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e Learning the conditional distributions:

| We use a conditional kernel density estimate (CKDE) to learn the local
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Figure 1: Samples drawn from a single Chow-Liu/CKDE model.

e We propose a general-purpose Bayesian network prior of human pose. P (X;| Xpa()) =

?@\ 3D pose dataset /ﬁ

Learn topology /
local models

where p (X iy Xpa(j)) is an unconditional KDE with isotropic Gaussian
kernel and bandwidth B proportional to the square root of the covariance.
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e Important operations are efficient:

e.g., pose estimation

?

— Computation of a log-likelihood requires O(|V'|) KDE evaluations.
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— Ancestral sampling requires O(|V|) samples from the local models.
|Gaussian mixture models with non-uniform weight distribution]

e Fully non-parametric: Estimation of both optimal information-theoretic

topology and local conditional distributions from data. e Applications in real-time environments require additional speed.

e Compositional: Effective handling of the combinatorial explosion of

e Training: Cluster the training points into clusters {C9}; using
articulated objects, thereby improving generalization.

k-means and build a kd-tree for their centres.

e Superior performance: Better data representation than traditional

e Testing: Given a test pose x, use the kd-tree to compute a k-NN
global models and parametric networks on the large Human 3.6M dataset.

partitioning {C(W}, = C.(x) 4 C,(x) and approximate the likelihood as

S Compositionality & Generalization

e Real-time: Fast and accurate computation of approximate likelihoods on

datasets with up to 100k training poses. e Our formulation allows to freely combine substructures, but only if they p(x) ~ (Se + S,) / (N - det(B)),

do not share a lot of information.

—> Compositionality exactly where needed and only where appropriate. with
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Learn a sparse and non-parametric Bayesian network B = (p, G(V, E)). “wave right”: 50% “wave right” ‘neutral’ where C and |C| denote the centre and size of cluster C, respectively.

e Learning the graph structure: ﬁ) (ﬁ) ﬁ\ ﬂ\
Minimize KL-divergence between the high- dimensional pose distribution (ﬁ) W W
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G := argmin KL (¢(X) || p(X)) = MST(G"), : . R
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where G’ is the complete graph with edge weights e, = MI(X,;, Xk). E —
Table 1: Expected log-likelihoods. Vol .thtdagta
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Method Graph structure Training Testing i | e | ) e valuations
4 25 5
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Independent —322.64 —322.25 IEEE Transactions on Information Theory, 1968. E E
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