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Abstract

This paper addresses the problem of efficiently solving
large-scale energy minimization problems encountered in
computer vision. We propose an energy-aware method for
merging random variables to reduce the size of the energy
to be minimized. The method examines the energy func-
tion to find groups of variables which are likely to take the
same label in the minimum energy state and thus can be
represented by a single random variable. We propose and
evaluate a number of extremely efficient variable grouping
strategies. Experimental results show that our methods re-
sult in a dramatic reduction in the computational cost and
memory requirements (in some cases by a factor of one hun-
dred) with almost no drop in the accuracy of the final result.
Comparative evaluation with efficient super-pixel genera-
tion methods, which are commonly used in variable group-
ing, reveals that our methods are far superior both in terms
of accuracy and running time.

1. Introduction

Many computer vision problems such as image segmen-
tation, stereo matching, and image restoration are formu-
lated using probabilistic models such as discrete Markov
and conditional random fields (MRF and CRF respectively).
Computing the maximum a posteriori (MAP) solution un-
der these models can be seen as minimizing an energy func-
tion defined over some discrete variables, which in general
is an NP-hard problem [11, 3]. A number of powerful meth-
ods exist in the literature which are able to compute exact
solutions for restricted classes of problems, such as those
composed of submodular terms or having low tree-width,
and approximate solutions for general problems. Graph
cuts [11, 2, 3], loopy belief propagation (LBP) [26, 16],
tree re-weighted message passing (TRW) [10, 25], max-
sum diffusion [27] and FastPD [13] are some examples of
such methods.

The energy functions encountered while solving labeling
problems such as image segmentation and 3D reconstruc-
tion generally contain one discrete variable per image pixel
(or 3D volume voxel). The minimization of such energy
functions which may be defined over millions (and some-
times billions) of variables is an extremely computation-

(a) Image for class segmentation. (b) Full MAP, Budget 100%, Run-
time 101 seconds.

(c) Grouped MAP, Budget 25%,
Runtime 26.8 seconds, 99.62% la-
bel agreement with full MAP.

(d) Grouped MAP, Budget 1.56%,
Runtime 6.63 seconds, 99.40% la-
bel agreement with full MAP.

Figure 1. Variable grouping reduces the energy minimization prob-
lem size with only a small loss in accuracy. The budget is the
relative number of variables used in our approximation.

ally expensive operation. Labeling problems are becoming
even larger as we move towards higher resolution images
and videos that are generated using latest image acquisi-
tion devices. This observation has inspired research on the
problem of developing more efficient energy minimization
methods such as [1, 12, 9, 13]. However, the computational
cost and memory requirements of minimization methods
are still highly super-linear in the number of variables and
terms present in the energy function.

In addition to developing more efficient methods for
MAP inference, researchers have also tried reducing the
size of the labeling problem itself. This simple and widely
used technique works by merging the variables in the en-
ergy into a small number of groups and representing each
group by a single variable. The technique has been success-
fully employed for solving image labeling problems such
as object segmentation, stereo and single view reconstruc-
tion [6, 7, 18]. The number of variables is reduced by par-
titioning the image into small number of segments (also
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called super-pixels) [20]. This results in a smaller energy
function containing one variable per segment, which is con-
structed from the original energy by assuming that all pix-
els that belong to the same segment (super-pixel) take the
same label in the MAP solution (label-consistency). This
function is minimized to produce a solution for the origi-
nal image labeling problem. If the image partitioning is in-
deed label-consistent, then the energy minimizing solutions
under both the original and scale-reduced (based on fewer
variables) energies are the same, and thus minimization of
the scale-reduced energy will lead to the MAP solution of
the original problem.

The super-pixelization approach described above has
been used for solving problems like object segmentation,
stereo and single view reconstruction. A number of so-
phisticated image partitioning methods have been proposed
for merging pixels into super-pixels [5, 19, 15, 4, 24, 20].
However, these methods only consider color or appearance
information for partitioning the image. They work under
the belief that pixels having similar color (appearance) are
likely to take the same label and do not take into account
the energy function of the problem. As a result, these meth-
ods may group nodes together whose MAP solutions in the
original problem are not same. In fact the partitioning com-
puted by these methods may be highly inconsistent with the
MAP solution of the original problem. Furthermore, most
of these methods are computationally quite expensive and
are thus not suitable for our end goal of reducing the com-
putational cost for finding the MAP solution. We will call
the super-pixelization methods that do not take the energy
to be minimized into account as energy-agnostic.

In this paper, we propose a new energy-aware method
for merging the variables present in a labeling problem.
It is based on the linear running-time image partitioning
method proposed by Felzenszwalb and Huttenlocher [5]
which works by repeatedly merging groups of pixels which
have similar appearance. Instead of using appearance, our
method uses the terms in the energy associated with the
variables to decide if they should be merged or not. We pro-
pose and evaluate a number of variable grouping scores that
can be computed in constant time O(1). Experimental re-
sults show that our methods result in a dramatic reduction in
the computational cost and memory requirements (in some
cases by a factor of 100) with almost no drop in the accuracy
of the final result. Comparative evaluation with the method
of [5] reveals that our methods are far superior both in terms
of accuracy and running time.

Other Related Work Our work is also related to multi-
scale methods for image labeling. These methods solve
a large-scale labeling problem defined by a large image
(or 3D volume) by first constructing a problem defined on
lower-resolution image (or 3D volume) [8, 22, 14, 17]. This
effectively means that they partition the image into regular

(c) (d)(b)(a)

Figure 2. The 9 variables in the original energy (a) are merged to
obtain a new energy (c) defined on only 3 grouped variables. The
final solution (d) is now computed by solving the smaller problem
(c). The solution may differ slightly from the MAP solution (b) of
the original problem.

non-overlapping patches. The smaller problem is solved to
generate a partial labeling for the original high-resolution
problem. The partial solution is used to fix the values of
most of the variables resulting in an energy defined over few
variables. These energies are then minimized using stan-
dard energy minimization methods. While effective, these
methods are energy-agnostic and it is possible to improve
upon them by taking into account the energy function when
grouping the variables.

Outline of the Paper The notation and definitions used in
the paper are provided in Section 2. Our proposed method
for grouping variables is explained in Section 3. The de-
tails of our experiments and the analysis of the results are
provided in Section 4.

2. Notations and Preliminaries
Most image and volume labeling problems in computer

vision are formulated using probabilistic models such as
MRF and CRF. Any random field (denoted by X) is de-
fined over a lattice V = {1, 2, . . . , n} with a neighborhood
system E . Each random variable xi ∈ X is associated with
a lattice point i ∈ V and takes a value from the label set
L = {l1, l2, . . . , lm}. The neighborhood system E of the
random field is a set of edges (i, j) which probabilistically
links xi and xj . Any possible assignment of labels to the
random variables will be called a labeling (denoted by x)
which takes values from the set L = Ln.

The most probable or MAP labeling xopt of the random
field can be computed by maximizing the posterior or alter-
natively minimizing the energy of the random field as:

xopt = argmax
x∈L

Pr(x|D) = argmin
x∈L

E(x). (1)

where D is the image data. The random field models used
for most vision problems are pairwise, i.e. their energy
function E : Ln → R can be written as a sum of unary
φi and pairwise φij functions,

E(x) =
∑
i∈V

φi(xi) +
∑

(i,j)∈E

φij(xi, xj). (2)

For image labeling problems, the set V corresponds to the
set of all image pixels, E is set of all edges between pixels in
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a 4 or 8 neighborhood, and the random variable xi denotes
the labeling of pixel i of the image.

The problem of minimizing the general functions of the
form (2) is NP-hard. However, particular families of prob-
lems can be solved exactly in polynomial time. There are
also efficient methods for getting approximate solutions for
general problems. Graph cuts [11, 2, 3], loopy belief prop-
agation (LBP) [26, 16], tree re-weighted message passing
(TRW) [10, 25], max-sum diffusion [27] and FastPD [13]
are some popular examples.

3. Energy Based Variable Grouping
Let us first formalize the notion of variable grouping ap-

plied to an energy minimization problem.

Definition 1 (Variable Grouping) Given a graph G =
(V, E) with corresponding functions φi, φij , a variable
grouping is a graph G′ = (V ′, E ′) with energy function E′

produced by a surjective1 map m : V → V ′ mapping all
vertices in G to vertices in G′ and taking the edge set E ′ =
{(s, t) ∈ V ′ × V ′|∃(i, j) ∈ E : m(i) = s and m(j) = t}.
The energy function of the grouping is formulated in terms
of new unary and pairwise functions φ̂j , φ̂st,

E′(x̂) =
∑
i∈V

φi(x̂m(i)) +
∑

(i,j)∈E

φij(x̂m(i), x̂m(j))

=
∑
j∈V′

( ∑
i∈m−1(j)

φi

)
(x̂j)

+
∑

(s,t)∈E′

( ∑
(i,j)∈

m−1(s)×m−1(t)

φij

)
(x̂s, x̂t)

=
∑
j∈V′

φ̂j(x̂j) +
∑

(s,t)∈E′
φ̂st(x̂s, x̂t).

where x̂ is the labeling of a graph G′. The grouping con-
struction is illustrated in Figure 2.

For any variable grouping the resulting graph is smaller
in scale than the original graph. If the smaller instance is
a “good approximation” to the original graph then we can
solve the smaller problem instead and use its solution to
produce a solution to the original problem. We make this
idea clear in the next definition.

Definition 2 (Solution Recovery) Given a solution x̂ to a
variable grouping G′ = (V ′, E ′) with energy E′ produced
by the map m : V → V ′ from G = (V, E) with energy E,
we define the recovered solution to the original problem as

x̂↑= (x̂m(i))i∈V .

The effectiveness of the approximation using the variable
grouping can be evaluated in terms of energy: how much

1Surjectivity: ∀v′ ∈ V ′ : ∃v ∈ V : m(v) = v′.

did we suffer in terms of the original energy by solving the
approximation? We define this as follows.

Definition 3 (Approximation Loss) Given a variable
grouping G′ = (V ′, E ′) with E′ of G = (V, E) with E
based on the map m, the approximation loss is defined as

r(m) =
E′(x̂opt)
E(xopt)

=
E(x̂opt↑)
E(xopt)

, (3)

where x̂opt is the optimal solution to the grouped energy and
xopt is the optimal solution to the original problem. The
equality follows from the construction of E′.

By construction we always have r(m) ≥ 1. In case we have
r(m) = 1 the approximation is exact in that it allows us to
recover the solution to the original problem.

How to find a variable grouping m that has a small loss?
Ideally we would like to explicitly minimize (3) over all
possible groupings but this requires us to know xopt apriori.
Because the overall goal of inference is to obtain xopt, this
approach is impractical. Moreover, we would like to have a
variable grouping method that is much faster than inference
itself, producing a good grouping of small size. To this end
we take (3) as inspiration to construct a localized weight
function for each edge in E . We use this weight function in
a fast graph-based clustering method to group variables that
are likely to be labeled with the same label. In case the local
weight function is expressive enough, then this produces a
grouping that has low loss. We describe the details of our
approach in the next section.

3.1. Efficient Energy-Based Variable Grouping

We assume we have a local score function w : E → R
that measures how dissimilar the two connected nodes are,
such that small values indicate a strong similarity, and large
values indicate dissimilarity. We can then group variables as
follows. We first sort all edges (i, j) ∈ E by their weights
in ascending order so that edges that link similar variables
come first. Initially we assign each node its own group.
Then, for each edge in the ordered list we merge nodes to-
gether until we have sufficiently reduced the problem size.

This simple procedure, while plausible and computation-
ally efficient, is also myopic: the only information used for
merging groups of variables is in the local weighting func-
tion. Global information such as the size of the group or
their internal dissimilarities are ignored.

This resembles the problem of image segmentation:
finding globally coherent groups of pixels from local mea-
surements. We therefore use a procedure that was origi-
nally proposed for image segmentation to solve our vari-
able grouping problem. We use the efficient graph-based
segmentation method, proposed by Felzenszwalb and Hut-
tenlocher [5]. The method follows the same procedure as
above except that the merging decisions are based on a more
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Algorithm 1 Energy based Variable Grouping
1: (V ′,m) = VARIABLEGROUPING(G, φ,w)
2: Input:
3: G = (V, E), graph instance,
4: φi, φij , node and edge energies,
5: w : E → R, dissimilarity weights
6: Output:
7: V ′, set of grouped variables,
8: m : V → V ′, variable grouping.
9: Algorithm:

10: V ′ ← V , E ′ ← E
11: m← {(i, i)|i ∈ V}
12: π ← sort(E , w) {Sort weights}
13: for e = 1, . . . , |π| do
14: (i, j)← πe

15: if m(i) = m(j) then
16: continue {Already merged}
17: end if
18: if wij ≤ MInt(Ci, Cj) then
19: Merge Ci and Cj in m, V ′
20: end if
21: end for

global criterion, balancing the size of the group and its in-
ternal coherence.

Algorithm 1 is identical to [5] but uses our variable
grouping notation. To make the merging decisions, the
method measures a property of each group of variables, the
so called the internal difference,

Int(C) = max
(i,j)∈MST(C,E)

wij ,

where MST (C, E) is the minimum-weight spanning tree
within the component C with a set of edges E in it. There-
fore Int(C) is small if the component is tightly grouped, i.e.
most of its internal edge weights are small. When decid-
ing whether to merge two components or to preserve them
individually, the method compares the weight of the can-
didate edge linking component C1 and C2 with the internal
differences of each component. Therefore, an edge with
higher dissimilarity can still be used for merging two group
in case these groups are already somewhat incoherent. On
the other hand, if the two groups are coherent individually
but the candidate edge has a high weight, then the merge
is not performed, preserving the coherence of each group.
In light of our goal of grouping variables for energy mini-
mization, this is a natural criterion: we want to divide the
graph into groups of variables that agree about their label-
ing while preserving distinct groups that are more likely to
take different labels. To make the decision, we us the MInt
function of [5], defined as

MInt(C1, C2) = min{Int(C1) + τ(C1), Int(C2) + τ(C2)},
(4)

where τ(C) = k
|C| is an additional size bias depending on a

free parameter k.
The method is very efficient and easily implemented in

O(|E| log |E|) time and space. An important choice for our
application is how to determine the weights wij from the
original energy function, the topic of the next section.

3.2. Weight Functions

We consider three classes of weight functions wij ,
i) an image-based baseline method (IMAGEBASELINE),
ii) two methods using only unary functions φi and φj

(UNARYDIFF and MINUNARYDIFF), and iii) a method us-
ing pairwise φij functions (MEANCOMPAT).

Baseline. In all our experiments, the variables will corre-
spond to pixels of an image. Our simplest baseline is to
take the pixel similarity of the image as grouping weights
(IMAGEBASELINE), i.e. to set wimg

ij = ‖Pi − Pj‖, where
Pi ∈ R3 is the RGB color vector of pixel i in the image.
These weights are energy-agnostic and as we will see from
comparing to this baseline there is indeed an advantage in
performing a variable grouping on the energy instead of us-
ing the image information only.

In addition, this baseline is identical to the Felzenszwalb
and Huttenlocher image segmentation method. Therefore
solving an energy minimization problem on top of this vari-
able grouping can be seen to correspond to the existing
practice of using image-derived superpixels as preprocess-
ing step and defining the energy minimization problem on
superpixels instead of pixels. Our experiments will show
that this existing method is performing poorly because it ig-
nores the properties of the energy function.

Unary-only weighting functions. The unary functions φi

and φj are typically derived from a discriminative classifier.
As such it contains valuable information about the class but
can also be used to measure about the task-specific similar-
ity of two nodes i and j. The first unary-only weighting
function we propose is

wud
ij = ‖φi − φj‖ (UNARYDIFF).

These weights consider all states of the node equally im-
portant. We argue that it makes sense to consider the pre-
ferred state of each node. If we take xi = argminl φi(l),
ci = φi(xi), and likewise, xj = argminl φj(l), cj = φj(xj)
to denote the preferred states, then we define the weights as
the disagreement between the preferences, i.e.

wmud
ij = max(φi(xj)−ci, φj(xi)−cj) (MINUNARYDIFF).

Pairwise weighting function. The unary-only weighting
functions ignore the influence of the pairwise function φij .
This is justified in the energy minimization problems where
the unary functions are indicative of the true label. For other
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problems, however, the pairwise term is important, and in-
cluding it into the weight function accounts for its influence
during grouping. We do so by measuring the difference of
the mean energy of agreeing labelings (xi = xj) versus
the difference of the mean energy of disagreeing labelings
(xi 6= xj). This yields2 the weights (MEANCOMPAT)

wmc
ij =

1
m

∑
xi=xj

(φij(xi, xj))−
1

m2 −m

∑
xi 6=xj

(φij(xi, xj)).

4. Experiments and Results
We first discuss our experimental setup and the perfor-

mance measures we use.

4.1. Setup

We evaluate our method on the Middlebury MRF
dataset [23] and the data used in [1].3 The experiments
use real-world computer vision problem instances to ex-
amine the typical trade-off between the runtime gained
and the accuracy lost due to the variable grouping. The
used datasets provide typical labeling problem instances
for a number of computer vision tasks, such as binary
foreground-background segmentation, color segmentation,
semantic object segmentation, and stereo matching [1, 23].

Each type of labeling problem has a different number
of labels. In the above datasets we have between three to
five problem instances for each type. Images are presented
with a different number of labels. For binary image segmen-
tation there are two labels — foreground and background
— and the task is to segment the foreground object. For
the color segmentation and the object segmentation task we
have a small number of labels corresponding to different ob-
ject classes. The energy functions are constructed using the
method proposed in [21]. In the stereo matching task we
are given two images and reconstruct a disparity map. All
energy functions are computed using the public benchmark
of Szeliski et al. [23] and we do not attempt to improve
on the energy formulation itself. The number of disparity
labels in different problem instances were: Tsukuba (16),
Venus (20), Cones (60) and Teddy (60).

To apply our variable grouping algorithm to the energy
function we compute the graph weights using one of the
weight functions. Because each problem has a different
range of energy values, we first normalize all unary and
pairwise energies into a fixed range before evaluating the
weight function. We do this only to compute the weights
used for variable grouping, and do not modify the original
energy function is both in the full and grouped energy.

For all experiments we set k = 10 in τ(C) = k
|C| as the

threshold parameter in (4).
2The unary terms cancel out.
3Available at http://vision.middlebury.edu/MRF/ and

http://cms.brookes.ac.uk/staff/Karteek/data.tgz.

To obtain a complete picture of the available runtime-
accuracy tradeoffs we evaluate multiple variable groupings
of varying size for each problem instance. In particular we
use different rates of reduction in the size of the original
problem, measured as “budget”, where a budget of 100%
corresponds to the original problem. A smaller budget spec-
ifies the number of variables in the grouped instance as a
fraction of the number of variables in the original instance.
We use 10 budgets in total: 50%, 25%, 12.5%, . . . ,≈ 0.1%
as the integer powers of 0.5. A grouped problem with a bud-
get of 0.1% therefore has only 0.1% the number of variables
of the original instance.

For both the original and the grouped energies we use
two types of inference algorithms to obtain an approximate
MAP labeling: sequential tree-reweighted message passing
(TRW-S) [10] and loopy belief propagation (LBP) [26]. For
each inference method, we use a maximum of 300 itera-
tions for each problem. The results for TRW-S are shown
in Figure 4. The results obtained with LBP are similar.

For each budget and instance we evaluate the approxi-
mate solution x̂opt against the optimal solution xopt of the
original problem using the following three types of perfor-
mance measures.

4.2. Evaluation Measures

Our variable grouping allows us to infer an approximate
MAP labeling for a given problem instance from the MAP
solution of a reduced size problem. Naturally, if the reduced
graph is smaller, the inferred labeling is less accurate.

We quantify the trade-off between gain in runtime per-
formance versus loss in accuracy using three performance
measures, i) the approximation loss r(m) measuring the so-
lution quality with respect to the original energy, ii) the per-
pixel agreement of the approximate solution with the MAP
solution of the original problem, and iii) the ratio of run-
times of the proposed method (including the variable group-
ing), versus the runtime of solving the original problem. We
now describe the latter two measures in more detail.

Per-pixel agreement. We define a measure of the agree-
ment between the approximate labeling x̂ of the reduced
problem and the MAP labeling of the original problem as

RMAP(x̂
opt,xopt) =

∑
i∈V I((x̂opt ↑)i = xopt

i )
|V|

, (5)

where I(·) is the indicator function that returns one when
the argument is true, zero otherwise. By definition we have
0 ≤ RMAP(x̂

opt,xopt) ≤ 1, and in case the measure is one
the approximation is exact.

Ratio of runtimes. To quantify the reduction in overall
runtime we measure the ratio of the runtime of the proposed
method versus the runtime of solving the full problem. For-
mally, we take
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Rtime =
Tgroup(G) + TMAP(G′)

TMAP(G)
(6)

where Tgroup(G) is the runtime to group the variables of G
to produce G′, and TMAP(·) is the time to solve for the MAP
solution of its argument.

4.3. Results and Discussion

Our results are visualized for all instances and budgets
in Figures 3 and as average performance for each problem
type in Figure 4.

In Figure 3 we use color-coded label maps to visualize
the approximate MAP solutions obtained from our variable
grouping. The leftmost solution in column (b) shows the
ground truth provided with the data set, and the column (c)
adjacent to it the MAP solution of the full sized problem.

The following columns (d) to (g) show that accuracy is
affected as the budget is decreased; but it is somewhat sur-
prising how small a variable budget is sufficient to obtain
accurate labelings across all tasks. For example, consider
the quality of the solutions shown in column (e). These use
only 12.5% of the variables and around 1/5’th of the run-
time of the full MAP solution including variable grouping.
Despite this, the result is almost indistinguishable. Only for
the stereo matching task with a large number of labels there
are visible differences. Naturally, for very small budgets,
such as the 0.1% shown in column (g) there is indeed a vis-
ible deterioration in the labeling.

In Figure 4 we visualize the quantitative results of our
method. For each of the four different problem types we
show the average performance for all instances of that type
using the performance measures described in Section 4.2.

The performances of our proposed weight functions are
differ between the different problem types. The first ob-
servation is that the UNARYDIFF, MINUNARYDIFF, and
MEANCOMPAT functions consistently show a higher agree-
ment and lower loss than the IMAGEBASELINE function in
all problems. What this means is that variable grouping on
the energy function is superior to superpixelization on the
image, as it can take into account the task-specific proper-
ties of the energy minimization task.

The second observation is that among the different
weight functions, the MINUNARYDIFF function gave the
best performance in terms of per-pixel agreement in the bi-
nary foreground-background segmentation task and in the
object segmentation task. Here the unary cues are strong
and sufficient to make safe grouping decisions. On the other
hand, the MEANCOMPAT weight function worked better
in color-based segmentation and stereo matching, because
here there are multiple labels and both the unary and the
pairwise potentials are needed.

Finally, the reduction in runtime is comparable for all
weight functions: the overall runtime is dramatically re-
duced, and the overall inference time including the variable

grouping can be as low as 1% compared to inference for
the original problem. Eventually, for very small budgets the
overall runtime increases again essentially because the en-
ergy minimization is performed very quickly but clustering
the graph has a small overhead.

To highlight the performance once more: in the most ex-
treme example, the binary foreground-background segmen-
tation, our variable grouping gave 99.57% per-pixel agree-
ment at a budget of 0.1%, reducing the overall runtime by
a factor of 100. For the other tasks the budget needs to be
larger to achieve a similar accuracy, but as can be seen from
the graphs, for the color-based segmentation and object seg-
mentation tasks one can use a budget of 25% corresponding
to a five-fold speedup without noticable differences in the
solutions obtained. The stereo matching results are not as
good, but note that we count labels deviating by only one
depth level as an error. Qualitatively the labeling is still ac-
ceptable, as apparent from Figure 3.

5. Conclusion
Our method is simple and widely applicable to MAP in-

ference problems in computer vision. It provides a comple-
mentary method to speed up any existing inference method.
The user can select from a wide range of a trade-offs be-
tween obtained speedup and the retained labeling accuracy.

Our method demonstrates that performing a variable
grouping on top of a problem-specific energy function is
superior to making such a grouping decision apriori and ag-
nostic about the problem type, as is commonly done when
using the image to produce a superpixelization.

We plan to release a wrapper compatible with the TRW-
S interface, so as to make the benefits of our method widely
available without requiring changes to existing code.
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Figure 4. Evaluation measures: Approximation loss, per-pixel agreement and ratio of runtimes (solution from TRW-S MAP inference).
Average performance for (a) binary segmentation, (b) color-based segmentation, (c) object segmentation, (d) stereo matching.
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