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Abstract—Image partitioning is an important preprocessing
step for many of the state-of-the-art algorithms used for per-
forming high-level computer vision tasks. Typically, partitioning
is conducted without regards to the task in hand. We propose a
task-specific image partitioning framework to produce a region-
based image representation that will lead to a higher task
performance than that reached using any task-oblivious parti-
tioning framework and existing supervised partitioning frame-
work, albeit few in number. The proposed method partitions
the image by means of correlation clustering, maximizing a
linear discriminant function defined over a superpixel graph.
The parameters of the discriminant function that define task-
specific similarity/dissimilarity among superpixels are estimated
based on structured support vector machine (S-SVM) using task-
specific training data. The S-SVM learning leads to a better
generalization ability while the construction of the superpixel
graph used to define the discriminant function allows a rich
set of features to be incorporated to improve discriminability
and robustness. We evaluate the learnt task-aware partitioning
algorithms on three benchmark datasets. Results show that task-
aware partitioning leads to better labeling performance than the
partitioning computed by the state-of-the-art general-purpose
and supervised partitioning algorithms. We believe that the
task-specific image partitioning paradigm is widely applicable
to improve the performance in high-level image understanding
tasks.

EDICS Category: ARS-RBS, ARS-IIU

I. INTRODUCTION

Region-based image representations (RBIRs) have been
shown to be effective in improving the performance of al-
gorithms for high-level image/scene understanding, which
encompasses tasks such as object class segmentation, scene
segmentation, surface layout labeling, and single view 3D
reconstruction [1]–[5]. The effectiveness comes as a result
of promoting the following three merits of using the RBIRs.
First, the coherent support of a region, commonly assumed
to be of a single label, serves as a good prior for many
labeling tasks. Second, these coherent regions allow a more
consistent feature extraction that can incorporate surrounding
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Fig. 1. Example of different ground-truth (GT) labelings for the same image
according to different tasks. (a) Original image. (b) The GT on the object
class segmentation. (c) The GT on the semantic scene segmentation. (d) The
GT on the surface layout labeling.

contextual information by pooling many feature responses over
the region. Third, compared to pixels, a small number of larger
homogeneous regions can significantly reduces the compu-
tational cost in the successive labeling task. In this paper,
we propose an image partitioning framework for obtaining
RBIRs that realizes these benefits and improves the task-
specific labeling performance.

Up until now, using RBIRs in an image labeling system is a
two-stage process: first, a general-purpose image partitioning
method is used to obtain the RBIR, and second, this RBIR is
used by a model that is trained with task-specific supervision.
The first stage is task-oblivious but has direct influence on
the performance of the model in the second stage. Ignoring
the task at hand during creation of the RBIR is therefore a
limitation of current systems that we address. For instance,
consider Fig. 1 that shows ground-truth labelings for different
labeling tasks for a given image. The ideal partitioning for the
object-specific segmentation task would group each boat into
one region and the remaining part into one background [6]. For
the task of semantic scene segmentation [2], [3], the preference
is to segment each distinct class – sky, tree, water, boat –
into a region of its own. In surface layout labeling which
does not distinguish between object classes, the preference
is to segment the image into regions of coherent surface
normals [2], [4].

From the example explained above, it is obvious that a task-
specific image partitioning algorithm would lead to partition-
ing that would be more conducive to the particular labeling
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task in hand than the general-purpose partitioning algorithm.
With this goal in mind, we explicitly address the task-specific
image partitioning problem as follows: given an image and
labeling task, produce a partitioning of the image into disjoint
regions such that each region is homogeneous with respect
to the desired labeling of the task, and the labels of its
neighboring regions are different. Note that this is different
from image labeling in that we aim to produce a partitioning
without region-labeling. For example, for the object-specific
class segmentation, the object class does not have to be known
during creating the partitioning of the image.

There are several general-purpose unsupervised image par-
titioning algorithms for region-based image understanding.
For instance, in the superpixel-based conditional random
fields (CRFs) models [5], [7], [8], mean-shift [9], normalized
cuts [10], graph-based local variation algorithm [11], and
their variants such as quick-shift [12] are used to obtain
small coherent image regions, called superpixels. These a
priori over-segmentations are not related to any task and
maybe limited in capturing accurate global information for the
successive region-labeling step. To enhance its ability, some
recent CRFs are based on either a hierarchy of regions [1], [13]
or a set of partitionings [2]–[4]. These multiple partitionings
are obtained using mean-shift segmentation with different
kernel sizes, multiscale normalized cuts [14], a hierarchical
segmentation with increasing edge strength [13], and a simple
region-merging algorithm [4]. These algorithms – while em-
pirically successful to a certain extent – use task-oblivious
partitionings and therefore do not address the task-specific
image partitioning problem.

In this paper, we address the task-specific image partitioning
problem using correlation clustering [15] which is a graph-
partitioning algorithm that simultaneously maximizes intra-
cluster similarity and inter-cluster dissimilarity. Here, the sim-
ilarity and dissimilarity must be defined differently according
to the task, and this is achieved by learning parameters
using task-specific training data. Since correlation clustering
assigns a label to each edge, in contrast to other image
partitioning algorithms, correlation clustering does not require
a pre-specified number of clusters and distance threshold for
clustering. Furthermore, correlation clustering leads to linear
discriminant functions which allow for large margin training
based on structured support vector machine (S-SVM) [16].
Within our proposed framework, we learn optimal task-specific
parameters for partitioning using the task-specific ground-truth
partitionings of the training data; the proposed task-specific
image partitioning is a supervised image partitioning in which
a homogeneous region is determined by the desired labeling
of the task.

Although a number of supervised learning algorithms for
graph-based image partitioning such as supervised spectral
clustering and pairwise affinity learning [17]–[21] have been
proposed, none have exploited the use of task-specific training
data to produce partitioning that is substantially more bene-
ficial than unsupervised partitioning in terms of addressing
the task-specific image partitioning problem mentioned above.
Furthermore, these supervised image partitioning algorithms
suffer from a number of problems in learning task-specific

partitionings. First, inference is slow and difficult especially
with increasing graph size, which restricts experimentation to
small data sets. Second, the learning criterion does not take
into account inference on the full graph; instead, is is based
on a local cost by treating each pairwise relations between
adjacent nodes as independent samples and sometimes requires
a complex and unstable eigenvector approximation which must
be differentiable. Third, the learning criterion is based on
either the maximum likelihood or the minimum square error
and leads to generalization problems on unseen data when
the number of parameters is relatively large in comparison
to the number of training data. The proposed correlation
clustering for task-specific image partitioning, on the other
hand, overcomes all of these problems.

A framework that uses the S-SVM for training the parame-
ters in correlation clustering has been considered previously by
Finley et al. [22]; however, the framework was used for noun-
phrase and news article clusterings. Taskar derived a max-
margin formulation for learning the edge scores for correlation
clustering [23] without experimental or quantitative results.
This learning criterion is different from the S-SVM and is
limited to applications involving two different segmentations
of a single image.

The proposed correlation clustering algorithm starts from a
fine superpixel graph to reduce computational cost and also to
extract a more meaningful discriminative features from larger
consistent regions. To start with a fine superpixelization is
typically not a limitation in practice as the number of fine
superpixels is much larger (hundreds) than the final number of
regions (tens). A rich pairwise feature vector on neighboring
superpixels based on several visual cues is defined, and the
correlation clustering problem is approximately solved using
a linear programming (LP) relaxation technique. Correlation
clustering is in general NP-hard, and therefore, the relaxation
provides a polynomial-time approximation to its maximum a
posteriori (MAP) solution. Moreover, recent research suggests
that relaxations can be favorable within max-margin learning
procedures [24]–[26]. For supervised training of the parameter
vector, we apply a decomposable structured loss function to
handle imbalanced classes. We incorporate this loss function
into the cutting plane procedure for S-SVM training [16].
We will show by means of experimental results on various
datasets that the proposed correlation clustering outperforms
other state-of-the-art image partitioning algorithms owing to
the task-specific image partitioning.

To summarize, our main contributions are: (1) a study on
task-specific image partitioning that is suitable for any par-
ticular labeling problem at hand, (2) a supervised correlation
clustering on a superpixel graph for task-specific image parti-
tioning; a rich feature vector is taken for robust partitioning,
the LP relaxation is used for fast inference, and the SSVM
with a modified label loss is used for task-specific training
of the parameter vector, and (3) an empirical validation of
the proposed task-specific image partitioning that is more
conducive to the successive labeling task in comparison to
existing state-of-the-art partitioning algorithms.

The rest of the paper is organized as follows. Section
II presents the proposed correlation clustering for image
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Fig. 2. Illustration of a part of the graph built on superpixels.

partitioning. Section III describes large margin training for
task-specific image partitioning based on the S-SVM and
the cutting plane algorithm. A number of experimental and
comparative results are presented and discussed in Section IV,
followed by a conclusion in Section V.

II. CORRELATION CLUSTERING FOR IMAGE PARTITIONING

The proposed image partitioning is based on superpixels,
which can significantly reduce computational cost and allow
feature extraction to be conducted from a larger homogeneous
region. As shown in Fig. 2, superpixels preserve almost all
boundaries between different regions, independent of the task.
The proposed correlation clustering merges superpixels into
disjoint regions of homogeneity over a superpixel graph.

A. Correlation Clustering over Superpixel Graph

Define an undirected graph G = (V, E) where a node
corresponds to a superpixel and a link between adjacent
superpixels corresponds to an edge (see Fig. 2). A binary label
yjk for an edge (j, k) ∈ E between nodes j and k is defined
such that

yjk =

{
1, if nodes j and k belong to the same region,
0, otherwise. (1)

A discriminant function, which is the negative energy function,
is defined over image x and all edge labels y as

F (x,y;w) =
∑

(j,k)∈E

Simw(x, j, k)yjk

=
∑

(j,k)∈E

⟨w, ϕjk(x)⟩yjk

= ⟨w,
∑

(j,k)∈E

ϕjk(x)yjk⟩ = ⟨w,Φ(x,y)⟩, (2)

where the similarity measure between nodes j and k,
Simw(x, j, k), is parameterized by w and takes values of both
signs such that a large positive value means strong similarity
while a large negative value means high degree of dissimilarity.
Note that the discriminant function F (x,y;w) is assumed
to be linear in both the parameter vector w and the joint
feature map Φ(x,y), and ϕjk(x) is a pairwise feature vector
which reflects the correspondence between the jth and the kth
superpixels. An image segmentation is to infer the edge label,

ŷ, over the pairwise superpixel graph G by maximizing F such
that

ŷ = argmax
y∈Y(G)

F (x,y;w), (3)

where Y(G) is the set of {0, 1}E that corresponds to a valid
segmentation. This set is the set of multicuts [27]. However,
solving (3) with this Y(G) is generally NP-hard. Therefore,
we approximate Y(G) by means of a common multicut LP
relaxation [27], [28] with the following two constraints: (1)
cycle inequality and (2) odd-wheel inequality. Indeed, the LP
relaxation to approximately solve (3) can be formulated as

argmax
y

∑
(j,k)∈E

⟨w, ϕjk(x)⟩yjk (4)

s.t. y ∈ Z(G),

where Z(G) ⊃ Y(G) is the relaxed polytope defined by the
two LP constraints.

1) Cycle inequality: Let Path(j, k) be the set of paths
between nodes j and k. The cycle inequalities, which
are generalizations of the triangle inequality [27], are
defined as

(1− yjk) ≤
∑

(s,t)∈p

(1− yst), p ∈ Path(j, k). (5)

2) Odd-wheel inequality: Let a q-wheel be a connected
subgraph S = (Vs, Es) with a central vertex j ∈ Vs
and a cycle of the q vertices in C = Vs \ {j}. For every
odd q(≥ 3)-wheel, a valid partitioning y satisfies∑

(s,t)∈E(C)

(1− yst)−
∑
k∈C

(1− yjk) ≤ ⌊
1

2
q⌋, (6)

where E(C) denotes the set of all edges in the outer
cycle C.

Note that the cycle inequalities and odd-wheel inequalities are
separable (possible to seek a violated inequality) in polyno-
mial time, which is important to solve the LP relaxation in
polynomial time.

The relation between the solution to (3) and the solution to
(4) is as follows: if the LP solution to (4) is integral, that is
for all (j, k) ∈ E we have yjk ∈ {0, 1}, then the solution y
is the exact solution to (3). If instead it is fractional, then our
floor-rounding provides a feasible but potentially sub-optimal
solution to (3).

B. Pairwise Feature Vector

We construct a rich pairwise feature vector based on dif-
ferent quantization levels and thresholds. The magnitude of w
determines the importance of each feature, and this importance
is task-dependent. Here, w is estimated by supervised training
described in Section III.

We extract several visual cues from a superpixel, including
brightness (intensity), color, texture, and shape. Based on these
visual cues, we construct a 321-dimensional pairwise feature
vector ϕ by concatenating a color difference feature ϕc, texture
difference feature ϕt, shape/location difference feature ϕs,



4

edge strength feature ϕe, joint visual word posterior feature
ϕv, and bias ϕb as follows:

ϕjk(x)=[ϕc
jk(x);ϕ

t
jk(x);ϕ

s
jk(x);ϕ

e
jk(x);ϕ

v
jk(x);ϕ

b
jk(x)]. (7)

• Color difference feature ϕc: The color difference feature
ϕc is composed of 26 color distances between two
adjacent superpixels based on RGB and HSV channels.
Specifically, we calculate 18 earth mover’s distances
(EMDs) [29] between two color histograms extracted
from each superpixel with various numbers of bins and
thresholds for ground distance. In addition, six abso-
lute differences (one for each color channel) between
the means of the two superpixels and two χ2-distances
between hue/saturation histograms of the two superpixels
are concatenated in ϕc.

• Texture difference feature ϕt: The 64-dimensional tex-
ture difference feature ϕt is composed of 15 absolute
differences (one for each texture-response) between the
means of two superpixels using 15 Leung-Malik (LM)
filter banks [30] and one χ2-distance and 48 EMDs (from
various numbers of bins and thresholds for ground dis-
tance) between texture histograms of the two superpixels.

• Shape/location difference feature ϕs: The 5-dimensional
shape/location difference feature ϕs is composed of two
absolute differences between the normalized (x/y) center
positions of the two superpixels, the ratio of the size of
the smaller superpixel to that of the larger superpixel,
the percentage of boundary with respect to the smaller
superpixel, and the straightness of boundary [4].

• Edge strength feature ϕe: The 15-dimensional edge
strength feature ϕe is a 1-of-15 coding of the quantized
edge strength proposed by Arbelaez et al. [13].

• Joint visual word posterior feature ϕv: The 210-
dimensional joint visual word posterior feature ϕv is de-
fined as the vector holding the joint visual word posteriors
for a pair of neighboring superpixels using 20 visual
words [31] as follows.
First, a 52-dimensional raw feature vector xj based on
color, texture, location, and shape features described in
[4] is extracted from the jth superpixel. Then, the visual
word posterior distribution P (vi|xj) is computed using
the Gaussian RBF kernel where vi denotes the ith visual
word. Let Vjk(x) be a 20-by-20 matrix whose elements
are the joint visual word posteriors between nodes j and
k defined such that

Vjk(x)=


P (v1|xj)P (v1|xk) · · · P (v1|xj)P (v20|xk)
P (v2|xj)P (v1|xk) · · · P (v2|xj)P (v20|xk)

...
. . .

...
P (v20|xj)P (v1|xk)· · ·P (v20|xj)P (v20|xk)

.(8)

The joint visual word posterior feature between nodes j
and k, ϕv

jk(x), is defined as

ϕv
jk(x) = vec

(
Vjk(x)

)
+ vec

(
V T
jk(x)

)
, (9)

where vec(V ) be the 210(= 20 × 21/2)-dimensional
vector whose elements are from the upper triangular part
of V .

Fig. 3. Example of ground-truth (GT) edge labels on the superpixels from the
GT task labels. (a) Original image. (b) GT task labels on the semantic scene
segmentation. (c) GT partitioning from the GT task labels. (d) Superpixels.
(e) GT edge labels on the superpixels (green: edge label is 0, red: edge label
is 1).

This joint visual word posterior feature could overcome
the weakness of class-agnostic features and incorporate
the contextual information.

• Bias ϕb: We augment the bias ϕb = 1 for a proper simi-
larity measure which can be either positive or negative.

III. SUPERVISED TRAINING FOR TASK-SPECIFIC
PARTITIONING

For task-specific image partitioning, the parameter vector w
is estimated from the training data for each task. The proposed
discriminant function is defined over the superpixel graph, and
therefore, the ground-truth task labels of the pixels need to be
transformed to the ground-truth edge labels of the superpixel
graph. Note that different from the ground-truth edge-labeling
over the superpixel graph, the ground-truth partitioning is
directly defined by the ground-truth task labels as illustrated
in Fig. 3. First, we assign a single dominant task label to each
superpixel by majority voting over the superpixel’s constituent
pixels and then obtain the ground-truth edge labels on the
superpixel graph according to whether dominant labels of
neighboring superpixels are equal or not (see Fig. 3).

Using this ground-truth edge labels of the training data,
we use the S-SVM to estimate the parameter vector for
task-specific correlation clustering. We use the cutting plane
algorithm with LP relaxation (4) for loss-augmented inference
is used to solve the optimization problem of the S-SVM, since
fast convergence and high robustness of the cutting plane
algorithm in handling a large number of margin constraints
are well-known [16].

A. Structured Support Vector Machine

Given N training samples {(xn,yn)}Nn=1 where yn is the
ground-truth edge labels for the nth training image, the S-
SVM [16] optimizes w by minimizing a quadratic objective
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function subject to a set of linear margin constraints:

min
w,ξ

1

2
∥w∥2 + C

N∑
n=1

ξn (10)

s.t. ⟨w, δΦ(xn,y)⟩≥∆(yn,y)− ξn, ∀n,y ∈ Z(G)\yn, (11)
ξn ≥ 0, ∀n, (12)

where δΦ(xn,y) = Φ(xn,yn) − Φ(xn,y), and C > 0 is
a constant that controls the trade-off between margin maxi-
mization and training error minimization. In the S-SVM, the
margin is scaled with a loss ∆(yn,y), which is the difference
measure between prediction y and ground-truth label yn of
the nth image. The S-SVM offers good generalization ability
as well as the flexibility to choose any loss function [16].

B. Cutting Plane Algorithm

The exponentially large number of margin constraints (11)
and the intractability of the loss-augmented inference problem
make it difficult to solve the constrained optimization problem
of (10). Therefore, we apply the cutting plane algorithm [16],
[28], also known as the column generation algorithm, to ap-
proximately solve the constrained optimization problem. The
cutting plane algorithm is summarized in Algorithm 1. In each
iteration, the most violated constraint for each training sample
is approximately found by performing the loss-augmented
inference using the LP relaxation. The computational cost for
inference can be greatly reduced when a decomposable loss
such as the Hamming loss is used; if the loss function is
decomposed in the same manner as the joint feature map, we
can add the loss function to each edge score in the inference.
We then check if the constraint found tightens the feasible set
of (10), and if it does, then the parameter vector w and ξ
are updated by solving the restricted problem of (10) on the
current set of active constraints that includes it. The theoretical
convergence and robustness of the cutting plane algorithm was
studied by Tsochantaridis et al. [16]. The LP relaxations for
loss-augmented inferences are considered to be well suited to
structured learning [24]–[26].

C. Label Loss

A loss function ∆ : Z × Z → R+ is defined as a non-
negative function satisfying the following properties for all n,{

∆(yn,y) > 0, if y ̸= yn,
∆(yn,y) = 0, if y = yn.

(13)

A loss function should be decomposable to effectively perform
loss-augmented inference in the cutting plane algorithm. The
most popular decomposable loss function is the Hamming
distance which is equivalent to the number of mismatches
between yn and y. Unfortunately, the number of edges with
label 1 in the proposed correlation clustering is considerably
higher than that of edges with label 0 (see Fig. 3). This im-
balance makes other learning methods such as the perceptron
algorithm inappropriate, since it leads to the clustering of the
whole image as one segment. This imbalance occurs when we

Algorithm 1 Cutting Plane Algorithm
Choose: w0, C, R, ϵ
Sn ← ø, ∀n, w← w0, ξ ← 0
repeat

for n = 1, ..., N do
Perform the loss-augmented inference by LP relax-
ation:

ŷn = argmax
y∈Z(G)

(
⟨w,Φ(xn,y)⟩+∆(yn,y)

)
if −⟨w, δΦ(xn, ŷn)⟩+∆(yn, ŷn) > ξn + ϵ then
Sn ← Sn ∪ {ŷn}

end if
end for
Solve the restricted problem of (10) on the current set of
constraints:

(w∗, ξ∗) = argmin
w′,ξ′

1

2
∥w′∥2 + C

N∑
n=1

ξ′n

s.t. ⟨w′, δΦ(xn,y)⟩ ≥ ∆(yn,y)− ξ′n, ∀n,y ∈ Sn,

ξ′n ≥ 0, ∀n

Update: w← w∗, ξ ← ξ∗

until no Sn has changed

TABLE I
LABEL LOSS AT THE EDGE LEVEL.

ynjk 0 1 0 1
yjk 0 1 1 0
∆jk 0 0 1 R

use the Hamming loss in the S-SVM; therefore, we use the
following adjusted loss function:

∆(yn,y) =
∑

(j,k)∈E

∆jk(y
n
jk, yjk)

=
∑

(j,k)∈E

R ynjk + yjk − (R+ 1)ynjkyjk (14)

where ∆jk is the label loss on the edge between nodes j and k,
and R is the relative weight of the false negative to that of the
false positive1. Note that the additive decomposition of the loss
allows us to cast the loss into the additive edge score when per-
forming the loss-augmented inference. Moreover, R controls
the relative importance between the incorrect merging of the
superpixels and the incorrect separation of the superpixels by
imposing different weights to the false negative and the false
positive, as shown in Table I. Here, we set R to be less than
1 to overcome the problem due to the imbalance. This loss is
similar to the loss proposed by Cour et al. [32], however, the
proposed loss is appropriate for fractionally-predicted labels
during LP-relaxed inference while their loss is appropriate for
only integer solutions.

1Here, the positive label refers to the label assigned as 1 while the negative
label refers to the other.
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IV. EXPERIMENTS

The purpose of the following experiments is to demonstrate
for various labeling tasks the proposed task-specific partition-
ing can lead to higher task performance than that reached using
task-oblivious partitioning. For this purpose, we conducted
image partitionings for two tasks: semantic scene segmentation
and surface layout labeling.

For task-specific image partitioning based on correlation
clustering, we initially obtain baseline superpixels (an average
of 367 superpixels per image) by the gPb contour detector
and the oriented watershed transform (gPb-owt) [13] and then
construct a superpixel graph with pairwise feature vectors. On
both tasks, the function parameters are initially set to zero,
and then based on the S-SVM, the structured output learning
is used to estimate the parameter vectors. Note that the relaxed
solutions in loss-augmented inference are used during training,
while in testing, as described in Section II, our simple rounding
method is used to produce valid partitioning results. Rounding
is only necessary in case we obtain fractional solutions from
LP-relaxed correlation clustering.

We compared the proposed task-specific correlation clus-
tering to the following three unsupervised image partitioning
algorithms and two supervised image partitioning algorithms:

• Mean-shift: Comaniciu and Meer [9] devised the mean-
shift algorithm that is a mode-seeking algorithm to locate
points of locally-maximal density in feature space.

• Multiscale NCut: Cour et al. [14] devised a multiscale
spectral image partitioning algorithm by decomposing
an image partitioning graph into different scales in the
normalized cut framework.

• gPb-owt-ucm: The oriented watershed transform - ultra-
metric contour map algorithm [13] produced hierarchical
regions using the gPb contour detector as input.

• gPb-Hoiem: Hoiem et al. [4] grouped superpixels based
on pairwise same-label likelihoods. The superpixels were
obtained by the same gPb contour detector, and the
pairwise same-label likelihoods based on the same 321-
dimensional pairwise feature vector were independently
learnt from the task-specific training data.

• Supervised NCut: We applied a supervised learning algo-
rithm for parameter estimation under the normalized cut
framework. For this, first, the affinity matrix on the same
pairwise superpixel graph was defined as

Ajk =

{
min(1, exp{−⟨w, ϕjk⟩}), if (j, k) ∈ E ,
0, otherwise,

where the same 321-dimensional pairwise feature vector
ϕjk was used. Then, the standard pairwise affinity learn-
ing with the square-square loss function and the gradient
descent algorithm [21] was used for task-specific training.

To quantitatively evaluate partitionings obtained by various
algorithms against the ground-truth partitioning that is
associated with the ground-truth task labels (see Fig. 3.(c)),
we consider four performance measures: Probabilistic Rand
index (PRI) [33], segmentation covering (SCO) [13], variation
of information (VOI) [34], and boundary displacement error
(BDE) [35]. As the predicted partitioning is close to the

ground-truth partitioning, the PRI and SCO are increased
while the VOI and BDE are decreased. The performance
varies with different numbers of regions, and for this reason,
we designed each algorithm to produce multiple partitionings
(10 to 40 regions). For example, when using the codes
publicly released by the authors for (multiscale) NCut and
gPb-Hoiem, we explicitly set the number of regions as an
input parameter or while for the mean-shift and gPb-owt-ucm,
we applied different kernel bandwidths and level-thresholds
in a hierarchy of regions to produce multiple partitionings.
Specifically, multiple partitionings in the proposed algorithm
were obtained by varying R from 0.005 to 0.2 in the loss
function during training. As R increases, the number of
partitioned regions of a test image tends to decrease, since
the false negative error is penalized more compared to the
false positive error. However, in testing, in contrast to other
algorithms which pre-fix the number of regions or threshold
of level in a hierarchy of regions equally across all images,
the proposed correlation clustering automatically determines
the proper number of partitioned regions in each image.
To perform image partitioning for the tasks of semantic
scene segmentation and surface layout labeling, we used
the Stanford background dataset [2], which consists of 715
outdoor images with corresponding pixel-wise annotations.
We employed 5-fold cross-validation with the dataset
randomly split into 572 training images and 143 test images
for each fold.

Image partitioning performances. The goal of semantic
scene segmentation is to generate pixel-wise segmentations
such that each pixel is labeled with either one of 7
background classes or a generic foreground class. From the
given pixel-wise ground-truth annotations, we obtain ground-
truth task-specific partitionings for each image. We train
our proposed task-specific correlation clustering algorithm,
the gPb-Hoiem, and the supervised NCut on the training
set and compare all image partitioning algorithms on the
separate test set. Fig. 4.(a) shows the obtained four measures
from partitioning results according to the average number
of regions. The proposed task-specific image partitioning
for the task of semantic scene segmentation (Corr-Cluster-
Semantic) performed better than other algorithms. Especially,
in producing image partitioning for the task of semantic scene
segmentation, correlation clustering using the parameters
learnt for the task of surface layout labeling (Corr-Cluster-
Geometric) gave worse results than those obtained by
Corr-Cluster-Semantic. These results show improvements
obtained by the task-specific training of parameters within
the proposed framework.

The task of surface layout labeling is to label each pixel
in an image into one of three geometric classes (horizontal,
vertical, and sky). As shown in Fig. 4.(b), the proposed task-
specific image partitioning (Corr-Cluster-Geometric) achieved
the best results.

Compared to previous supervised image partitioning algo-
rithms, the proposed task-specific correlation clustering al-
gorithm enables easier construction of rich pairwise feature
vectors from visual cues, and it can scalably estimate high-
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Fig. 4. Obtained evaluation measures from partitioning results on the test set for semantic scene segmentation (a) and surface layout labeling (b).

Fig. 5. Obtained evaluation measures from partitioning results according to the different set of features on the test set for semantic scene segmentation.

dimensional feature weight vectors. To evaluate the effective-
ness of various feature sets within the proposed framework,
we obtained evaluation measures for different set of features:

1) Color difference + Texture difference (91-dim):

ϕjk = [ϕc
jk; ϕt

jk; ϕb
jk]. (15)

2) Color difference + Texture difference + Shape/location
difference + Edge strength (111-dim):

ϕjk = [ϕc
jk; ϕt

jk; ϕs
jk; ϕe

jk; ϕb
jk]. (16)

3) Color difference + Texture difference + Shape/location
difference + Edge strength + Joint visual word posterior

(321-dim):

ϕjk = [ϕc
jk; ϕt

jk; ϕs
jk; ϕe

jk; ϕv
jk; ϕb

jk]. (17)

As shown in Fig. 5, the color and texture features influenced
the result most followed by shape/location and edge strength
features. Including the joint visual word posterior feature
to the color and texture features improved the performance
significantly.

The proposed correlation clustering is based on the su-
perpixel graph. Therefore, performances might be influenced
by baseline superpixels. Fig. 7 shows the performance de-
pendency of the proposed correlation clustering algorithm on
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Fig. 6. Examples of different baseline superpixels. (a) Original image. (b)
Superpixels obtained by FH. (c) Superpixels obtained by GC. (d) Superpixels
obtained by (gPb-owt).

the choice of the baseline superpixelization algorithm. The
performance of the proposed correlation clustering algorithm
was evaluated using three different baseline superpixelization
algorithms that include the graph-based local variation algo-
rithm referred to as Felzenszwalb-Huttenlocher (FH) algo-
rithm [11], the graph-cut based over-segmentation algorithm
(GC) [36], and the gPb-owt. In comparison to the segmentation
results obtained by the gPb-owt, the FH algorithm produced
more irregular superpixels while the GC algorithm produced
more regular superpixels (see Fig. 6). Note that for this
empirical evaluation, we employed a random split of 50% for
training and 50% for testing for the task of semantic scene
segmentation. Regardless of the choice of the baseline su-
perpixelization algorithm, the proposed correlation clustering
algorithm performed better than previous partitioning algo-
rithms. It should be noted that there was a slight performance
difference depending on the baseline superpixelization, and
the gPb-owt baseline superpixelization performed the best
among all algorithms compared for the task of semantic scene
segmentation.

We can also construct “task-specific” superpixelization algo-
rithm based on the proposed framework. To do this, a pixel-
based graph, a pairwise feature vector between neighboring
pixels, and (approximately) ground-truth superpixelizations on
training images are necessary.

For our learned predictors, we observed that 81 percent
of the test-instances were solved exactly by our relaxation.
For the instances that were not solved exactly, our rounding
heuristic provided feasible solutions.

Regarding the runtime of our algorithm, we observed that
for test-time inference it took on average around 10 seconds
per image on a 2.67GHz processor, whereas the overall
training took 10 hours on the training set. Note that other
partitioning algorithms such as the multiscale NCut and the
gPb-owt-ucm took on average a few minutes per image.

Region-labeling performances. To validate that our
task-specific image partitioning is conducive to the specific
labeling task, we estimated a single label for each region

Fig. 7. Obtained evaluation measures from partitioning results according
to the different baseline superpixels on the test set for semantic scene
segmentation.

TABLE II
MEAN PIXEL ACCURACIES (%) OBTAINED BY REGION-LABELING ON THE

TEST SET (SEMANTIC: SEMANTIC SCENE SEGMENTATION, GEOMETRIC:
SURFACE LAYOUT LABELING).

Semantic Geometric
Our superpixels 65.27 84.73

Mean-shift 70.70 76.95
Multi-NCut 75.60 85.32

gPb-owt-ucm 76.06 87.17
gPb-Hoiem-Semantic 73.84 85.12
gPb-Hoiem-Geometric 72.66 85.46

Supervised-NCut-Semantic 75.73 85.78
Supervised-NCut-Geometric 75.34 86.53

Corr-Cluster-Semantic 77.01 87.45
Corr-Cluster-Geometric 70.14 88.15

independently by a one-vs-one multi-class support vector
machine (SVM) with an RBF-kernel using libsvm [37]. For
this, we extracted a 449-dimensional region-feature vector,
which includes color histograms, gradient histograms, spatial
location histograms, and SIFT descriptors, using VLFeat
[38]. In order to train the region-labeling classifier, each
partitioning algorithm produced regions from the training
images, and a single ground-truth label for each region was
assigned by majority voting on the constituent pixels. Note
that we designed each partitioning algorithm to generate 40
regions for semantic scene segmentation and 20 regions for
surface layout labeling, on average. We compared labeling
performances from different image partitionings by measuring
the mean pixel accuracies.

Table II shows that for both tasks, the task-specific
partitioning improved the region-labeling performances. Even
though the proposed partitioning with our simple region-
labeling method in the experiment did not produce the highest
mean pixel accuracy of 79.42% in the task of semantic scene
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Fig. 8. Examples of image partitionings and region-labelings for semantic scene segmentation. White colors indicate region boundaries.

Fig. 9. Examples of image partitionings and region-labelings for surface layout labeling. White colors indicate region boundaries.

segmentation reported in [3]2 and 91.0% in the task of surface
layout labeling reported in [2], the proposed task-specific
correlation clustering is significant in that in comparison to
the task-oblivious partitioning algorithms, it improves the
partitioning to be closer to the ideal partitioning and can
help improve the labeling performance easily. In the realm of
semantic scene segmentation and surface layout labeling on
the Stanford background dataset, in which significant effort
is needed to achieve even improvements well under a percent
[2], [3], 1% improvement achieved by the proposed algorithm
in Table II is a significant improvement.

Qualitative results. Fig. 8 and 9 show some example
partitionings and region-labelings on test images obtained

2Their algorithm is very computational-demanding (a few minutes per
image).

by various partitioning algorithms for the tasks of semantic
scene segmentation and surface layout labeling, respectively.
For semantic scene segmentation, partitioning results by Corr-
Cluster-Semantic are closer to the ground-truth partitionings,
and these lead to qualitatively better labeling results. For
surface layout labeling, Corr-Cluster-Geometric similarly
yielded the best results in terms of both image partitionings
and region-labelings. According to the task, the task-specific
correlation clustering partitioned an image differently: Corr-
Cluster-Geometric appears to produce broader regions than
Corr-Cluster-Semantic.

The gPb-Hoiem treats each edge as an independent
pairwise instance, therefore, the partitioning results are not
stable (producing inconsistent local regions) even though it
uses additional features. On the other hand, the gPb-owt-ucm
uses combination of multiscale cues with a globalization
machinery that reduces clutter edges and completes a set of
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Fig. 10. Obtained evaluation measures from partitioning results on the
test set for binary foreground-background segmentation (a), semantic scene
segmentation (b), and surface layout labeling (c).

TABLE III
MEAN PIXEL ACCURACIES (%) OBTAINED BY REGION-LABELING ON THE

TEST SET (BINARY: BINARY FOREGROUND-BACKGROUND SEGMENTATION,
SEMANTIC: SEMANTIC SCENE SEGMENTATION, GEOMETRIC: SURFACE

LAYOUT LABELING).

Binary Semantic Geometric
Corr-Cluster-Binary 90.25 61.45 76.84

Corr-Cluster-Semantic 89.50 77.01 87.45
Corr-Cluster-Geometric 88.32 70.14 88.15

closed contours.

Another task. In order to reconfirm the capability of
the task-specific correlation clustering to produce effective
partitioning specific to the binary foreground-background
segmentation task, the proposed task-specific partitioning was
applied to the dataset where the 7 background classes were
grouped into a single background class. As shown in Fig. 10
and Table III3, for the task of binary foreground-background
segmentation, Corr-Cluster-Binary, which indicates correlation
clustering using the parameters learnt for the task of binary
foreground-background segmentation, performed better
than Corr-Cluster-Geometric and Corr-Cluster-Semantic.
Partitionings obtained by Corr-Cluster-Binary were also
evaluated for other tasks, and it was reconfirmed that task-
specific partitioning is more conducive to the task in hand.

Other datasets. The proposed algorithm also has the
potential to improve the performance of generic image
partitioning as a supervised learning framework for image
partitioning. We evaluate the proposed algorithm on the
Berkeley segmentation dataset (BSDS) [39] for supervised
generic partitioning. The BSDS contains 300 natural images

3Here, we designed each algorithm to produce 20 regions for binary
foreground-background segmentation, on average.

Fig. 11. Examples of partitionings by multiple human subjects and single
probabilistic (real-valued) ground-truth partitioning.

TABLE IV
QUANTITATIVE RESULTS ON THE BSDS TEST SET.

Test set PRI SCO VOI BDE
Mean-shift 0.60 0.47 2.04 29.93
Multi-NCut 0.73 0.31 3.04 14.26

gPb-owt-ucm 0.80 0.58 1.85 11.46
gPb-Hoiem 0.72 0.32 3.19 14.80

Supervised-NCut 0.72 0.26 3.41 16.61
Corr-Cluster 0.81 0.60 1.83 11.19

which was split into the 200 training images and 100 test
images. Since each image is partitioned by multiple human
subjects, we defined a single probabilistic (real-valued)
ground-truth partitioning of each image only for training by
the proposed algorithm (see Fig. 11). The gPb-Hoiem and the
supervised NCut used a different ground-truth for training on
the BSDS: declare two superpixels to lie in the same segment
only if all human subjects declare them to lie in the same
segment.

Table IV shows the obtained results on test images when
all partitioning algorithms were set to produce 30 disjoint
regions per image, on average. Note that the level-threshold
in producing segmentation results at a universal fixed scale in
Table 2 in [13] was optimized differently for each performance
measure while in our experiment the same level-threshold
(0.155) was used for all performance measures in evaluating
gPb-owt-ucm.

Irrespective of the measure, the proposed algorithm (Corr-
Cluster) gave the best results. Moreover, it is noticed that these
results are similar or even better than the state-of-the-art results
on the BSDS [13], [40], [41].

We changed the level-threshold for gPb-owt-ucm and R for
correlation clustering to produce different numbers of regions
per image, on average, and observed that the correlation
clustering always performed better than the gPb-owt-ucm (see
Fig. 12), as on the Stanford background dataset. As the number
of regions increased, the PRI and VOI increased while the
SCO and BDE decreased for both algorithms. We set the
level-threshold of 0.155 for gPb-owt-ucm and R of 0.15 for
correlation clustering, since for both algorithms these values
produced on average 30 regions per image and gave the best
results with regards to the four measures. Improvement of 1%
in PRI, 2% in SCO, 0.02 in VOI, and 0.3 pixel in BDE on the
BSDS test set is comparable to the improvements reported in
[13], [40] (1% in PRI, 2% in SCO, 0.08 in VOI, and 1 pixel
in BDE). We observed that in comparison to the gPb-owt-
ucm, by the proposed correlation clustering, 63 segmentation
results were improved, 10 results did not change, and the rest



11

Fig. 12. Obtained evaluation measures from partitioning results of gPb-owt-ucm and Corr-Cluster on the BSDS test set according to the average number of
regions.

TABLE V
OBTAINED F-MEASURES ON THE BSDS TEST SET.

Test set F-measure
Mean-shift 0.50
Multi-NCut 0.59

gPb-owt-ucm 0.69
gPb-Hoiem 0.62

Supervised-NCut 0.53
Corr-Cluster 0.71

27 results got worse on the BSDS test set.

On the BSDS benchmark dataset, the F-measure has been
popularly used for evaluation of segment boundaries obtained
by image partitioning algorithms. Therefore, we also computed
the F-measure on the BSDS test set, and as shown in Table
V, the proposed correlation clustering gave the best score.

Fig. 13 shows some example partitionings on test images
obtained by various partitioning algorithms. The proposed cor-
relation clustering (Corr-Cluster) yielded the best partitioning
results.

We also conducted image partitionings on the MSRC dataset
[42] that is composed of 591 natural images. We split the
data into 45% training, 10% validation, and 45% test sets,
following [42]. The performance was evaluated using the clean
ground-truth object instance labeling of [43]. On average, all
partitioning algorithms were set to produce 15 disjoint regions
per image on the MSRC dataset. As shown in Table VI, the
proposed correlation clustering gave the best results on the test
set. Note that as on the BSDS dataset mentioned above, we
report the results not on the whole set but on the test set, and
we observed the same tendency on the MSRC dataset as on
the BSDS dataset.

We also trained on the MSRC dataset and tested on the
BSDS dataset. This decreases the performance over training
and testing on the BSDS dataset. This observation is also
true in the reverse direction, i.e. when training on the BSDS
dataset and testing on the MSRC dataset. Overall this suggests
that these two datasets have different statistics. Therefore, we
believe that our framework is helpful even for regular image
segmentation applications, because it allows the partitioning
to be tuned to the particular dataset at hand.

TABLE VI
QUANTITATIVE RESULTS ON THE MSRC TEST SET.

Test set PRI SCO VOI BDE
Mean-shift 0.734 0.606 1.649 13.944
Multi-NCut 0.628 0.341 2.765 11.941

gPb-owt-ucm 0.779 0.628 1.675 9.800
gPb-Hoiem 0.614 0.353 2.847 13.533

Supervised-NCut 0.601 0.287 3.101 13.498
Corr-Cluster 0.773 0.632 1.648 9.194

V. CONCLUSION

This work addressed the problem of task-specific image
partitioning by supervised training. We proposed the corre-
lation clustering model which aims to merge superpixels into
regions of homogeneity with respect to the solution of any
particular image labeling problem. The LP relaxation was
used to approximately solve the correlation clustering over
a superpixel graph where a rich pairwise feature vector was
defined based on several visual cues. The S-SVM was used
for supervised training of parameters in correlation clustering,
and the cutting plane algorithm with LP-relaxed inference
was applied to solve the optimization problem of S-SVM.
Experimental results showed that the proposed task-specific
correlation clustering outperformed other image partitioning
algorithms on semantic scene segmentation and surface layout
labeling. The proposed framework is applicable to a broad
variety of other high-level vision tasks.
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