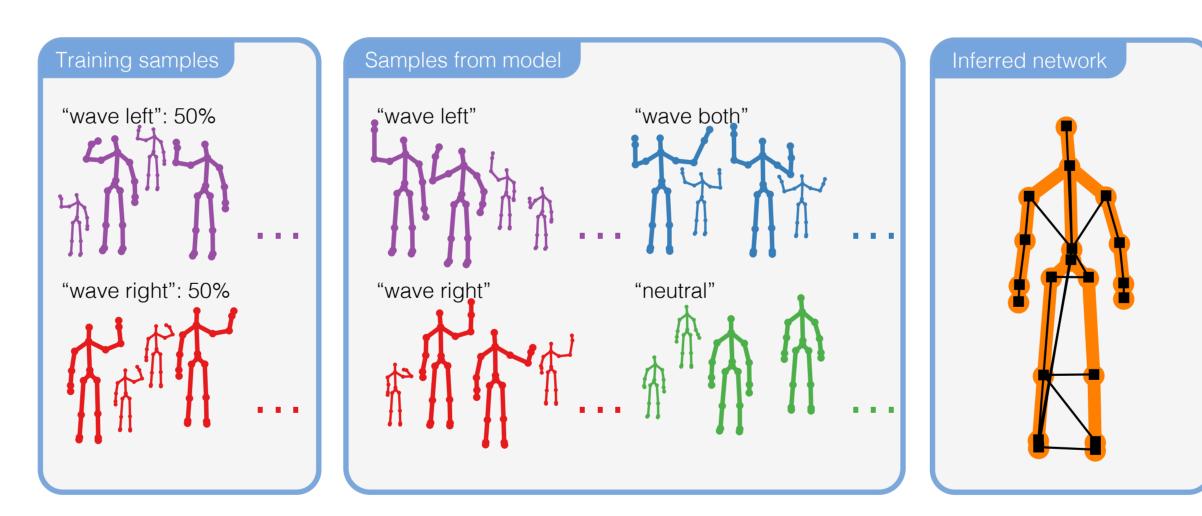
$$p\left(X_{j} \middle| X_{\mathrm{pa}(j)}\right) = \frac{p\left(X_{j}, X_{\mathrm{pa}(j)}\right)}{\int_{X_{j}} p\left(X_{j}, X_{\mathrm{pa}(j)}\right) \mathrm{d}X_{j}} = \frac{\sum_{i} \mathcal{N}\left(\left(X_{j}, X_{\mathrm{pa}(j)}\right) \middle| \left(X_{j}^{(i)}, X_{\mathrm{pa}(j)}^{(i)}\right), BB^{\top}\right)}{\sum_{i} \mathcal{N}\left(X_{\mathrm{pa}(j)} \middle| X_{\mathrm{pa}(j)}^{(i)}, (BB^{\top}) \middle|_{X_{\mathrm{pa}(j)}}\right)}$$

where $p(X_j, X_{pa(j)})$ is an unconditional KDE with isotropic Gaussian kernel and bandwidth B proportional to the square root of the covariance.

- Important operations are efficient:
 - Computation of a log-likelihood requires $\mathcal{O}(|V|)$ KDE evaluations.
 - Ancestral sampling requires $\mathcal{O}(|V|)$ samples from the local models. [Gaussian mixture models with non-uniform weight distribution]

Compositionality & Generalization

- Our formulation allows to freely combine substructures, but only if they do not share a lot of information.
 - \implies Compositionality exactly where needed and only where appropriate.



• We compute expected log-likelihoods for our Chow-Liu/CKDE model and several baselines on the Human 3.6M dataset.

Table 1: Expected log-likelihoods.			
Method	Graph structure	Training	Testing
$\begin{array}{c} \text{Gaussian} \\ \text{KDE} \\ \text{GPLVM}^* \end{array}$	Global Global Global	$-266.84 \\ -239.61 \\ -327.85$	-271.15 -263.77 -341.89
Gaussian linear network	Independent Kinematic chain (order 1) Kinematic chain (order 2) Chow-Liu tree	-352.80 -311.54 -305.54 -283.82	-345.94 -310.98 -307.88 -284.03
CKDE network	Independent Kinematic chain (order 1) Kinematic chain (order 2) Chow-Liu tree (ours)	$-322.64 \\ -260.04 \\ -247.35 \\ -242.24$	-322.25 -270.52 -263.83 - 254.98
$^*25\%$ subsampling; FITC			

Andreas M. Lehrmann¹, Peter V. Gehler¹, Sebastian Nowozin² MPI for Intelligent Systems¹, Microsoft Research Cambridge²

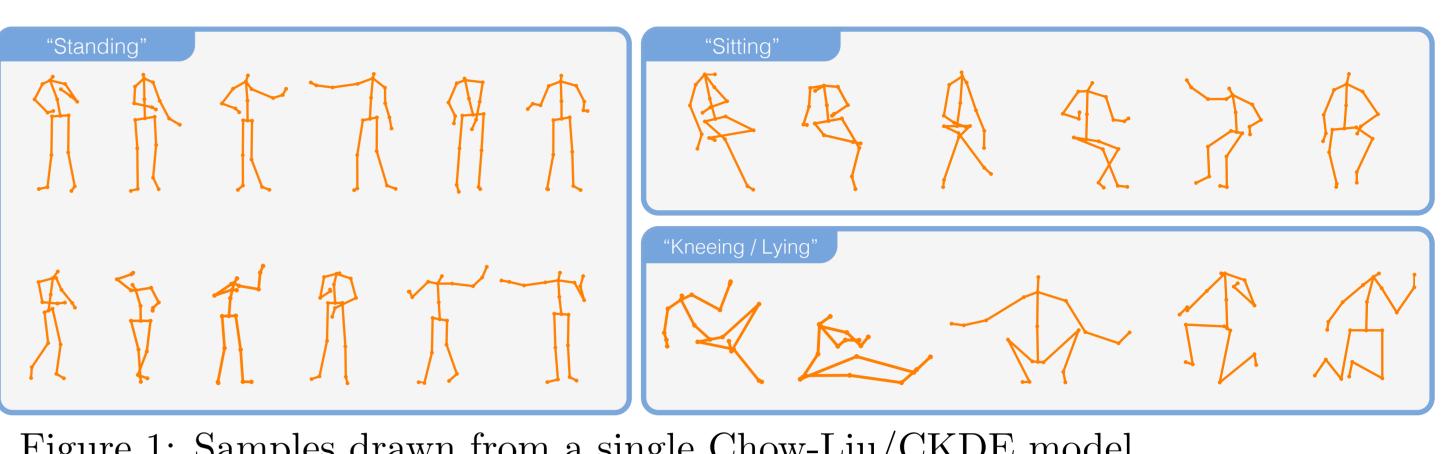


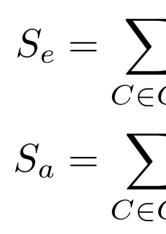
Figure 1: Samples drawn from a single Chow-Liu/CKDE model.

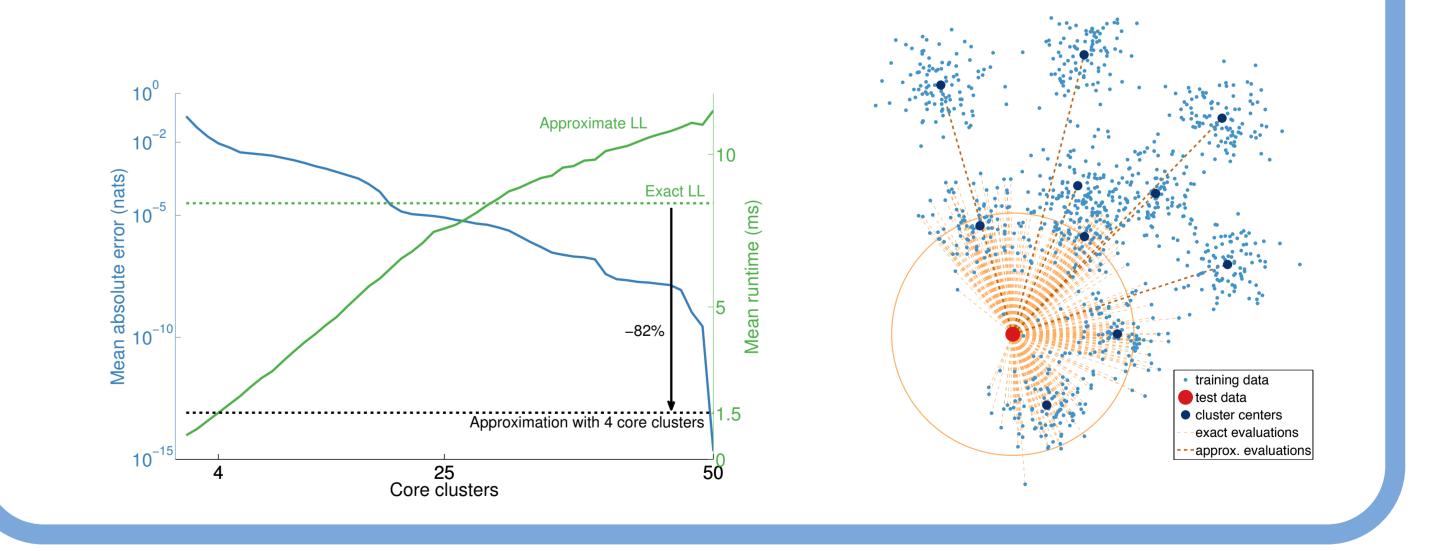
_ive Scorir

- k-means and build a kd-tree for their centres.

 $p\left(\mathbf{x}\right) \approx$

with





References

- [1] C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 1968.
- [2] A. Gray and A. Moore. Nonparametric density estimation: Toward computational tractability. SIAM International Conference on Data Mining, 2003.
- Predictive Methods for 3D Human Sensing in Natural Environments. Technical report, University of Bonn, 2012.

• Applications in real-time environments require additional speed.

• **Training:** Cluster the training points into clusters $\{C^{(i)}\}_i$ using

• **Testing:** Given a test pose \mathbf{x} , use the kd-tree to compute a k-NN partitioning $\{C^{(i)}\}_i = C_e(\mathbf{x}) + C_a(\mathbf{x})$ and approximate the likelihood as

$$(S_e + S_a) / (N \cdot \det(B)),$$

$$\sum_{C_e} \sum_{j \in C} \kappa \left(B^{-1} \left(\mathbf{x} - \mathbf{x}^{(j)} \right) \right), \qquad [\text{exact}]$$
$$\sum_{C_a} |C| \kappa \left(B^{-1} \left(\mathbf{x} - \overline{C} \right) \right), \qquad [\text{approx.}]$$

where \overline{C} and |C| denote the centre and size of cluster C, respectively.

[3] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human3.6M: Large Scale Datasets and

