
A Comparative Study of Modern Inference Techniques for Structured
Discrete Energy Minimization Problems

Jörg H. Kappes Bjoern Andres Fred A. Hamprecht Christoph Schnörr Sebastian Nowozin
Dhruv Batra Sungwoong Kim Bernhard X. Kausler Thorben Kröger Jan Lellmann

Nikos Komodakis Bogdan Savchynskyy Carsten Rother

The final publication is available at link.springer.com

Abstract

Szeliski et al. published an influential study in 2006 on energy min-
imization methods for Markov Random Fields (MRF). This study
provided valuable insights in choosing the best optimization tech-
nique for certain classes of problems.

While these insights remain generally useful today, the phenom-
enal success of random field models means that the kinds of infer-
ence problems that have to be solved changed significantly. Specif-
ically, the models today often include higher order interactions,
flexible connectivity structures, large label-spaces of different car-
dinalities, or learned energy tables. To reflect these changes, we
provide a modernized and enlarged study. We present an empiri-
cal comparison of more than 27 state-of-the-art optimization tech-
niques on a corpus of 2,453 energy minimization instances from
diverse applications in computer vision. To ensure reproducibility,
we evaluate all methods in the OpenGM 2 framework and report
extensive results regarding runtime and solution quality. Key in-
sights from our study agree with the results of Szeliski et al. for the
types of models they studied. However, on new and challenging
types of models our findings disagree and suggest that polyhedral
methods and integer programming solvers are competitive in terms
of runtime and solution quality over a large range of model types.

1 Introduction

Discrete energy minimization problems, in the form of factor
graphs, Markov or Conditional Random Field models (MRF/CRF)
are a mainstay of computer vision research. Their applications are
diverse and range from image denoising, segmentation, motion es-
timation, and stereo, to object recognition and image editing. To
give researchers some guidance as to which optimization method
is best suited for their models, Szeliski et al. [76] conducted a
comparative study on 4-connected grid models. Along with the
study, they provided a unifying software framework that facilitated
a fair comparison of optimization techniques. The study was well-
received in computer vision community and has till date been cited
more than 700 times.

Since 2006 when the study was published, the field has made
rapid progress. Modern vision problems involve more complex
models, larger datasets and use machine learning techniques to
train model parameters.

To summarize, these changes gave rise to challenging energy
minimization problems that fundamentally differ from those con-
sidered by Szeliski et al. In particular, in [76] the models were
restricted to 4-connected grid graphs with unary and pairwise fac-
tors only, whereas modern ones include arbitrary structured graphs
and higher order potentials.

It is time to revisit the study [76]. We provide a modernized
comparison, updating both the problem instances and the inference
techniques. Our models are different in the following four aspects:

1. Higher order models, e.g. factors of order up to 300;

2. Models on “regular” graphs with a denser connectivity struc-
ture, e.g. 27-pixel neighborhood, or models on “irregular”
graphs with spatially non-uniform connectivity structure;

3. Models based on superpixels with smaller number of vari-
ables;

4. Matching and image partitioning models without unary terms.
Later also with unknown number of classes.

Inference methods have changed since 2006 as well, often as a
response to the development of challenging models. The study [76]
compared the performance of the state of the art at that time, repre-
sented by primal move-making methods, loopy belief propagation,
a tree-reweighted message passing, and a set of more traditional lo-
cal optimization heuristics like iterated conditional modes (ICM).

We augment this set with recent updates of the move-making
and local optimization methods, methods addressing higher order
models, and polyhedral methods considering the energy minimiza-
tion as an (Integer) Linear Program.

Contributions We provide a modernized experimental study of
energy minimization methods. Our study includes the cases and
algorithms studied by [76], but significantly expand it in the scope
of both used inference methods and considered models. Both
the methods and the considered models are implemented and
stored within a single uniform multi-platform software framework,
OpenGM 2 [5]. Together with results of our evaluation they are
available on-line on the project web-page [5].

Such a unification provides researchers with an easy access to
the considered wide spectrum of modern inference techniques. Our
study suggests which techniques are suited for which models. The
unification boosts development of novel inference methods by pro-
viding a set of models for their comprehensive evaluation.

Related Inference Studies Apart from the study [76], a number
of recent articles in CV have compared inference techniques for
a small specialized class of models, such as [3, 51, 49]. Unfortu-
nately, the models and/or inference techniques are often not pub-
licly available. Even if they were available, the lack of a flexible
software-framework which includes these models and optimization
techniques makes a fair comparison difficult. Closely related is the
smaller study [8] that uses the previous and now deprecated version
of OpenGM. It compares several variants of message passing and

1

move making algorithms for higher order models on mainly syn-
thetic models. In contrast to [8], we consider a broader range of
inference methods, including polyhedral ones, and a bigger num-
ber of non-synthetic models.

Outside computer vision, the Probabilistic Inference Challenge
(PIC) [23] covers a broad class of models used in machine learn-
ing. We include the leading optimization techniques and some
challenging problems of PIC in our study.

Furthermore, a previous and shorter version of the our study was
published at a conference as [35].

Key Insights and Suggested Future Research In comparison
with [76], perhaps the most important new insight is that recent,
advanced polyhedral LP and ILP solvers are competitive for a wide
range of problems in computer vision. For a considerable number
of instances, they are able to achieve global optimality. For some
problems they are even superior or on a par with approximative
methods in terms of overall runtime. This is true for problems with
a small number of labels, variables and factors of low order that
have a simple form. But even for some problems with a large num-
ber of variables or complex factor form, specialized ILP and LP
solvers can be applied successfully and provide globally optimal
solutions. For problems with many variables and cases in which
the LP relaxation is not tight, polyhedral methods are often not
competitive. In this regime, primal move-making methods typi-
cally achieve the best results, which is consistent with the findings
of [76].

Our new insights suggest two major areas for future research.
Firstly, in order to capitalize on existing ILP solvers, small but ex-
pressive models, e.g. superpixels, coarse-to-fine approaches, or re-
duction of the model size by partial optimality, should be explored
and employed. Secondly, our findings suggest that improving the
efficiency and applicability of ILP and LP solvers should and will
remain an ongoing active area of research.

A more detailed synopsis and discussion of our insights will be
given in Section 7.

The present study is solely devoted to structured energy mini-
mization, that is to MAP estimation from a Bayesian viewpoint.
From a statistical viewpoint, inference methods that explore pos-
terior distributions beyond mere point estimation would be prefer-
able, but are too expensive for most large-scale applications of cur-
rent research in computer vision. Recent works [65, 62] exploits
multiple MAP inference in order to get closer to this objective in
a computationally feasible way. This development underlines too
the importance of research on energy minimization as assessed in
this paper.

2 Graphical Models
We assume that our discrete energy minimization problem is spec-
ified on a factor graph G = (V,F,E), a bipartite graph with finite
sets of variable nodes V and factors F , and a set of edges E ⊂V×F
that defines the relation between those [47, 60]. The variable xa as-
signed to the variable node a ∈V lives in a discrete label-space Xa
and notation XA, A ⊂ V , stands for a Cartesian product ⊗a∈AXa.
Each factor f ∈ F has an associated function ϕ f : Xne(f) → R,
where ne(f) := {v ∈ V : (v, f) ∈ E} defines the variable nodes
connected to the factor f . The functions ϕ f will also be called
potentials.

We define the order of a factor by its degree |ne(f)|, e.g. pair-
wise factors have order 2, and the order of a model by the maximal
degree among all factors.

The energy function of the discrete labeling problem is then
given as

J(x) = ∑
f∈F

ϕ f (xne(f)), (1)

where the assignment of the variable x is also known as the
labeling. For many applications the aim is to find a labeling
with minimal energy, i.e. x̂ ∈ argminxJ(x). This labeling is
a maximum-a-posteriori (MAP) solution of a Gibbs distribution
p(x) = exp{−J(x)}/Z defined by the energy J(x). Here, Z nor-
malizes the distribution.

It is worth to note that we use factor graph models instead of
Markov Random Field models (MRFs), also known as undirected
graphical models, or Conditional Random Fields (CRF). The rea-
son is that factor graphs represent the structure of the underlying
problem in a more precise and explicit way than MRFs, cf. [47].
MRFs and CRFs express the conditional independence assump-
tions, which implies a factorization in maximum cliques only un-
der some technical conditions [47, 55]. Unfortunately, these terms
widely have been used a bit sloppy in computer vision. Often
(hyper-) graphs have been used to describe a factorization over
(hyper-) edges but models have been called MRF/CRF - even those
cannot express this fine factorization. Examples of such models
in the present study are among others scene-decomp, matching or
color-seg.

2.1 Categorization of Models

One of the main attributes we use for our categorization is the
meaning of a variable, i.e. if the variable is associated with a pixel,
superpixel or something else. The number of variables is typically
related to this categorization.

Another modeling aspect is the number of labels the variable
can take. Note that the size of the label-space restricts the number
of methods that are applicable, e.g. QPBO or MCBC can be used
when each variable takes no more than two values. We also classify
models by properties of the factor graph, e.g. average number of
factors per node, mean degree of factors, or structure of the graph,
e.g. grid structure. Finally, the properties/type of the functions em-
bodied by the factors are of interest, since for some subclasses spe-
cialized optimization methods exists, e.g. metric energies [76] or
Potts functions [38].

2.2 OpenGM 2: A General Modeling Framework

For this comparison we use OpenGM 2 [5] a C++ library for dis-
crete graphical models. It provides support for models of arbitrary
order, allows the use of arbitrary functions and sharing of functions
between factors. OpenGM decouples optimization from the mod-
eling process and allows to store models in the scientific HDF5
format. That is, all model instances stored into a single file and no
application specific code has to be released/used to make models
available or do evaluation on those. Within OpenGM 2 we provide
several own implementations of inference methods in native C++
code as well as wrappers for several existing implementations, and
making those available in a unified framework.

Making new model instances or optimization methods available
within this framework is rather simple: Fig. 1 illustrates a toy
problem with 3 variables having 2,3, and 2 states respectively. The
two first order factors represent the same function mapped to dif-
ferent variables. Alg. 1 shows pseudo code for its construction in
OpenGM 2. In the first step (lines 1-2) a graphical model with the

2

01 2

[
1.4
0

]

[
1 3 0
4 2 5.1

][
0 3.2

3.2 0

]
x0 ∈ {0,1}
x1 ∈ {0,1,2}
x2 ∈ {0,1}

Figure 1: Toy-model constructed by Algorithm 1. The model in-
clude 3 variables with 2,3, and 2 labels. The unary factors of vari-
able 0 and 2 share the same function.

Algorithm 1 Creating a model in OpenGM 2
1: statespace = [2 3 2]
2: gm = createModel<+>(statespace)
3: fid1 = gm.addFunction([2], [1.4 0])
4: fid2 = gm.addFunction([2 3], [1 3 0; 4 2 5.1])
5: fid3 = gm.addFunction([2 2], Potts(0,3.2))
6: gm.addFactor([0] , fid1)
7: gm.addFactor([2] , fid1)
8: gm.addFactor([0,1] , fid2)
9: gm.addFactor([0,2] , fid3)

10: storeModel(gm ,"model.h5")

variables and corresponding label space is set up. When construct-
ing a model we also fix the operation, in this case addition (+),
which couples the single terms to a global objective. Then (line
3-5) the three functions are added. Note that OpenGM 2 allows
special implementations for functions, e.g. for Potts functions. In
the last step (line 6-9) factors are added to the model and connected
to variables (first parameter) and functions (second parameter). Fi-
nally the model is stored to file (line 10). OpenGM 2 allows to
reuse functions for different factors, which saves a lot of memory
if e.g. the same regularizers are used everywhere. We call this con-
cept extended factor graphs.

Given a problem defined on an (extended) factor graph one can
find the labeling with the (approximately) lowest energy. Alg. 2
illustrates how to approach this within OpenGM 2. After loading

Algorithm 2 Inference with OpenGM 2
1: gm = loadModel("model.h5")
2: InferenceMethod<min,+>::Parameter para
3: InferenceMethod<min,+> inf(gm , para)
4: Visitor vis
5: inf.infer(vis)
6: x = inf.arg()
7: vis.journalize("log.h5")

a model (line 1), one initializes an inference object (lines 2-3). In-
ference is always done with respect to an accumulative operation
such as minimum (min) or maximum. Optionally, one can set up a
visitor object (line 4), which will take care of logging useful infor-
mation during optimization. The core inference is done within the
method “infer” (line 5). After that one can get the inferred labeling
(line 6). Additionally, the visitor can give informations about the
progress the method has made over time.

For a new inference method, one needs to implement only con-
structor and methods infer() and arg(). Tutorials for the supported
languages can be found on the project website [5].

3 Benchmark Models
Table 1 gives an overview of the models summarized in this study.
Note that, some models have a single instance, while others have a
larger set of instances which allows to derive some statistics. We
now give a brief overview of all models. Further specifics in con-
nection with inference will be discussed in Sec. 6. A detailed de-
scription of all models is available online.

3.1 Pixel-Based Models
For many low-level vision problems it is desirable to make each
pixel a variable in the model. A typical property of such models is
that the number of variables is large. For 2D images, where vari-
ables are associated to pixels in a 2D lattice, a simple form of a fac-
tor graph model connects each pixel with its four nearest neighbors
(Fig. 2a) using a pairwise energy. This simple form is popular and
was the sole subject of the study [76]. In our study we incorporated
the models mrf-stereo, mrf-inpainting, and mrf-photomontage
from [76] with three, two and two instances, respectively. The pair-
wise terms of these models are truncated convex functions on the
label space for mrf-stereo and mrf-inpainting and a general pair-
wise term for mrf-photomontage.

Additionally, we used three models which have the same 4-
connected structure. For inpainting problems [56] inpainting-N4
and color segmentation problems [56] color-seg-N41 the task is to
assign each pixel one color out of a preselected finite set. For the
object segmentation problems [3] object-seg labels correspond to
predefined object classes. Each single instance has the same small
set of labels for all its variables and Potts terms are used to penal-
ize the boundary length between different classes. In inpainting-
N4 and color-seg-N4 this regularizer is the same for all factors.
In object-seg, it depends on the image-gradient. The unary terms
measure the similarity to predefined class-specific color models.

From a modeling point the 4-neighborhood is quite restricted,
important relations cannot be modeled by a simple grid structure
in many applications. Therefore, models with denser structures
(Fig. 2b) as well as higher order models (Fig. 2c) have been in-
troduced in the last decade. For instance, better approximations of
the boundary regularization were obtained by increasing the neigh-
borhood [15]. The datasets inpainting-N8 and color-seg-N8 [56]
include the same data-term as inpainting-N4 and color-seg-N4 but
approximate the boundary length using an 8-neighborhood (Fig.
2b). Another dataset with an 8-neighborhood and Potts terms de-
pending on the image-gradient is color-seg by Alahari et al. [3].

We also use a model with a 6-neighborhood connectivity struc-
ture in a 3D-grid. It is based on simulated 3D MRI-brain data [20],
where each of the 5 labels represent color modes of the underly-
ing histogram and boundary length regularization [15]. We let the
simulator generate 4 scans for 3 different slice-thickness. These
models are denoted by brain-9mm, brain-5mm, and brain-3mm.
These replace the brain dataset used in [35].

We also consider the task of inpainting in binary images of Chi-
nese characters, dtf-chinesechar [61]. Potentials, related to the
factors of these models, are learned from a decision tree field. Al-
though each variable has only two labels, it is connected via pair-
wise factors to 27 other variables selected during learning from a
17× 17 window. Such an increased connectivity and discrimina-
tive learned potential make the resulting inference problem highly
non-sub-modular and therefore challenging.

1The inpainting-N4/8 and color-seg-N4/8-models were originally used in varia-
tional approaches together with total variation regularizers [56]. A comparison with
variational models is beyond the scope of this study.

3

modelname # variables labels order structure functiontype loss-function references
Pi

xe
l

mrf-stereo 3 ∼100000 16-60 2 grid-N4 TL1, TL2 PA2 [76]
mrf-inpainting 2 ∼50000 256 2 grid-N4 TL2 CE [76]
mrf-photomontage 2 ∼500000 5,7 2 grid-N4 explicit - [76]
color-seg-N4/N8 2x9 76800 3,12 2 grid-N4/N8 potts+ - [56]
inpainting-N4/N8 2x2 14400 4 2 grid-N4/N8 potts+ - [56]
object-seg 5 68160 4–8 2 grid-N4 potts+ PA [3]
color-seg 3 21000,

424720
3,4 2 grid-N8 potts+ - [3]

dtf-chinese-char 100 ∼ 8000 2 2 sparse explicit PA [61]
brain-3/5/9mm 3x4 400000-

2000000
5 2 grid-3D-N6 potts+ - [20]

inclusion 1 1024 4 4 grid-N4 + X g-potts PA [39]

Su
pe

rp
ix

el scene-decomp 715 ∼ 300 8 2 sparse explicit PA [30]
geo-surf-seg-3 300 ∼ 1000 3 3 sparse explicit PA [26, 32]
geo-surf-seg-7 300 ∼ 1000 7 3 sparse explicit PA [26, 32]

Pa
rt

iti
on

correlation-clustering 715 ∼ 300 ∼300 ∼300 sparse g-potts∗ VOI [43]
image-seg 100 500-3000 500-3000 2 sparse potts∗ VOI [6]
image-seg-o3 100 500-3000 500-3000 3 sparse g-potts∗ VOI [6]
knott-3d-seg-150/300/450 3x8 ∼ 800,

5000,
16000

∼ 800–16000 2 sparse potts∗ VOI [10]

modularity-clustering 6 34-115 34-115 2 full potts∗ - [17]

O
th

er

matching 4 ∼ 20 ∼20 2 full or sparse explicit MPE [51]
cell-tracking 1 41134 2 9 sparse explicit - [41]
protein-folding 21 33-1972 81-503 2 full explicit - [83, 23]
protein-prediction 8 14258-

14441
2 3 sparse explicit - [34, 23]

Table 1: List of datasets used in the benchmark. Listed properties are number of instances (#), variables and labels, the order and the
underlying structure. Furthermore, special properties of the functions are listed; truncated linear and squared (TL1/2), Potts function
with positive (potts+) and arbitrary (potts∗) coupling strength, its generalization to higher order (g-potts) and functions without special
properties (explicit). For some models we have an additional loss function commonly used for this application, namely: 2pixel-accuracy
(PA2), color-error (CE), pixel-accuracy (PA), variation of information (VOI), and geometric error (MPE). For the other models no
ground truth or loss function was available.

(a) Grid N4 (b) Grid N8 (c) Grid HO

Figure 2: Common pixel based models are grid structured with
respect to a four (a) or eight (b) neighborhood-structure. Some
models also use couplings to remoter variables. Also higher order
structures (c) have been successfully used for modeling.

Pixel based models that include higher-order terms are really
rare. The main reason for this is that pixel based models usu-
ally have a large number of variables, such that a systematical
enrichment of the model with higher-order terms often becomes
intractable. To cope with this, higher order models in computer
vision often include terms that can be reduced linearly to a second
order model by including a small number of auxiliary variables
and additional factors, e.g. labeling costs [22] and Pn-Potts [46]

terms. Our benchmark includes one model called inclusion that
has a fourth-order term (Fig. 2c) for each junction of four pixels
that penalizes a splitting of the boundary, as suggested in [39].

3.2 Superpixel-Based Models

In superpixel-based models, all pixels belonging to the same su-
perpixel are constrained to have the same label, as shown in Fig. 3.
This reduces the number of variables in the model and allows for
efficient inference even with more complex, higher order factors.
However, the grouping of pixels is an irreversible decision and it is
hard to treat grouped pixels differently later on.

The models we consider in this regime are used for semantic
image segmentation. The number of superpixels vary between
29 and 1133 between the instances. In the scene-decomposition-
dataset [30] every superpixel has to be assigned to one of 8 scene
classes. Pairwise factors between neighboring superpixels penal-
ize unlikely label-pairs. The datasets geo-surf-3 and geo-surf-
7 [26, 32] are similar but have additional third-order factors that
enforce consistency of labels for three vertically neighboring su-
perpixels.

4

(a) pixel based (b) superpixel based

Figure 3: While in pixel based models (a) each variable/node is
assigned to one pixel, in superpixel based models (b) each vari-
able/node is assigned to a set of pixels forming the superpixel. As
a consequence the number of variables becomes smaller and the
graph-structure is usually no longer regular.

3.3 Partition Models

Beyond classical superpixel models, this study also considers a re-
cent class of superpixel models which aim at partitioning an im-
age without any class-specific knowledge [43, 6, 9, 10]. These use
only similarity measures between neighbored regions encoded by
(generalized) Potts functions with positive and negative coupling
strength. Since the partition into isolated superpixels is a feasible
solution, the label space of each variable is equal to the number of
variables of the model, and therefore typically very large, cf. Tab. 1.
That is why many solvers switch to a binary edge-label problem to-
gether with huge system of constraints, cf. [39].

For unsupervised image segmentation we consider the proba-
bilistic image partition dataset image-seg [6], which contains fac-
tors between pairs of superpixels, and its extension image-seg-
o3 [6] that also uses a learned third-order prior on junctions. The
3D neuron segmentation model 3d-neuron-seg used in [35] are
replaced by 3 datasets knott-3d-seg-150, knott-3d-seg-300, and
knott-3d-seg-450 with 8 instances each. The number denotes the
edge length of the 3D volume. These datasets allow a better eval-
uation of the scalability of methods and are generated from sub-
volumes of the model described in [9, 10].

The hyper-graph image segmentation dataset correlation-
clustering [43] includes higher order terms that favor equal labels
for sets of superpixels in their scope if those are visually similar.
These sets are preselected and incorporate higher level proposals in
the objective. The partition models are completed by some network
clustering problems modularity-clustering [17] from outside the
computer vision community. Contrary to the previous ones, these
instances include a fully connected structure.

3.4 Other Models

We also consider computer vision applications that assign variables
to keypoints in the image-data.

The first model deals with the non-rigid point matching prob-
lem [51] matching. Given two sets of keypoints the task is to
match these such that the geometric relations are kept. The model
instances include no unary terms, whereas the pairwise terms pe-
nalize the geometric distortion between pairs of points in both
point-sets.

The second application is cell-tracking [41]. Variables corre-
spond to the assignments of cells in a video sequence, which need
to be consistent over time. Since a track can either be active or

dormant, the variables are binary. Higher-order factors are used to
model the likelihood of a “splitting” and “dying” event of a cell.

Finally, we include models from outside computer vision, taken
from the Probabilistic Inference Challenge (PIC) [23] into the cor-
pus. The protein-folding instances [83] have a moderate number
of variables, but are fully connected and have for some variables
huge label spaces. The protein-prediction instances [34] include
sparse third-order binary models. For both dataset we include only
the hardest instances, which were used also in [23].

4 Inference Methods
We evaluate a large number of different inference methods. The
selection of methods is representative of the state of the art in
the field. As shown in Fig. 4, we can cluster the methods into
four groups: (i) global optimal methods that provide optimal so-
lution if no time- and memory-constraints are given, (ii) methods
solving linear programming relaxations, providing a lower bound,
(iii) move-making methods that iteratively improve a feasible la-
beling, and (iv) message passing methods that perform local calcu-
lations between nodes. Furthermore, subsets of methods leverage
max-flow problems or dual representations; we call these meth-
ods max-flow- and DD-based methods, respectively. In this study
we do not consider inference algorithms based on Monte Carlo
simulation; only in one data set (dtf-chinesechar) we report results
obtained from simulated annealing. In general these methods con-
verge slowly and may not be practical for most computer vision
applications. In addition they often require careful tuning of pa-
rameters such as the temperature schedule. As Monte Carlo meth-
ods are not very popular in computer vision, we are not able to give
a fair comparison and skip them in our current study. We now give
a brief overview of the considered methods.

4.1 Polyhedral Methods
A large class of algorithms solves a linear programming relaxation
(LP) of the discrete energy minimization problem. An advantage
of these methods is that they also provide a lower bound for the
optimum, but on the other hand can converge to non-integer solu-
tions, which need to be rounded to an integer solution.

Perhaps the most commonly used relaxation is the LP relax-
ation over the local polytope [79, 74, 80]. We can solve small in-
stances using off-the-shelf LP-solvers e.g. CPLEX [21] as used in
LP-LP [4]. For large problems this is no longer possible and spe-
cial solvers have been proposed that optimize a dual formulation
of the problem. A famous example is the block-coordinate-ascent
method TRWS [48], which, however, can get stuck in suboptimal
fix points.

In contrast, subgradient methods [52, 37] based on dual decom-
position (DD) [52, 31] with adaptive stepsize DD-SG-A and bun-
dle methods [37] with adaptive DD-Bundle-A or heuristic DD-
Bundle-H stepsize are guaranteed to converge to the optimum of
the relaxed dual2. In both cases primal integer solutions are recon-
structed from the subgradients. As dual decomposition methods
can be sensitive to the stepsize, we evaluate different stepsize-rules.
While a more detailed evaluation is beyond the scope of this work,
we consider beside our base line stepsize-rule also stepsizes scaled
by 10 and 10−1, denoted with postfix + and −, respectively.

Other methods based on dual decomposition are Alternating Di-
rections Dual Decomposition AD3 [58], the Adaptive Diminishing

2Here we consider spanning trees as subproblems such that the relaxation is
equivalent to the local polytope relaxation.

5

Max-Flow
Based Methods

DD Based
Methods

Global Opti-
mal Methods

CombiLP

AD3-BB

ILP

MCI

MCBC

AStar

BRAOBB

Linear Program-
ming Relaxations

DD-Bundle

DD-SG

TRWS

QPBO

MCR

LP-LP

AD3

MPLP

ADSAL

Message Passing

LBP

BPS

TRBP

Move Mak-
ing Methods

Kerninghan
Lin FastPD

α-Exp

αβ -Swap

α-Exp-QPBO

LSA-TR

Lazy Flipper

ICM

Figure 4: The inference methods used in this benchmark can be roughly grouped into four classes. These are (1) methods based
on linear programming, (2) methods providing global optimal solutions, which are often strongly related to linear programming, (3)
methods based on move-making procedures which iteratively improves the labeling, and (4) methods based on message passing – often
motivated by linear programming and variational optimization. Some methods make use of max-flow methods for fast optimization of
binary (sub-)problems or based on the dual decomposition framework, which is also sketched in the diagram. A fifth class of methods
are methods based on sampling, which are not covered in this study since they are rarely used in computer vision. For hard models
they might perform reasonable, with a certain amount of tuning of involved hyper-parameters and sampling procedures, as shown for
the dtf-chinesechar model.
For some of the inference algorithms we use different implementations. Even when algorithmically identical, they often vary in speed
because of implementation differences and specialized algorithms. We always try to use the fastest one and use the prefix ogm- and mrf-
to state that the used implementation was [4] or [76], respectively. For other methods the core of the implementation has been provided
by the original authors of the methods and we wrapped them within OpenGM 2.

6

Smoothing ALgorithm ADSAL [73], which smooth the dual prob-
lem to avoid local suboptimal fix-points, and Max-Product Linear
Programming MPLP [27]. For MPLP an extension MPLP-C [75]
exists that iteratively adds violated constraints over cycles of length
3 and 4 to the problem. This leads to a tighter relaxations than the
local polytope relaxation.

Algorithm 3 Dual-Decomposition

1: Decompose problem: J(x|θ) = ∑i Ji(xi|θ i) s.t.xi ≡ x
2: repeat
3: Solve subproblems: ∀i : xi∗ = argminxi Ji(xi|θ i +λ i)
4: Update dual variables: ∀i : λ i = λ i +ξ i(x1∗, . . . ,xn∗)
5: Ensure by projection that: ∑i λ i ≡ 0
6: until Stopping condition is fulfilled

The idea of most dual methods is sketched in Alg. 3. Starting
with a decomposition of the original into several tractable sub-
problems, the equality constraints xi ≡ x are dualized by means
of Lagrange multipliers. The subgradients, which can be obtained
by solving the subproblems, are used to update the dual variables
λ . If the update has moved λ to a point outside the feasible set
an additional projection onto the feasible set is required. This step
can also be understood as a re-parameterization of the problem,
with the goal that the subproblems will agree in their solutions,
i.e. xi ≡ xj. The different dual methods distinguish mainly in the
choice of decomposition (Alg. 3 line 1) and the used update strat-
egy ξ i for dual variables (Alg. 3 line 4).

For binary second order problems the QPBO method [68] can
be used to find the solution of the local polytope relaxation in low
order polynomial time. It reformulates the LP as a network flow
problem, which is then solved efficiently. For Potts models we
also compare to a cutting-plane algorithm, MCR [38], that deals
with a polynomially tractable relaxation of the multiway cut poly-
tope and the multicut polytope. For Potts models the former poly-
tope is equivalent to the local polytope relaxation [63, 59, 39]. We
compare different types of relaxations and separation procedures
as described in [39]3.

4.2 Global Optimal Methods
Integer Linear Programs (ILPs) are related to polyhedral methods.
These include additional integer constraints and guarantee global
optimality, contrary to the methods based on LP-relaxations which
may achieve optimality in some cases only. Solutions of ILPs are
found by solving a sequence of LPs and either adding additional
constraints to the polytope (cutting plane techniques) as sketched in
Alg. 4, or branching the polytope or discrete candidate-set into sev-
eral polytopes or candidate-sets (Branch and Bound techniques),
sketched in Alg. 5. Inside Branch and Bound methods the cutting
plane methods can be applied to get better bounds which allow to
exclude subtrees of the branch-tree earlier.

Algorithm 4 Cutting-Plane
1: Initial Relaxation: minµ∈P〈θ ,µ〉
2: repeat
3: Solve current relaxation: µ∗ = argminµ∈P〈θ ,µ〉
4: Add constraints violated by µ∗ to P
5: until No violated constraints found

3This includes terminal constraints TC, multi-terminal constraints MTC, cycle
inequalities CC and facet defining cycle inequalities CCFDB as well as odd-wheel
constraints OWC.

Algorithm 5 Branch and Bound
1: Initial Problem: minx∈X J(x), S = {X}
2: repeat
3: Select branch node: X̃ with X̃ ∈ S
4: Split selected node: X̃1, . . . , X̃n with X̃ = X̃1∪ . . .∪ X̃n

5: Branch: S = (S\ X̃) ∪ X̃1∪ . . .∪ X̃n

6: Bound: ∀i = 1, . . . ,n : BX̃ i ≤minx∈X̃ i J(x)
7: Solution (if possible): ∀i = 1, . . . ,n : V X̃ i

= minx∈X̃ i J(x)
8: until ∃s ∈ S : V s ≤mins∈S Bs

We evaluate four state-of-the-art general combinatorial solvers.
We wrapped the off-the-shelf ILP solver from IBM CPLEX [21]
by OpenGM 2 [4] and denoted by ILP. For the best performing
method in the PIC 2011, called breadth-rotating and/or branch-
and-bound [64] (BRAOBB), we observed for several instances that
the optimality certificate, returned by the algorithm, was not cor-
rect. We reported that to the authors, who confirmed our observa-
tions; we chose to not report the invalid bounds returned by BR-
AOBB. We evaluate three variants: BRAOBB-1 uses simple and
fast preprocessing, BRAOBB-2 uses stochastic local search [33]
to quickly find a initial solution, and BRAOBB-3 is given more
memory and running time to analyse the instances during pre-
processing. Bergtholdt et al. [12] suggested a tree-based bound-
ing heuristic for use within A-star search [12]; we call this method
A-Star. This Branch & Bound method does not scale to large prob-
lems. The same is true for the Branch & Bound extension of AD3,
which uses upper and lower bounds of AD3 for bounding; we de-
note this extended method by AD3-BB [58].

The recently proposed CombiLP solver [70] utilizes the obser-
vation that the relaxed LP solution is integral almost everywhere in
many practical computer vision problems. It confines application
of a combinatorial solver to the typically small part of the graphi-
cal model corresponding to the non-integer coordinates of the LP
solution. If consistence between the LP and ILP solution cannot be
verified the non-integral subparts grow and the procedure repeats.
This allows to solve many big problems exactly. If the combinato-
rial subproblem becomes too large, we return bounds obtained by
the LP solver.

To reduce the large memory requirements, we also consider the
integer multicut-representation introduced by Kappes et al. [38].
This multicut solver with integer constraints (MCI) can only be
applied for functions which include terms that are either invariant
under label permutations or of the first-order. As for MCR similar
separation-procedures are available. Additionally, we can take ad-
vantage from integer solutions and use more efficient shortest-path
methods, noted by an I within the separation acronym.

We also consider a max-cut branch and cut solver MCBC
[14, 40] for pairwise binary problems, which could not be made
publicly available due to license restrictions.

4.3 Message-Passing Methods
Message passing methods are simple to implement and can be par-
allelized easily, making them a popular choice in practice. The
basic idea is sketched in Alg. 6. In the simplest case messages
are defined on the edges of the factor graph, better approximations
can be obtained by using messages between regions. Messages can
be understood as a re-parameterization of the model, such that lo-
cal optimization becomes globally consistent. Polyhedral methods
can often be reformulated as message passing where the messages
represent the re-parameterization of the models, as in TRWS and
MPLP. Its non-sequential pendant TRBP [79] is written as a mes-

7

Algorithm 6 Message Passing
1: Setup: ∀e ∈ E : initialize a message for each direction.
2: repeat
3: Update: ∀e ∈ E : update the message given the other mes-

sages.
4: until no significant change of messages
5: Decoding: Re-parameterize the original problem by the mes-

sages and decode the state locally or greedy.

sage passing algorithm. TRBP can be applied to higher order mod-
els but has no convergence guarantees. Practically it works well if
sufficient message damping [79] is used. Maybe the most popu-
lar message passing algorithm is loopy belief propagation (LBP).
While LBP converges to the global optimum for acyclic models, it
is only a heuristic for general graphs, which turns out to perform
reasonably well in practice [84]. We evaluate the parallel (LBP)
and sequential (BPS) versions from [76], as well the general higher
order implementation using parallel updates from [4]. For non-
sequential methods we use message damping.

Another advantage of message passing methods is that they can
be parallelized easily and speeded up further for the calculation
of the message updates in special cases, e.g. when distance trans-
form [24] is available.

4.4 Move-Making Methods
Another class of common greedy methods applies a sequence of
minimizations over subsets of the label space, iteratively improving
the current labeling. The corresponding subproblems have to be
tractable and the current label has to be included into the label-
subset over which the optimization is performed, cf. Alg. 7.

Algorithm 7 Move Making Methods
1: Setup: Select an initial labeling x∗ ∈ X
2: repeat
3: Select Move: X̃ ⊂ X s.t. x∗ ∈ X̃
4: Move/Update: x∗ = argminx∈X̃ E(x)
5: until No more progress is possible

The α-β -Swap-Algorithm [16, 50] (α-β -Swap) selects two la-
bels, α and β , and considers moves such that all variables currently
labelled α or β are allowed to either remain with their current la-
bel or change it to the other possible label within the set {α,β}. In
each round all possible pairs of labels are processed. For each la-
bel pair the corresponding auxiliary problems are binary and under
some technical conditions submodular, hence they can be solved
efficiently by max-flow algorithms, see [78] for a recent review.

Alternatively, the same authors [16, 50] suggested the α-Expan-
sion algorithm (α-Exp). This move making algorithm selects a
label α and considers moves which allows all variables to either
remain with their current label or to change their label to α . In
each round α is sequentially assigned to all possible labels. As for
α-β -Swap the auxiliary problem in 7 line 3 can be reduced to a
max-flow problem under some technical conditions.

Because α-Expansion and αβ -swap require submodular sub-
problems [16, 50], which cannot be guaranteed for all benchmark
problems, several extensions have been proposed in the literature.
Boykov et al. [16] and Rother et al. [69] suggest to use submodu-
lar approximations of the move energy function that still guarantee
to not increase the original energy of the labeling in each move.
The "truncation" trick of Rother et al. [69] is used in the MRF-
library [76] - in our study denoted by mrf-α-Exp-trunc and mrf-

αβ -Swap-trunc - in order to make α-expansion and αβ -swap ap-
plicable to more models.

Alternatively one may apply other solvers to the non-
submodular subproblems. The solvers need not be optimal but
have to guarantee to not increase the energy of the labelling [36].
As suggested in [82, 57, 25] we use QPBO to solve the subprob-
lems. In order to deal with higher-order models we apply the re-
duction techniques of Fix et al. [25] to the auxiliary problems. We
name this method α-Expansion-QPBO (α-Exp-QPBO) to indi-
cate that we use QPBO as sub-solver. However, it is worth to note
that neither the truncated nor the QPBO version can guarantee that
the best possible move is performed in each step.

Furthermore, other proposal-oracles, e.g. "non-constant", may
perform better for some models, but finding such cases depends on
the application and hence is beyond the scope of this work. We
refer to [57, 36] for a more detailed discussion.

The FastPD algorithm [53] is similar to α-Expansion in the way
moves are selected and evaluated. Additionally, the dual solution
of the max-flow solver is used to re-parameterize the objective
function. This leads to significant speed up and allows as a by-
product to calculate a lower bound by using the re-parameterized
objective. However, FastPD might get stuck in suboptimal fix-
points and will not reach the optimal dual objective.

While these three methods are based on solvable max-flow sub-
problems, there are other algorithms which perform local moves.
The most prominent algorithm in this line is the iterated conditional
modes algorithm [13] (ICM), which iteratively improves the label-
ing of a single variable by keeping the other fixed. Andres et al. [7]
extended this idea to an exhaustive search over all sets of variables
of a given size k. While this would be intractable in a naive im-
plementation, they introduced several data-structures to keep track
of the changes and ended up with the Lazy Flipper. As with ICM
this method also guarantees to converge to a local fix-point that can
only be improved by changing more than 1 or k variables for ICM
and Lazy Flipper, respectively.

For second order binary models Gorelick et al. recently sug-
gested a method based on local submodular approximations with
trust region terms [29] called LSA-TR. This method iteratively ap-
proximated the non submodular part of the objective by a linear ap-
proximation around the current labeling. For the trust region term
we evaluate Euclidean and Hamming distance as suggested in [29].

Another method specialized for partition problems is the
Kernighan-Lin algorithm [42] (KL), which iteratively merges and
splits regions in order to improve the energy.

4.5 Rounding

Linear programming relaxations and message passing methods
typically do not provide a feasible integer solution. They pro-
vide either a fractional indicator vector or pseudo-min-marginals.
The procedure to transform those into a feasible integer solution is
called rounding. The final quality of the integer solution does also
depend on the used rounding procedure. The simplest rounding
procedure is to round per variable based on the first order (pseudo)
min-marginal given by bv(xv)∼= minx′∈X ,x′a=xa J(x)

x∗v = argminxv∈Xv
bv(xv) ∀v ∈V (2)

While this is simple and can be performed efficiently it is very
brittle and might fail even for tree-structured models by mixing
two modes. Ideally, decisions should not be made independently
for each variable. One popular option is to condition eq. (2) on al-
ready rounded variables. This can be done on the re-parameterized

8

Method Abbreviation Restrictions on Comment Reference

Topology Functions and Labels

Kernighan Lin ogm-KL - Potts, |L|= |V | [42]
Fast Primal Dual FastPD - 2nd order implementation has further restrictions [53]
α-Expansion α-Exp - 2nd order, subm. moves [16]
∗ mrf-α-Exp-trunc grid 2nd order [76]
∗ α-Exp-QPBO - 2nd order [36]
αβ -Swap αβ -Swap - 2nd order, subm. moves [16]
∗ mrf-αβ -Swap-trunc grid 2nd order [76]
Lazy Flipper ogm-LF - - [10]
Iterated Conditional Modes ogm-ICM - - [13]
Local Submodular Approximation ogm-LSA-TR - 2nd order , |L|= 2 using Trust Region [29]

Tree Reweighted Belief Propagation ogm-TRBP - - [79]
Sequential Belief Propagation BPS 2nd order [66]
∗ mrf-BPS grid 2nd order [76]
∗ ogm-BPS - - [48]
Loopy Belief Propagation ogm-LBP - - [66]
∗ mrf-LBP grid 2nd order [76]

Dual Decomposition ogm-DD-BUNDLE-H - - tree-decomposition, heuristic stepsize [37]
∗ ogm-DD-BUNDLE-A - - tree-decomposition, adaptive stepsize [37]
∗ ogm-DD-SG-A - - tree-decomposition, adaptive stepsize [52, 37]
Tree Reweighted Message Passing TRWS - 2nd order [48]
∗ mrf-TRWS grid 2nd order [76]
Quadratic Pseudo Boolean Optimization QPBO - 2nd order , |L|= 2 [68]
Relaxed Multicut ogm-MCR-[workflow] - gen. Potts , |L|= |V [39]
Relaxed Multiwaycut ogm-MCR-[workflow] - 1st order and gen. Potts [39]
Linear Program over Local Polytope ogm-LP-LP - - holds exhaustive model copy
Alternating Directions Dual Decomposition AD3 - - holds exhaustive model copy [58]
Max-Product Linear Programming MPLP - - holds exhaustive model copy [27]
Max-Product Linear Programming with cycle constraints MPLP-C - - holds exhaustive model copy [27]
Adaptive Diminishing Smoothing Algorithm ogm-ADSAL - 2nd order [73]

CombiLP ogm-CombiLP - - implementation supports only 2nd order [70]
A∗ ogm-A-Star - - [12]
Integer Linear Program ogm-ILP - - holds exhaustive model copy
Integer Multicut ogm-MCI-[workflow] - gen. Potts , |L|= |V | [39]
Integer Multiway Cut ogm-MCI-[workflow] - 1st order and gen. Potts [39]
Alternating Directions Dual Decomposition with B&B AD3-BB - - [58]
MaxCut Branch & Cut MCBC - 2nd order , |L|= 2 code not public available [14, 40]
Breadth Rotating And Or B&B BRAOBB - - holds exhaustive model copy, unfixed bug [64]

pre-/postfix Meaning Reference

-VIEW inject OpenGM as data-structure into external code [76]
-TABLE uses tables (flat memory) as data-structure in external code [76]
-TL1 uses truncated linear label distance as data-structure in external code [76]
-TL2 uses truncated squared label distance as data-structure in external code [76]
-[workflow] workflow for seperation used for multicut algorithms [39]
ogm- uses OpenGM data-structures which allows the use of different and specialized functions [5]
mrf- uses MRF-Lib-data-structures which are optimized for second order grid models [76]

-pct use partial optimality and tentacle elimination to reduce problem size, each connected component is then solved independently [40]
-LF[K] use lazy flipping with maximal search depth K for post-processing [10]

Table 2: List of methods used in this study. For some methods we have different implementations, which than have different abbrevi-
ations. Furthermore the table shows restrictions of the methods and implementations, respectively, as well as additional comments and
corresponding references. The four groups are move-making methods, message passing methods, methods based on linear programming
relaxations and finally methods that guarantees global optimal solutions when no time and memory restrictions are given.
Furthermore, some pre- and postfixes indicate the used data-structures, seperation procedures or some pre- and post-processing-method
which can be used together with several other methods.

9

objective [48] or on the marginals by

x∗v = argminxv∈Xv
bv(xv)+ ∑

f∈ne(v)
ne(f)\{v} are fixed

b f (xv,x∗ne(f)\v) ∀v ∈V (3)

Both methods are not guaranteed to do an optimal rounding on
a cyclic graph, but at least try to track modes. Similar rounding
schemes can be applied for indicator functions, too.

In some special cases rounding methods exists that can guar-
antee a k-approximation error, i.e. the energy of rounded solution
is less than a factor k-times larger than the relaxed one. A well
known class of such models, are models with metric regulariz-
ers [18, 45, 19]. For the relaxed multiway cut solver MCR we use
such a de-randomized rounding procedure [18, 39]. For methods
based on dual decomposition such rounding methods are not feasi-
ble directly, because dual methods do not provide a feasible primal
solution of the LP relaxation which is essential for these rounding
procedures.

However, since the rounding problem can be as hard as the origi-
nal problem, which is NP-hard, there will always be cases in which
one rounding method performs worse than another. It is impor-
tant to understand that when we compare the objective value of the
rounded integer solution of a method we implicitly also evaluate
the rounding method used.

4.6 Post- and Pre-Processing
By combining mentioned solvers or augmenting them with other
procedures, the further “meta-solvers” can be generated. The
CombiLP is one example for this. It combines TRWS with ILP.

Alahari et al. [2] suggested a pre-processing procedure that first
computes the optimal states for a subset of variables in polyno-
mial time and then continues with the remaining smaller problem
with more involved solvers. In [2] this was proposed in order to
improve the runtime, and [40] showed that using this preprocess-
ing can make combinatorial methods as efficient as approximate
methods. In [40] the authors also suggest to treat acyclic substruc-
tures and connected components separately. We combine different
methods with this preprocessing denoted by the postfix -ptc. For
Potts models we make use of Kovtun’s method [54] to efficiently
obtain partially optimal solutions.

An alternative approach to reduce the problem size is to group
variables based on the energy function [44]. However, this has two
major drawbacks; first it is not invariant to model reparameteriza-
tions, and second the reduced problem is an approximation of the
original problem.

Another meta-solver we considered is InfAndFlip, which first
runs a solver to obtain a good starting point for the Lazy Flipper.
Lazy Flipping never degrades the energy, but relies heavily on its
initialization. We denote lazy flipping post-processing by -LFk,
where k specifies the search depth.

4.7 Comparability of Algorithms and their Imple-
mentations

When we compare algorithms empirically, we really compare spe-
cific implementations of said algorithms, which are affected by
domain-specific implementation choices. It is important to keep
in mind that a general implementation will usually be much slower
than a specialized one. The reason is that specialized efficient data
structures can be used, more efficient calculations for subproblems
become feasible, interfaces can be simplified, compiler optimiza-
tion (e.g. loop unrolling) becomes applicable and many more or
less obvious side-effects can show up.

mrf-TRWS TRWS ogm-TRWS

Potts 0.04 sec. 0.09 sec. 0.18 sec.
General 0.13 sec. 0.21 sec. 1.51 sec.

Table 3: Runtime (in seconds) for a single iteration for six different
implementations of TRWS for the same instance. Using distance
transform for Potts models always leads to a speed up compared
to standard updates. The mrf-TRWS which is specialized for grids
is fastest, followed by the original implementation TRWS which
requires the same regularizer type everywhere, and ogm-TRWS
which only restricts the model to be of second order.

Our study includes implementations that follow two different
paradigms; very fast, specialized but less flexible code, e.g. TRWS
and BPS of Vladimir Kolmogorov or FastPD of Nikos Komodakis,
and very general and flexible but less fast code, e.g. the OpenGM 2
implementations of Dual Decomposition or LBP.

While both paradigms have merit, it becomes challenging to
quantify their relative performance in a fair manner. Due to the al-
gorithmic complexity we expect that for some methods a speedup
of a factor of ≈ 100 for specialized implementations may be pos-
sible.

Specialized solvers are very fast for problem classes they sup-
port and were designed for, but often are not easily generalized
to other classes and at that point restrict the degrees of freedom
of modeling. On the other hand more general solvers are able to
solve a large class of models, but are often orders of magnitudes
slower. Specifically, some solvers are specialized implementations
for a certain class of problems (e.g. grids with Potts functions),
while others make no assumptions about the problem and tackle
the general case (i.e. arbitrary functions and order).

As one of several possible examples Tab. 3 shows six differ-
ent implementations of TRWS. The original TRWS implementa-
tion for general graphs (TRWS) and grid graphs (mrf-TRWS) by
Vladimir Kolmogorov and the TRWS implementation provided in
OpenGM 2 (ogm-TRWS). Each is implemented for general func-
tions and for Potts functions using distance transform [24].

4.8 Algorithmic Scheduling

A number of algorithms depend on an explicit or implicit ordering
of factors, messages, labels, etc. While the detailed evaluation of
such implementation details or implicit parameters is beyond the
scope of this work, we describe the choices in our implementations
and possible alternatives for the sake of completeness.

For α-Expansion and αβ -Swap we choose the default order of
the moves. Recently, Batra and Kohli [11] have shown, that an
optimized ordering can often improve the results. However, there
are no theoretical guarantees that this algorithm will produce an
ordering strictly better than the default one. Similarly, the order
of moves has a strong impact on the quality of solutions and run-
time in the case of other move-making algorithms such as ICM and
Lazy-Flipper.

Sequential message passing methods depend on the ordering of
the messages. This ordering can be predefined or selected dynam-
ically during optimization, as suggested by Tarlow et al. [77]. Par-
allel message passing methods do not require an ordering, but typ-
ically underperform compared to asynchronous algorithms and of-
ten require damping to achieve convergence. While empirically se-
quential methods perform often better, they cannot be parallelized
that easy.

10

optrel

optint

Current Duality Gap

Current Integrality Gap

Integrality Gap

Lower Bound

Relaxed Solution (Primal)

Integer Solution (Primal)

time

en
er

gy

Figure 5: Illustration of temporal changes of the objectives within
linear programming frameworks. LP solves either the relaxed
problem (blue) or its dual problem (red). Under mild technical
condition their optimal value is identical, i.e. the duality gap van-
ishes. Extracting a primal solution from a dual is non-trivial and
typically the solution is non-integral. Rounding to a feasible inte-
ger solution causes an additional integrality gap.

For methods using cutting plane techniques and branch and
bound, the cutting plane management/scheduling [81] and branch-
ing strategy [1] define an additional degree of freedom, respec-
tively. We always use the default option of the methods which
provide in average good choices.

4.9 Stopping Condition
Another critical point which has to be taken into account is the
stopping condition used. Not all methods have a unique stopping
condition. For example move making methods stop if no move
from the considered set of moves gives an improvement. This is
practical only if the set of possible moves is manageable, for ex-
ample if it can be optimized over exactly.

In order to deal with the accuracy of floating-point arith-
metic [28], linear programming approaches often solve the prob-
lem up to a certain precision, here set to 10−7. Solving the LP to
a higher precision requires more runtime, but may not improve (or
even change) the final integer solution since LPs typically involve
a rounding procedure.

For LP solvers that work on the dual problem like TRWS or
MPLP it is non-trivial to evaluate the duality gap. To overcome this
problem Savchynskyy and Schmidt [71, 72] proposed a method to
generate feasible primal estimates from duals and so get an esti-
mate on the primal-dual-gap.

Unfortunately, in theory even small changes in the primal or
dual solution can have large impact on the rounded integer solu-
tion. Moreover, the method of Savchynskyy and Schmidt is not
available for all algorithms so far, so we use the total gap (current
integrality + duality gap) as our stopping condition, cf. Fig. 5.

Another option is to check if the changes made by the method
are numerically relevant. If for example the largest change of a
message of LBP is smaller than 10−5 it is more likely to run into
numerical problems than to make further improvements. The same
holds true if the improvements of the dual within TRWS become
too small.

We will use the following additional stopping conditions for all
algorithms: (1) A method is stopped after 1 hour. (2) A method
is stopped if the gap between the energy of the current integer so-
lution and the lower bound is smaller than 10−5. (3) A method
is stopped if the numerical changes within its data is smaller than
10−7.

With this additional stopping condition, we obtain better numer-

ical runtimes for some methods, e.g. TRWS and LBP, as reported
in [35] without worsening the other results. Such methods suffer
when a large number of iterations is used as the only stopping-
condition.

5 Experimental Setup
The hardware platform for this study is the Intel Core i5-4570 CPU
with 3.20 GHz, equipped with 32 GB of RAM4. In order to min-
imize the effect of operating system activity on runtime measure-
ments, experiments were conducted on only three of the four cores
of a CPU. No multi-threading and no hyper-threading was used.
An evaluation of the parallelizability of optimization algorithms or
the runtime of parallel implementations is beyond the scope of this
study.

The software platform for this study is Version 2.3.3 of the C++
template library OpenGM [5, 4]. Compiling was done with GCC
4.8.2 and O3 options. The operating system was Ubuntu 14.04.
OpenGM imposes no restrictions on the graph or functions of a
graphical model and provides state-of-the-art optimization algo-
rithms, custom implementations as well as wrappers around pub-
licly available code. In the tables below, prefixes indicate the origin
of each particular implementation, ogm [4] and mrf [76]. The lack
of a prefix indicates that code was provided by the correspond-
ing author and wrapped for use in OpenGM. All graphical models
considered in this study are available from [5] in the OpenGM file
format, a platform independent binary file format built on top of
the scientific computing standard HDF5.

To make runtime measurements comparable, we exclude from
these measurements the time for copying a graphical model from
the OpenGM data structure into a data structures used in wrapped
code, the time spent on memory allocation in the initialization
phase of algorithms, as well as the overhead we introduce in order
to keep track, during optimization, of the current best integer solu-
tion and, where available, the current best lower bound. To keep
resources in check, every algorithm was stopped after one hour if
it had not converged.

Obviously, not every implementation of every algorithm is ap-
plicable to all graphical models. We made our best effort to apply
as many algorithms as possible to every model. As a consequence
of this effort, the study compares implementations of algorithms
which are highly optimized for and restricted to certain classes of
graphical models with less optimized research code applicable to a
wide range of graphical models. As discussed in Section 4.7, this
aspect needs to be taken into account when comparing runtimes.

6 Evaluation
This section summarizes the experimental results. More detailed
evaluation in different forms can be found in the supplementary
material and on the project website [5]. For selected graphical
models and instances, proper numbers are reported in Tables 4–24.

All tables in this section as well as all tables online show the
runtime, the objective value of the final integer solution as well as
the lower bound, averaged over all instances of a particular model.
Note that bad results of a method on a single instance can have
large impact on the mean measurements, even when the method
performs well on all other instances. That is why we report, in ad-
dition, the number of instances for which an algorithm returned the

4Due to the increased workload compared to the experiments in [35], we switch
to a homogeneous cluster and no longer use the Intel Xeon W3550 3.07GHz CPU
equipped with 12 GB RAM.

11

inpainting-n4inpainting-n8

color-seg-n4color-seg-n8

color-seg

object-seg

mrf-photomontage

mrf-stereo

mrf-inpainting

dtf-chinesechar

brain-9mm
brain-5mm
brain-3mm

inclusion scene-decomp
geo-surf-3

geo-surf-7

matching

cell-tracking

protein-folding

protein-prediction
image-segimage-seg-3rdorder

corr-clustering

modularity-clustering

knott-3d-150

knott-3d-300

knott-3d-450

Pixel-based Models Others Superpixel-based Models

Unsupervised Segmentation

Higher Order Models

“p
ro

bl
em

siz
e”

(l
og

10
(|V
|·
|X

a|
))

all instances solved to optimality

some instances solved to optimality

no instance solved to optimality

Figure 6: List of models used in the benchmark. The x-axis groups the model into specific classes and the y-axis reflects the size of the
models. Datasets for which we can calculate the optimal solution within 1 hour for each instances are marked green, for which some
solved to optimality within 1 hour in yellow, and those which are unsolved within 1 hour so far red. If we gave combinatorial methods
more time for optimization, say 10 hours, we would be able to solve some more models to optimality [70]. We were able to find better
solutions than reported in [76] for the models there considered, even we were not able to solve a single instance in mrf-photomontage or
mrf-inpainting within 1 hour. Non surprisingly, larger models are usually harder than smaller ones. If special properties can be used, as
for Potts models, solvers scale better. Also small models can be hard if large interactions exist, as for dtf-chinesechar. While our study
gives some indications how the "hardness" of an instance could be estimated, a principle measure is so far not known.

best (not necessary optimal) integer solution among all algorithms
and the number of instances for which the algorithm verified opti-
mality by its own, denoted by opt. As we deal with floating-point
numbers and terminate algorithms if the gap between the current
best integer solution and the lower bound is less than 10−5, we need
to take the precision of floating-point operations into account. An
output is taken to be the best and verified optimal if the difference
is less than 10−5 in terms of its absolute value or less than 10−8 in
terms of its relative value.

For the first time and contrary to [35] we also measure the mem-
ory requirements. The tables in this paper show the maximal mem-
ory requirements by a method for all instances of a model given
in GB, denoted by mem. Memory requirements per instance are
shown online and in the supplementary material.

For some models, we are able to evaluate the output also with
respect to an application specific measurement, cf. Tab. 1. This
addresses the question whether the absolute differences between
algorithms are relevant for a particular application.

6.1 Pixel/Voxel-Based Models

Stereo Matching (mrf-stereo). We now consider three instances
of a graphical model for the stereo matching problem in vision. Re-
sults are shown in Tab. 4. It can be seen from these results that two
instances were solved to optimality. Only for the instance teddy in
which variables have 60 labels, no integer solution could be veri-
fied as optimal. For the two instances for which optimal solutions
were obtained, suboptimal approximations that were obtained sig-
nificantly faster are not significantly worse in terms of the two pixel

accuracy (PA2), i.e. the number of pixels whose disparity error is
less than or equal to two. On average, the solution obtained by
BPS is 2% better in terms of the two-pixel accuracy (PA2) than
solutions with smaller objective value.

algorithm runtime value bound mem best opt PA2

FastPD 3.11 sec 1614255.00 301059.33 2.55 0 0 0.6828
mrf-α-Exp-trunc 11.36 sec 1615349.00 −∞ 0.26 0 0 0.6835
mrf-αβ -Swap-trunc 13.12 sec 1927265.67 −∞ 0.26 0 0 0.6781
ogm-FastPD-LF2 156.87 sec 1611484.33 −33495282.00 2.70 0 0 0.6828
ogm-TRWS-LF2 365.90 sec 1587043.67 1584746.53 0.59 0 0 0.6803

mrf-LBP-TL 242.10 sec 1633343.00 −∞ 0.45 0 0 0.6804
mrf-BPS-TL 224.42 sec 1738696.00 −∞ 0.56 0 0 0.7051

mrf-TRWS-TAB 1518.01 sec 1587932.00 1584745.90 19.62 0 0 0.6803
mrf-TRWS-TL 216.41 sec 1587928.67 1584746.53 0.56 0 0 0.6803
ogm-ADSAL 3163.13 sec 1589318.00 1584664.58 0.98 1 1 0.6814
ogm-BUNDLE-H 2152.15 sec 1645250.33 1584466.49 1.94 1 0 0.6802

ogm-CombiLP 835.92 sec 1587560.67 1584724.04 7.17 2 2 0.6809

Table 4: mrf-stereo (3 instances): On average, TRWS-LF2 and
CombiLP afford the best solutions. FastPD is the fastest algorithm.
Solutions obtained by BPS are better in terms of the two-pixel ac-
curacy (PA2) than solutions with lower objective value. Storing
the functions of a graphical model explicitly, as value tables, in-
stead of as implicit functions, slows algorithms down, as can be
seen for TRWS.

Inpainting (mrf-inpainting). We now consider two instances of
a graphical model for image inpainting. In these instances, every
variable can attain 256 labels. Thus, efficient implementation is
essential and only some implementations of approximative algo-
rithms could be applied. Results are shown in Tab. 5 and Fig. 7.

12

(a) image (b) input (c) TRWS (d) FastPD (e) α-Exp

Figure 7: mrf-inpainting: Depicted above is one example of image
inpainting. From the original image (a), a box is removed and
noise is added to the remaining part (b). The result of inpainting
and denoising by means of TRWS (c) is better than that of FastPD
(d) and α-expansion (e) which show artifacts.

It can be seen from these results that TRWS outperforms move
making methods. The best result is obtained by taking the solu-
tion provided by TRWS as the starting point for a local search by
lazy flipping. While FastPD and α-expansion converge faster than
TRWS, their solution is significantly worse in terms of the objec-
tive value and also in terms of the mean color error (CE).

algorithm runtime value bound mem best opt CE

FastPD 7.72 sec 32939430.00 0.00 4.10 0 0 14.70
mrf-α-Exp-trunc 42.07 sec 27266168.50 −∞ 0.30 0 0 11.57
mrf-αβ -Swap-trunc 92.06 sec 27055552.00 −∞ 0.33 0 0 11.60
ogm-FastPD-LF1 174.04 sec 27509437.00 −891985522.00 4.14 0 0 13.07
ogm-TRWS-LF1 679.63 sec 26464015.00 26462450.59 0.99 0 0 10.99
ogm-TRWS-LF2 2404.03 sec 26463829.00 26462450.59 1.01 1 0 10.99

mrf-LBP-TL 573.91 sec 26597364.50 −∞ 0.63 0 0 10.59
mrf-BPS-TL 593.35 sec 26612532.50 −∞ 0.82 0 0 12.01

mrf-TRWS-TL 563.15 sec 26464865.00 26462450.59 0.82 0 0 10.99
ogm-ADSAL 3892.14 sec 26487768.50 26445564.61 2.46 0 0 10.96

ogm-CombiLP 48723.23 sec 26467926.00 26461874.39 2.09 1 0 10.99

Table 5: mrf-inpainting (2 instances): The best results are obtained
by TRWS-LF2. α-Expansion is a faster but worse alternative. The
smallest color error (CE) was obtained by BPS.

Photomontage (mrf-photomontage). We now consider two in-
stances of graphical models for photomontage. Results are shown
in Tab. 6. It can be seen from these results that move making algo-
rithms outperform algorithms based on linear programming relax-
ations. This observation is explained by the fact that the second-
order factors are more discriminative in this problem than the first-
order factors. Therefore, the LP relaxation is loose and thus, find-
ing good primal solutions (rounding) is hard.

algorithm runtime value bound mem best opt

mrf-α-Exp-trunc-TAB 7.37 sec 168457.00 −∞ 0.89 2 0
mrf-αβ -Swap-trunc-TAB 9.77 sec 170858.50 −∞ 0.89 0 0
ogm-TRWS-LF2 323.48 sec 735193.00 166827.12 1.46 0 0

mrf-LBP-TAB 458.73 sec 438611.00 −∞ 0.93 0 0
mrf-BPS-TAB 188.37 sec 2217579.50 −∞ 1.36 0 0

mrf-TRWS-TAB 203.79 sec 1243144.00 166827.07 1.36 0 0
ogm-ADSAL 3605.24 sec 185560.00 167274.34 1.09 0 0

Table 6: mrf-photomontage (2 instances): For these instances, α-
Expansion is clearly the first choice. Due to the lack of unary data-
terms, the LP relaxation is weak and rounding is hard.

Color Segmentation (col-seg-n4/-n8). We now consider nine
instances of a graphical model for color segmentation. These
are Potts models with 76.800 variables and few labels and a 4-
connected or 8-connected grid graph. Results are shown in Tab. 7
and Fig. 8. It can be seen form these results that all instances could
be solved by the multicut algorithm and CombiLP, both of which

(a) input data (b) CombiLP (c) FastPD

Figure 8: color-seg-n4: For the hardest instance of the color seg-
mentations problems, the differences between the optimal solution
(b) and the approximate ones, here exemplary for FastPD (c), are
small but noticeable.

verified optimality of the respective solutions. LP relaxations over
the local polytope are tight for 7 instances and are overall better
than other approximations. FastPD, α-expansion and αβ -swap
converged to somewhat worse but still reasonable solutions very
quickly. For the hardest instance, algorithms based on multiway
cuts did not find a solution within one hour. It can be seen from
Fig. 8 that approximate solutions differ, especially at the yellow
feathers around the neck.

algorithm runtime value bound mem best opt

FastPD 0.29 sec 20034.80 13644.72 0.31 0 0
mrf-α-Exp-trunc-TL 1.11 sec 20033.56 −∞ 0.07 0 0
mrf-αβ -Swap-trunc-TL 0.64 sec 20060.91 −∞ 0.07 0 0
ogm-FastPD-LF2 6.15 sec 20033.21 12543.39 0.38 0 0
ogm-TRWS-LF1 7.58 sec 20012.17 20012.14 0.15 7 7

mrf-LBP-TL 39.87 sec 20053.25 −∞ 0.09 0 0
mrf-BPS-TL 23.35 sec 20094.03 −∞ 0.09 0 0

MCR-TC-MTC 440.57 sec 20450.12 19807.10 1.31 7 7
mrf-TRWS-TL 23.52 sec 20012.18 20012.14 0.09 8 7
ogm-ADSAL 311.96 sec 20012.15 20012.14 0.21 8 7
ogm-BUNDLE-A 224.07 sec 20024.78 20012.01 0.38 7 7

MCI-TC-MTC-TCI 442.89 sec 20450.11 19807.10 2.66 8 8
MCI-pct 429.54 sec 20889.89 −∞ 1.67 8 8
ogm-CombiLP 36.68 sec 20012.14 20012.14 0.38 9 9

Table 7: color-seg-n4 (9 instances): TRWS gives optimal or nearly
optimal results on all instances. CombiLP also solves all problems.
MCI solves all but one instance.

Color Segmentation (color-seg). We now consider three in-
stances of a graphical model for color segmentation provided by
Alahari et al. [3]. Results are shown in Tab. 8. It can be seen from
these results that the local polytope relaxation is tight. Approx-
imate algorithms find the optimal solution for two instances and
a near optimal solution for one instance of the problem. When
Kovtun’s method is used to reduce the problem size–which works
well for this problem–the reduced problem can be solved easily
and overall faster than with approximative algorithms alone.

Object Segmentation (object-seg). We now consider five in-
stances of a graphical model for object segmentation provided by
Alahari et al. [3]. Results are shown in Tab. 9. As for the color seg-
mentation instances, the local polytope relaxation is tight. Com-
pared to TRWS, FastPD is 10 times faster and worse in terms
of the objective value only for 1 instance and only marginally.
Furthermore, the pixel accuracy (PA) for results of FastPD and
α-expansion is slightly better than for optimal solutions. For in-
stances like these which are large and easy to solve, combinatorial
algorithms offer no advantages in practice.

Inpainting (inpainting-n4/n8). We now consider four syn-
thetic instances of a graphical model for image inpainting, two
instances with a 4-connected grid graph and two instances with
an 8-connected grid graph. For each graph structure, one instance
has strong first-order factors and the other instance (with postfix

13

algorithm runtime value bound mem best opt

α-Exp-pct 0.82 sec 308472274.33 −∞ 0.56 3 0
α-Exp-VIEW 5.98 sec 308472275.67 −∞ 0.70 2 0
FastPD 0.31 sec 308472275.00 308420090.33 1.00 2 0
ogm-LF-2 11.82 sec 309850181.00 −∞ 0.74 0 0
αβ -Swap-VIEW 6.25 sec 308472292.33 −∞ 0.70 2 0

BPS-TL 68.24 sec 308733349.67 −∞ 0.40 0 0
ogm-BPS 106.57 sec 308494459.00 −∞ 2.76 0 0
ogm-LBP-0.95 117.09 sec 308494213.33 −∞ 2.76 0 0

MCR-TC-MTC 89.46 sec 308472274.33 308472274.33 3.76 3 3
MCR-pct 0.82 sec 308472274.33 308472274.33 0.56 3 3
ogm-ADSAL 2156.82 sec 308472289.00 308472273.99 1.19 2 2
TRWS-TL 90.76 sec 308472310.67 308472270.43 0.40 2 1
TRWS-pct 1.07 sec 308472290.67 308472274.33 0.56 2 2

MCI-TC-MTC-TCI 80.19 sec 308472274.33 308472274.33 3.76 3 3
MCI-pct 0.98 sec 308472274.33 308472274.33 0.56 3 3
ogm-CombiLP 483.64 sec 308472274.33 308472274.33 1.84 3 3

Table 8: color-seg (3 instances): For all instances, the local poly-
tope relaxation is tight. Nevertheless, the fixed point of TRWS is
suboptimal and for one instance, ADSAL does not converge within
1 hour. MCI-pct provides verified solutions as fast as α-Expansion
and FastPD which do not provide optimality certificates.

algorithm runtime value bound mem best opt

FastPD 0.11 sec 31317.60 29611.23 0.17 4 0
mrf-α-Exp-trunc-TL 0.40 sec 31317.60 −∞ 0.05 4 0
mrf-αβ -Swap-trunc-TL 0.23 sec 31323.23 −∞ 0.05 2 0
ogm-TRWS-LF1 3.27 sec 31317.23 31317.23 0.09 5 5

mrf-LBP-TL 29.43 sec 32400.01 −∞ 0.05 0 0
mrf-BPS-TL 11.19 sec 35775.27 −∞ 0.05 0 0
ogm-LBP-0.95 61.38 sec 32673.75 −∞ 0.31 0 0

MCR-TC-MTC 421.26 sec 32376.56 31317.23 0.86 4 4
MCR-pct 62.36 sec 31674.41 31317.23 0.20 2 2
mrf-TRWS-TL 2.21 sec 31317.23 31317.23 0.05 5 5
ogm-ADSAL 99.50 sec 31317.23 31317.23 0.14 5 5
TRWS-pct 0.96 sec 31317.23 31317.23 0.08 5 5

MCI-TC-MTC-TCI 428.32 sec 31317.23 31317.23 1.81 5 5
MCI-pct 69.84 sec 31317.23 31317.23 0.39 5 5
ogm-CombiLP 32.61 sec 31317.23 31317.23 0.28 5 5

Table 9: object-seg (5 instances): For instances like these which
are large and for which the local polytope relaxation is tight, com-
binatorial algorithms offer no advantages in practice.

’inverse’) is constructed such that, for every variable, a first-order
factors assigns to same objective value to two distinct labels. Re-
sults are shown in Tab. 10 and Fig. 9. It can be seen from these
results that even Potts models can give rise to hard optimization
problems, in particular if the first-order factors do not discrimi-
nate well between labels. Moreover, it can be seen from Fig. 9
that increasing the neighborhood-system helps to avoid discretiza-
tion artefacts. However, even with an 8-neighborhood, the model
favors 135◦ over 120◦ angles, as can be seen in Fig. 9(c).

Brain Segmentation (brain-3/5/7mm). We now consider twelve
instances of a graphical model for segmenting MRI scans of human
brains defined by four simulated scans at three different resolu-
tions. These instances have 105−106 variables. For such large in-
stances, the efficient data structures are helpful. Results are shown
in Tab. 11. It can be seen from these results that TRWS provides
tight lower bounds but suboptimal approximate solutions which
shows that the rounding problem remains hard. Multiway cut can-
not be applied directly because the instances are too large. How-
ever, with model reduction as pre-processing, MCI-ptc is the only
algorithm that could solve all instances within one hour. FastPD
terminates in 1/10 of the runtime, providing approximations which
are worse in terms of the objective value but reasonable in the ap-
plication domain.

DTF Chinese Characters Inpainting (dtf-chinesechar). We

algorithm runtime value bound mem best opt

FastPD 0.01 sec 454.75 294.89 0.03 1 0
mrf-α-Exp-trunc-TL 0.01 sec 454.75 −∞ 0.01 1 0
mrf-αβ -Swap-trunc-TL 0.01 sec 454.35 −∞ 0.01 2 0
ogm-TRWS-LF2 1.45 sec 489.30 448.09 0.03 1 1

mrf-LBP-TL 4.25 sec 475.56 −∞ 0.01 1 0
mrf-BPS-TL 1.69 sec 454.35 −∞ 0.01 2 0

MCR-TC-MTC 1386.81 sec 645.89 448.27 0.20 1 1
MCR-pct 1248.88 sec 1179.00 448.27 0.18 0 0
mrf-TRWS-TL 0.97 sec 490.48 448.09 0.01 1 1
ogm-ADSAL 59.91 sec 454.75 448.27 0.03 1 1
ogm-BUNDLE-A 39.98 sec 455.25 448.23 0.04 1 0
ogm-BUNDLE-H 19.13 sec 455.25 448.22 0.04 1 1
TRWS-pct 2.77 sec 489.30 448.10 0.02 1 1

MCI-TC-MTC-TCI 1812.16 sec 462.60 448.86 0.44 1 1
MCI-pct 1807.10 sec 270479.80 −∞ 0.41 1 1
ogm-CombiLP 129.04 sec 461.81 446.66 0.49 1 1

Table 10: inpainting-n4 (2 instances): One instance is easy be-
cause the LP relaxations is tight. The other instance is designed to
be hard. On average, α-Expansion and BPS perform best. Sub-
gradient algorithms with small step-size give the best primal so-
lutions, but dual convergence is slow. Global optimal algorithms
cannot solve the hard instance within 1 hour.

(a) input data (b) result for N4 (c) result for N8

Figure 9: inpainting. Depicted above are solutions (b) and (c) of
synthetic instances of the inpainting problem (a). It can be seen that
discretization artifacts due to the 4-neighborhood (b) are smaller
than discretization artifacts due to the 8-neighborhood (c).

now consider 100 instances of a graphical model for Chinese char-
acter inpaining. In contrast to all models considered so far, these
instances are decision tree fields (DTF) which are learned in a dis-
criminative fashion. This gives rise to frustrated cycles which ren-
der the inference problem hard. Results are shown in Fig. 10 and
Tab. 12. It can be seen from these results that the local polytope re-
laxation is loose. Moreover, it can be seen that instead of applying
a combinatorial algorithm directly, it is beneficial to first reduce the
problem. Here, MCBC-pct performs best, verifying optimality of
56 of 100 instances. In shorter time, sequential belief propagation
(BPS) and lazy flipping give good results. With respect to the pixel
accuracy (PA) in the inpainting-region, BPS is with 67,15% correct
in-painted pixels, better than MCBC-pct which has PA of 66,24%.

Color Segmentation with Inclusion (inclusion). We now con-
sider ten instances of a higher-order graphical models for color seg-
mentation with inclusion. Due to the higher-order factors, some
methods, e.g. TRWS, are no longer applicable. Results are shown
in Tab. 13. It can be seen from these results that the local poly-
tope relaxation is quite tight. However, standard rounding proce-
dures do not yield good integer solutions. Overall, the ILP solver
performs best. For larger problems, ILPs might not scale well.
In such a case, LBP followed by lazy flipping is a good alterna-
tive. The best pixel accuracy (PA) is obtained by Bundle-methods,
which is 0.1% better than optimal results that have a pixel accuracy
of 94.96%.

14

algorithm runtime value bound mem best opt

α-Exp-pct 7.02 sec 19088999.75 −∞ 1.53 0 0
α-Exp-VIEW 100.66 sec 19089080.00 −∞ 1.82 0 0
FastPD 1.32 sec 19089484.75 17052089.25 3.11 0 0
ogm-FastPD-LF2 48.51 sec 19088812.00 17052089.25 4.59 0 0
ogm-TRWS-LF2 184.22 sec 19087628.00 19087612.50 2.62 0 0
αβ -Swap-VIEW 91.84 sec 19089768.00 −∞ 1.83 0 0

BPS-TL 450.43 sec 19090723.25 −∞ 1.08 0 0
ogm-BPS 3601.41 sec 19099086.75 −∞ 7.29 0 0
ogm-LBP-0.95 1574.35 sec 19091228.75 −∞ 7.28 0 0

ogm-ADSAL 3610.13 sec 19087679.25 19087612.49 3.37 0 0
TRWS-TL 120.29 sec 19087730.25 19087612.50 1.08 0 0
TRWS-pct 21.93 sec 19087728.50 19087612.50 1.53 0 0

MCI-pct 25.63 sec 19087612.50 19087612.50 1.99 4 4
ogm-CombiLP 2022.87 sec 19087626.75 19087612.50 4.84 3 3

Table 11: brain-5mm (4 instances): Although the local polytope
relaxation is tight for these instances, rounding is not trivial. Only
MCI-pct is able to solve all instances within 1 hour. FastPD is
10 times faster but solutions are worse in terms of the objective
value. For real world applications, these solutions might, however,
be sufficient.

algorithm runtime value bound mem best opt PA

LSA-TR (euc.) 0.05 sec −49548.10 −∞ 0.10 30 0 0.6712
LSA-TR (ham.) 0.06 sec −49536.76 −∞ 0.10 1 0 0.6433
ogm-LF-1 0.23 sec −49516.08 −∞ 0.16 1 0 0.5725
ogm-LF-2 7.34 sec −49531.11 −∞ 0.25 7 0 0.6003
ogm-LF-3 637.92 sec −49535.37 −∞ 2.29 16 0 0.6119
ogm-TRWS-LF2 83.78 sec −49519.42 −50119.41 0.31 10 0 0.5945

BPS-TAB 62.69 sec −49537.08 −∞ 0.12 30 0 0.6715

ADDD 9.74 sec −48656.71 −50119.38 0.77 0 0 0.5079
MPLP 516.36 sec −49040.57 −50119.46 0.94 0 0 0.6064
ogm-ADSAL 730.78 sec −49524.30 −50119.39 0.31 1 0 0.6445
QPBO 0.17 sec −49501.95 −50119.38 0.13 0 0 0.5520
TRWS-TAB 78.84 sec −49497.01 −50119.41 0.13 3 0 0.5649
TRWS-pct 4.43 sec −49496.76 −50119.38 0.13 2 0 0.5636

ogm-ILP-pct 3553.71 sec −49547.41 −50061.15 1.06 63 0 0.6556
MCBC-pct 2053.89 sec −49550.10 −49612.38 − 80 56 0.6624
ogm-ILP 3569.52 sec −49536.00 −50092.16 7.53 8 0 0.6444

SA − sec −49533.02 −∞ − 13 0 0.6541

Table 12: dtf-chinesechar (100 instances): Best results are ob-
tained by combinatorial methods after model reduction. MCBC
use special cutting plane methods which lead to tighter relaxations
and better lower bounds. When a shorter running time is needed
the Lazy Flipper and BPS are alternatives.

6.2 Superpixel-Based Models

Graphical models defined with respect to an adjacency graph of su-
perpixels have fewer variables than graphical models defined with
respect to the pixel grid graph. The relative difference in the num-
ber of variables can be several orders of magnitude. Thus, combi-
natorial algorithms are more attractive for superpixel-based mod-
els.

Scene decomposition (scene-decomposition). We now con-
sider 715 instances of a graphical model for scene-decomposition.
These instances have between 150 and 208 variables. Results are
shown in Tab. 14. It can be seen from these results that the differ-
ences between the solutions of the different methods are marginal,
both in terms of objective value and in terms of pixel accuracy
(PA), i.e. the percentage of correctly labeled pixels. While TRWS
is the fastest method, CombiLP is the fastest method that solves all
problems to optimality. The best results in terms of pixel accuracy
are given by TRBP. The PA of TRBP is with 77.08% slightly better
that the PA for optimal solutions.

(a) GT (b) data (c) TRWS (d) MCBC

Figure 10: dtf-chinesechar: Depicted above is one example of the
Chinese character inpainting problem. The purpose of the model
is to reconstruct the original image (a), more precisely, the mask
(b), from the rest of the image. It can be seen in (c) that TRWS
labels the complete inpainting area as background. MCBC finds
the optimal solution which reflects the full potential of decision
tree fields for this application.

algorithm runtime value bound mem best opt PA

α-Exp-QPBO 0.04 sec 1587.13 −∞ 0.01 0 0 0.6771
ogm-LBP-LF1 19.33 sec 1400.66 −∞ 0.01 4 0 0.9490
ogm-LBP-LF2 19.37 sec 1400.61 −∞ 0.02 7 0 0.9495
ogm-LF-3 1.14 sec 1461.23 −∞ 0.01 0 0 0.8011

ogm-BPS 21.42 sec 2200.68 −∞ 0.01 6 0 0.9489
ogm-LBP-0.5 19.77 sec 2100.61 −∞ 0.01 7 0 0.9487
ogm-TRBP-0.5 21.42 sec 1900.84 −∞ 0.01 5 0 0.9491

ADDD 6.23 sec 3400.81 1400.31 0.03 1 1 0.9479
MPLP 5.94 sec 4000.44 1400.30 0.02 2 1 0.9479
MPLP-C 3579.25 sec 4200.37 1400.35 0.08 2 1 0.9470
ogm-BUNDLE-H 73.24 sec 1400.76 1400.32 0.02 3 1 0.9496
ogm-LP-LP 18.27 sec 4100.60 1400.33 0.30 1 1 0.9482

MCI-TC-MTC-TCI 61.46 sec 1400.57 1400.57 0.56 10 10 0.9496
BRAOBB-3 3600.01 sec 1401.64 −∞ 1.79 0 0 0.9467
ogm-ILP 6.21 sec 1400.57 1400.57 0.74 10 10 0.9496

Table 13: inclusion (10 instances): Only the commercial ILP soft-
ware solves all instances of this dataset. While the local polytope
relaxation is quite tight, rounding is still hard. Lazy flipping can
help to correct some rounding errors.

algorithm runtime value bound mem best opt accuracy

α-Exp-QPBO 0.01 sec −866.85 −∞ 0.01 587 0 0.7694
ogm-LBP-LF2 0.06 sec −866.76 −∞ 0.01 576 0 0.7699
ogm-LF-3 0.45 sec −866.27 −∞ 0.01 420 0 0.7699
ogm-TRWS-LF2 0.01 sec −866.93 −866.93 0.01 714 712 0.7693

BPS-TAB 0.10 sec −866.73 −∞ 0.01 566 0 0.7701
ogm-BPS 0.02 sec −866.77 −∞ 0.01 585 0 0.7694
ogm-LBP-0.95 0.02 sec −866.76 −∞ 0.01 580 0 0.7696
ogm-TRBP-0.95 0.11 sec −866.84 −∞ 0.01 644 0 0.7708
ogm-TRBPS 0.13 sec −866.79 −∞ 0.01 644 0 0.7705

ADDD 0.06 sec −866.92 −866.93 0.01 701 697 0.7693
MPLP 0.04 sec −866.91 −866.93 0.01 700 561 0.7693
MPLP-C 0.04 sec −866.92 −866.93 0.01 710 567 0.7693
ogm-ADSAL 0.04 sec −866.93 −866.93 0.01 714 712 0.7693
ogm-BUNDLE-H 0.26 sec −866.93 −866.93 0.01 715 673 0.7693
ogm-BUNDLE-A+ 0.07 sec −866.93 −866.93 0.01 715 712 0.7693
ogm-LP-LP 0.23 sec −866.92 −866.93 0.05 712 712 0.7693
TRWS-TAB 0.01 sec −866.93 −866.93 0.01 714 712 0.7693

BRAOBB-1 17.61 sec −866.90 −∞ 0.27 670 0 0.7688
ADDD-BB 0.11 sec −866.93 −866.93 0.01 715 715 0.7693
ogm-CombiLP 0.02 sec −866.93 −866.93 0.03 715 715 0.7693
ogm-ILP 0.17 sec −866.93 −866.93 0.09 715 715 0.7693

Table 14: scene-decomposition (715 instances): Almost all algo-
rithms provide optimal or nearly optimal solutions. Also in terms
of pixel accuracy (PA), the difference between these solutions is
marginal. The PA of optimal solutions is 0.2% worse than the PA
of the suboptimal solutions found by TRBP. TRWS is the fastest
algorithm, followed by CombiLP.

Geometric Surface Labeling (geo-surf-3/7). We now consider
2 × 300 instances of higher-order graphical models for geometric
surface labeling. Results are shown in Tab. 15. It can be seen from

15

these results that the local polytope relaxation is very tight and
the commercial ILP solver performs best. With increasing number
of labels (from three to seven), non-commercial combinatorial al-
gorithms suffer more than the commercial solver which performs
well across the entire range, finding optimal solutions faster than
approximative algorithms take to converge. For geo-surf-7, only
α-Exp-QPBO is significant faster, but the approximate solutions
are also worse. In terms of pixel accuracy, suboptimal approxi-
mations are better than optimal solutions. LBP-LF2 has a 0.07%
and 4.59% higher pixel accuracy (PA) than the optimal labeling for
geo-surf-3 and geo-surf-7, respectively. This indicates that, at least
for geo-surf-7, the model does not reflect the pixel accuracy loss
and can potentially be improved.

algorithm runtime value bound mem best opt PA

α-Exp-QPBO 0.02 sec 477.83 −∞ 0.01 257 0 0.6474
ogm-LBP-LF1 0.60 sec 498.45 −∞ 0.01 66 0 0.6988
ogm-LBP-LF2 0.65 sec 498.44 −∞ 0.01 66 0 0.6988

ogm-BPS 0.37 sec 498.34 −∞ 0.01 69 0 0.7035
ogm-LBP-0.5 0.60 sec 498.45 −∞ 0.01 67 0 0.6988
ogm-TRBP-0.5 8.07 sec 486.42 −∞ 0.01 128 0 0.6768

ADDD 0.55 sec 476.95 476.94 0.03 296 293 0.6531
MPLP 1.31 sec 477.56 476.94 0.02 278 195 0.6529
MPLP-C 1.43 sec 477.34 476.95 0.05 282 198 0.6529
ogm-BUNDLE-H 41.45 sec 476.95 476.86 0.07 299 180 0.6529
ogm-BUNDLE-A+ 32.29 sec 476.95 476.91 0.06 298 238 0.6529
ogm-LP-LP 2.74 sec 476.95 476.94 0.42 299 299 0.6530

BRAOBB-3 685.84 sec 477.11 −∞ 5.69 269 0 0.6531
ogm-ILP 0.95 sec 476.95 476.95 0.74 300 300 0.6529

Table 15: geo-surf-7 (300 instances): The commercial ILP solver
performs best for these small models. The local polytope relax-
ation is tight for almost all instances. While α-Exp-QPBO is very
fast, the solutions it provides are significant worse than the optimal
solution, for some instances, both in terms of the objective value
and in terms of pixel accuracy (PA). The suboptimal solutions pro-
vided by LBP have a better PA than optimal solutions.

6.3 Partition Models

The properties of graphical models for unsupervised image seg-
mentation, namely (1) absence of unary terms, (2) invariance to
label-permutation, and (3) huge label spaces, exclude most com-
mon inference methods for graphical models. Most important, the
invariance to label-permutation causes that the widely used local
polytope relaxation is more or less useless. That is why we will
compare here solvers that are designed to make use of or can deal
with this additional properties.

Modularity Clustering (modularity-clustering). We now con-
sider six instances of graphical models for finding a clustering of
a network that maximize the modularity. Results are shown in
Tab. 16. The Kerninghan-Lin algorithm is an established, fast and
useful heuristic for clustering networks with respect to their mod-
ularity. It can be seen from the table that local search by means of
ICM or LF-1 does not find better feasible solution than the initial
labeling (a single cluster). While multicut methods work well for
small instances, they do not scale so well because the graph is fully
connected. It can also be seen that odd-wheel constraints tighten
the standard LP-relaxation (with only cycle constrains) signifi-
cantly. Combined LP/ILP cutting-plane methods (MCI-CCFDB-
CCIFD) is the overall fastest exact method for networks of mod-
erate size. However, for the largest instances, even MCI-CCFDB-
CCIFD does not converge within one hour.

Image Segmentation (image-seg). We now consider 100 in-
stances of graphical models for image segmentation. These mod-

algorithm runtime value bound mem best opt

ogm-ICM 0.09 sec 0.0000 −∞ 0.01 0 0
ogm-KL 0.01 sec −0.4860 −∞ 0.01 3 0
ogm-LF-1 0.03 sec 0.0000 −∞ 0.01 0 0

MCR-CC 100.37 sec −0.4543 −0.5094 0.14 2 1
MCR-CCFDB 2.15 sec −0.4543 −0.5094 0.03 1 1
MCR-CCFDB-OWC 602.75 sec −0.4652 −0.4962 0.03 5 5

MCI-CCFDB-CCIFD 601.38 sec −0.4400 −0.5021 1.58 5 5
MCI-CCI 1207.07 sec −0.4312 −0.5158 2.69 4 4
MCI-CCIFD 1204.03 sec −0.4399 −0.5176 3.02 4 4

Table 16: modularity-clustering (6 instances): The largest instance
cannot be solved by any variant of MCI within one hour. KL is
robust, fast and better on large instances, leading to a better mean
objective value.

(a) image (b) KL (c) MC-CC (d) MC-CCI

Figure 11: image-seg: Depicted above is one example of the image
segmentation problem. KL produces a segmentation which do not
separate plants from background and constains incorrect bound-
aries. The ILP and LP-based multicut algorithms lead to reason-
able results with differ only in the lower right part of the image.

els differ from models for network-analysis in that the former are
sparse. Results are shown in Tab. 17. It can be seen from these
results that standard LP-relaxations with only cycle constraints
(MCR-CC and MCR-CCFDB) work well and significantly better
than KL, both in terms of objective value and variation of infor-
mation (VI). Adding odd-wheel constraints (MCR-CCFDB-OWC)
gives almost no improvement. Pure integer cutting plane methods
(MCI-CCI and MCI-CCIFD) provide optimal solutions faster than
LP-based methods and KL. Using only facet defining constraints
reduces the number of added constraints and give better runtimes
for MCR and MCI. Visually, the results are similar and vary only
locally, cf. Fig. 11, indicating that fast and scalable approximative
algorithms might be useful in practice.

algorithm runtime value bound mem best opt VI

ogm-ICM 3.98 sec 4705.07 −∞ 0.01 0 0 2.8580
ogm-KL 1.46 sec 4608.49 −∞ 0.01 0 0 2.6432
ogm-LF-1 1.35 sec 4705.01 −∞ 0.01 0 0 2.8583

MCR-CC 8.54 sec 4447.14 4442.34 0.15 35 35 2.5471
MCR-CCFDB 4.34 sec 4447.14 4442.34 0.06 35 35 2.5469
MCR-CCFDB-OWC 4.34 sec 4447.09 4442.34 0.06 35 35 2.5468

MCI-CCFDB-CCIFD 4.89 sec 4442.64 4442.64 0.17 100 100 2.5365
MCI-CCI 2.43 sec 4442.64 4442.64 0.14 100 100 2.5365
MCI-CCIFD 2.24 sec 4442.64 4442.64 0.09 100 100 2.5367

Table 17: image-seg (100 instances): Variants of MCI solve all
instances to optimality and are as fast as approximative algorithms.

Higher-Order Image Segmentation (image-seg-3rdorder). We
now consider 100 instances of higher-order graphical models for
image segmentation. Here, factors of order three are defined
w.r.t. the angles between the tangents of contours at points in which
contours meet. Results are shown in Tab. 18. It can be seen from
these results that the standard LP relaxation (MCR-CCFDB) is
no longer as tight as for the second-order models image-seg, cf.

16

Tab. 17. Odd-wheel constraints (MCR-CCFDB-OWC) tighten this
relaxation only marginally. Integer cutting plane methods (MCI)
suffer from the weaker relaxations and need longer for optimiza-
tion, but provide optimal solutions for all 100 instances. Consistent
with the results reported in [6], we find that the VI of segmentations
defined by optimal solutions of the third-order models is higher
than the VI of segmentations defined by optimal solutions of the
second-order models, indicating that either the hyper-parameter of
the model needs to be estimated differently or the third-order terms
are uninformative in this case.

algorithm runtime value bound mem best opt VI

ogm-ICM 6.30 sec 6030.49 −∞ 0.01 0 0 2.7089
ogm-LF-1 2.23 sec 6030.29 −∞ 0.01 0 0 2.7095

MCR-CC 32.56 sec 5822.31 5465.15 0.28 0 0 2.7722
MCR-CCFDB 20.85 sec 5823.09 5465.15 0.27 0 0 2.7705
MCR-CCFDB-OWC 21.63 sec 5823.59 5465.29 0.27 0 0 2.7705

MCI-CCFDB-CCIFD 46.68 sec 5627.52 5627.52 0.68 100 100 2.6586
MCI-CCI 70.54 sec 5628.39 5627.49 0.73 99 98 2.6589
MCI-CCIFD 50.78 sec 5627.52 5627.52 0.72 99 100 2.6586

Table 18: image-seg-3rdorder (100 instances): Variants of MCI
provide optimal solutions for all instances. Numerical problems
arise only for some instances. Approximative methods are faster
but results are worse.

Hierarchical Image Segmentation (hierarchical-image-seg):
Next, we consider 715 instances of a graphical model for hierar-
chical image segmentation which include factors of orders up to
651. Results are shown in Tab. 19. For these instances, the stan-
dard LP relaxation (MCR-CC) is quite tight. Without odd-wheel
constraints, 98 instances can be solved by the MCR. With odd-
wheel constraints, 100 instances can be solved by the MCR, all
with zero gap. For all 715 instances, the feasible solutions output
by MCR are close to the optimum, both in terms of their objective
as well as in terms of the VI. While MCR is 10 times faster than
exact MCI algorithms, we emphasize that MCR was used to learn
these instances which might be an advantage.

Due to well-known numerical issues, e.g. slackness introduced
to improve numerical stability, bounds are not always tight for
MCI. Parameters can be adjusted to overcome this problem for
these particular instances, but such adjustments can render the so-
lution of other models less numerically stable. Thus, we use the
same parameters in all experiments.

algorithm runtime value bound mem best opt VI

ogm-ICM 1.28 sec −585.60 −∞ 0.01 0 0 2.6245
ogm-LF-1 0.63 sec −585.60 −∞ 0.02 0 0 2.6245

MCR-CC 0.12 sec −626.76 −628.89 0.04 166 98 2.0463
MCR-CCFDB 0.08 sec −626.75 −628.90 0.03 164 98 2.0463
MCR-CCFDB-OWC 0.08 sec −626.77 −628.89 0.03 166 100 2.0460

MCI-CCFDB-CCIFD 0.78 sec −628.16 −628.16 0.08 715 713 2.0406
MCI-CCI 1.28 sec −628.16 −628.17 0.08 715 707 2.0406
MCI-CCIFD 1.25 sec −628.16 −628.16 0.07 715 713 2.0406

Table 19: hierarchical-image-seg (715 instances): For these in-
stances, the standard LP relaxation (MCR-CC) is quite tight. For
all 715 instances, the feasible solutions output by MCR are close
to the optimum, both in terms of their objective as well as in terms
of the VI.

3D Neuron Segmentation (knott-3d-150/300/450). We now
consider 3 × 8 instances of graphical models for the segmenta-
tion of supervoxel adjacency graphs, i.e. for the segmentation of
volume images. Results for instances on volume images of 3003

voxels are shown in Tab. 20. It can be seen from these results that

MCR and MCI become slower. For the instances based on volume
images of 3003 voxels, MCI-CCIFD solved instances within rea-
sonable time. Without the restriction to facet defining constraints
only, the system of inequalities grows too fast inside the cutting-
plane procedure.

algorithm runtime value bound mem best opt VI

ogm-ICM 84.37 sec −25196.51 −∞ 0.01 0 0 4.1365
ogm-KL 13.16 sec −25556.93 −∞ 0.01 0 0 4.1318
ogm-LF-1 29.08 sec −25243.76 −∞ 0.02 0 0 4.1297

MCR-CC 3423.65 sec −26161.81 −27434.30 0.57 1 1 1.7995
MCR-CCFDB 1338.99 sec −27276.12 −27307.22 0.15 1 1 1.6336
MCR-CCFDB-OWC 1367.03 sec −27287.23 −27309.62 0.15 6 6 1.6342

MCI-CCFDB-CCIFD 1261.99 sec −26826.57 −27308.19 0.37 6 6 1.7010
MCI-CCI 220.30 sec −27302.78 −27305.02 0.28 8 7 1.6352
MCI-CCIFD 104.55 sec −27302.78 −27302.78 0.16 8 8 1.6352

Table 20: knott-3d-300 (8 instances): MCI-CCIFD affords the best
solutions. MCR-CCFDB-OWC affords good solutions as well but
suffers form the fact that the separation procedure is more complex
and time consuming for fractional solutions.

6.4 Other Models

Matching (matching). We now consider four instances of a
graphical model for the matching problem. These instances have
at most 21 variables. Results are shown in Tab. 21. It can be seen
from these results that pure branch-and-bound algorithms, such as
BRAOBB-1 or AStar, can solve these instances fast. In contrast,
algorithms based on LP relaxations converge slower. The local
polytope relaxation, used e.g. in MPLP, is loose because of the
second-order soft-constraints used in this graphical model formula-
tion of the matching problem. Thus, the rounding problem is hard.
Adding additional cycle constraints, e.g. in MPLP-C, is sufficient
to close the duality gap and obtain exact integer solutions. Another
way to improve the objective value of poor integer solutions caused
by violated soft-constraint is local search by lazy flipping.

algorithm runtime value bound mem best opt MPE

ogm-LBP-LF2 0.21 sec 38.07 −∞ 0.01 1 0 5.4469
ogm-LF-1 0.01 sec 95.73 −∞ 0.01 0 0 6.3151
ogm-LF-2 0.29 sec 40.79 −∞ 0.01 0 0 5.7689
ogm-LF-3 12.35 sec 39.81 −∞ 0.01 0 0 5.6346
ogm-TRWS-LF2 0.32 sec 33.31 15.22 0.01 0 0 3.1763

BPS-TAB 0.11 sec 40.26 −∞ 0.01 0 0 4.9692

MPLP-C 3.51 sec 21.22 21.22 0.03 4 4 0.0907
ogm-ADSAL 1380.55 sec 32.47 15.62 0.01 0 0 2.9236
TRWS-TAB 0.03 sec 64.19 15.22 0.01 0 0 3.8159

BRAOBB-1 2.05 sec 21.22 −∞ 0.06 4 0 0.0907
ogm-ASTAR 0.80 sec 21.22 21.22 0.05 4 4 0.0907
ogm-CombiLP 314.52 sec 21.22 21.22 0.17 4 4 0.0907
ogm-ILP 402.09 sec 21.22 21.22 0.17 4 4 0.0907

Table 21: matching (4 instances): Pure branch & bound methods
such as BRAOBB and AStar afford optimal solutions fast. Cycle
constraints as used by MPLP-C tighten the relaxation sufficiently.
For optimal solutions, the objective value correlates with the mean
position error (MPE).

Cell Tracking (cell-tracking). We now consider one instance
of a graphical model for tracking biological cells in sequences of
volume images. Results are shown in Tab. 22. It can be seen from
these results that the ILP solver clearly outperforms all alterna-
tives. Only the off-the-shelf LP-solver (LP-LP) manages to find a
solution that satisfies all soft-constraints. Algorithms which solve
the same relaxation, e.g. ADDD and MPLP, are slower and their

17

rounded solutions violate soft-constraints. Lazy Flipping as a post-
processing step can overcome this problem, as shown for LBP.

algorithm runtime value bound mem best opt

ogm-LBP-LF2 62.12 sec 7515575.61 −∞ 0.12 0 0
ogm-LF-2 0.43 sec 14075743.46 −∞ 0.06 0 0
ogm-LF-3 1.55 sec 8461693.24 −∞ 0.07 0 0

ogm-BPS 60.07 sec 207520418.28 −∞ 0.08 0 0
ogm-LBP-0.95 61.97 sec 307513873.84 −∞ 0.08 0 0
ogm-TRBP-0.95 65.97 sec 107517017.88 −∞ 0.09 0 0

MPLP 459.93 sec 107514359.61 7513851.52 0.08 0 0
ogm-BUNDLE-A 532.38 sec 7696631.53 7501985.37 0.18 0 0
ogm-BUNDLE-H 522.32 sec 7748583.42 7501948.96 0.18 0 0
ogm-LP-LP 4.21 sec 7516359.61 7513851.52 0.51 0 0

ogm-ILP-pct 12.36 sec 7514421.21 7514421.21 1.05 1 1
ogm-ILP 11.99 sec 7514421.21 7514421.21 1.20 1 1

Table 22: cell-tracking (1 instance): The commercial ILP soft-
ware solves this instance fast. The commercial LP solver affords
good results three times faster. In contrast, dual LP solvers such as
ADDD and MPLP do not find good integer solutions.

Side-Chain Prediction in Protein Folding (protein-folding).
We now consider 21 instances of graphical models for side-chain
prediction in protein folding. These instances have many vari-
ables and are highly connected. Results are shown in Tab. 23. It
can be seen from these results that MPLP, with additional cycle-
constraints, obtain the best lower bounds and CombiLP verified
optimality for 21 instances, within one hour. The best results are
obtained by BPS and LBP followed by lazy flipping with search-
depth 2. The rounding techniques used in the algorithms based on
linear programming are insufficient for these instances.

algorithm runtime value bound mem best opt

ogm-LBP-LF2 134.88 sec −5923.01 −∞ 0.25 12 0
ogm-LF-2 54.54 sec −5747.56 −∞ 0.25 0 0
ogm-TRWS-LF2 51.89 sec −5897.06 −6041.38 0.25 6 1

BPS-TAB 24.48 sec −5917.15 −∞ 0.25 11 0
ogm-LBP-0.5 106.99 sec −5846.70 −∞ 0.25 13 0
ogm-TRBP-0.5 145.44 sec −5810.68 −∞ 0.25 9 0

MPLP 510.90 sec −5611.60 −6033.98 0.62 1 1
MPLP-C 1639.52 sec −5765.28 −5984.52 11.14 12 9
ogm-ADSAL 1014.89 sec −5881.47 −6128.90 0.51 4 1
TRWS-TAB 22.18 sec −5771.50 −6041.38 0.25 2 1

ogm-CombiLP 700.10 sec −5955.77 −5955.77 24.26 21 21

Table 23: protein-folding (21 instances): Due to the large number
of labels, combinatorial methods are not applicable. A notable ex-
ception is CombiLP, which manages to solve 18 instances to opti-
mality. MPLP-C gives the best results in terms of the lower bound,
but is not the best in generating labelings. The best integer solu-
tions are obtained by BPS and LBP-LF2.

Prediction Protein-Protein Interactions (protein-prediction).
We now consider eight instances of a higher-order graphical model
for prediction of protein-protein interactions. Results are shown in
Tab. 24. The range of algorithms applicable to these instances is
limited. ILP solvers found and verified solutions for 3 instances
and performed best for 7 instances, within one hour. For one re-
maining instances, the ILP solver affords a solution far from the
optimum. Thus, LBP with lazy flipping gives the best results on
average.

7 Discussion and Conclusions
Our comparative study has shown that there is no single tech-
nique which works best for all cases. The reason for this is that,

algorithm runtime value bound mem best opt

ogm-ICM 0.03 sec 60414.84 −∞ 0.01 0 0
ogm-LBP-LF2 25.03 sec 52942.95 −∞ 0.06 1 0
ogm-LF-1 0.03 sec 60427.60 −∞ 0.02 0 0
ogm-LF-2 0.70 sec 58682.74 −∞ 0.02 0 0
ogm-LF-3 19.08 sec 57944.06 −∞ 0.09 0 0

ogm-BPS 27.64 sec 75286.37 −∞ 0.05 0 0
ogm-LBP-0.5 24.79 sec 53798.89 −∞ 0.05 0 0
ogm-TRBP-0.5 35.60 sec 61386.17 −∞ 0.05 0 0

ADDD 10.70 sec 106216.86 41124.16 0.05 0 0
MPLP 69.09 sec 101531.75 43123.68 0.05 0 0
ogm-BUNDLE-A 1287.27 sec 81035.49 44090.57 0.28 0 0
ogm-BUNDLE-H 1301.94 sec 81039.93 44092.42 0.28 0 0
ogm-LP-LP 169.61 sec 102829.40 44347.16 0.24 0 0

ogm-ILP 2263.46 sec 57477.07 44674.02 0.65 7 3

Table 24: protein-prediction (8 instances): Except for one instance,
the commercial ILP software solves all instances. LBP followed by
lazy flipping is a good approximation.

firstly, the models are rather diverse and, secondly, there are sev-
eral objectives, e.g. running time, best energy or loss functions. We
would also like to point out, again, that not all compared solvers
are on the same level of generality and modularity, and some im-
plementations are highly optimized compared to others. Conse-
quently, we do not advise to overemphasize the relative runtimes
reported for the different methods which have different implemen-
tation paradigms. Moreover, sometimes a single instance can de-
crease the average performance of a method, which is reported in
Tab. 4–24. Consequently, methods that are best for all but one
instance are not leading in the average score, e.g. MCI for color-
seg-n4 or ILP for protein-prediction.

For most models, we have found that approximative methods
provide nearly optimal solutions very fast. According to applica-
tion specific measurements, these are often not worse than those
with optimal energy. With the suggested (heuristic) stopping con-
ditions, TRWS performs well for all models to which it can be
applied. This is also due to the fact that for many models the local
polytope relaxation is nearly tight. FastPD and α-expansion are
slightly worse, but have a deterministic stopping condition and do
not suffer on problems where the local polytope relaxation is loose,
e.g. mrf-photomontage. While methods that can deal with higher
order-terms are inferior in terms of runtimes for second order mod-
els, they can be directly applied to higher-order models, where best
performing methods for second-order models are no longer appli-
cable.

For difficult models like dtf-chinesechar and matching, the ex-
act solutions are significantly better than approximate ones, both
in terms of energy and quality. Fig. 6 gives an overview of
models where all (green), some (yellow) or none (red) instances
have been solved to optimality within one hour. As reported
in [70] more instances, including those from mrf-inpainting and
mrf-photomontage, can be solved to optimality with a time limit of
less than a day.

For some models combinatorial optimization methods are faster
than currently reported state-of-the-art methods. While for small
problems combinatorial methods can often be applied directly, for
larger problems the reducing of the problem size by partial opti-
mality is required to make them tractable. Solutions from these
exact methods are used for evaluating the sub-optimality of the ap-
proximate solutions.

Furthermore we observe that the energy-optimal labeling is not
always best in terms of application specific loss function, cf. Tab
15. While methods that find global optimal solutions select the
global optima – regardless of similar solutions that have a consid-

18

erable higher energy –, approximative methods often tend to avoid
such "isolated" solutions and prefer more "consistent" modes.
While this shows that full evaluation of models is only possible
in presence of optimal solvers, it also raises the question if approx-
imative methods are preferable when they are not so sensitive to
optimal "outliers" or if the models itself need to be improved. The
answer to this question might vary for different applications and
models and as we have shown, for many models the energy corre-
lates quite well with the loss functions.

Methods based on LP-relaxations over the local polytope often
lead to empirically good solutions and are in general not restricted
to special subclasses but are also not the fastest ones. Recently,
Prusa and Werner [67] showed that solving LPs over the local poly-
tope is in general as hard as solving general LPs, which are of high
polynomial complexity. When the local polytope relaxation is too
weak, tightening the polytope can help a lot, multicuts for Potts
models and MPLP-C for the matching instances are examples of
that kind.

While our study covers a broad range of models used nowadays
(without being all-embracing), the models used in the last decade
might have been biased by solvers that are available and work well.
Consequently, second order Potts or truncated convex regularized
models, as considered in [76], were in the focus of research. In this
study we show alternative methods that can deal with more com-
plex models, including higher order and more densely structured
models, cf. dtf-chinesechar, matching or protein-prediction.

With availability of more general optimization methods we hope
to stimulate the use of complex and powerful discrete models. This
may then inspire the development of new, efficient approximative
methods that can meet hard time-constraints in real world applica-
tions.

Acknowledgements: We thank Rick Szeliski and Pushmeet
Kohli for inspiring discussions. This work has been supported
by the German Research Foundation (DFG) within the program
“Spatio- / Temporal Graphical Models and Applications in Image
Analysis”, grant GRK 1653.

References
[1] Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Op-

erations Research Letters 33(1), 42 – 54 (2005)

[2] Alahari, K., Kohli, P., Torr, P.H.S.: Reduce, reuse & recycle: Effi-
ciently solving multi-label MRFs. In: In CVPR (2008)

[3] Alahari, K., Kohli, P., Torr, P.H.S.: Dynamic hybrid algorithms for
MAP inference in discrete MRFs. IEEE PAMI 32(10), 1846–1857
(2010)

[4] Andres, B., Beier, T., Kappes, J.H.: OpenGM: A C++ library for
discrete graphical models. ArXiv e-prints (2012). URL http://
arxiv.org/abs/1206.0111

[5] Andres, B., Beier, T., Kappes, J.H.: OpenGM2. http://hci.iwr.uni-
heidelberg.de/opengm2/ (2012)

[6] Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.:
Probabilistic image segmentation with closedness constraints. In:
ICCV (2011)

[7] Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.:
The lazy flipper: Efficient depth-limited exhaustive search in discrete
graphical models. In: ECCV (2012)

[8] Andres, B., Kappes, J.H., Köthe, U., Schnörr, C., Hamprecht, F.A.:
An empirical comparison of inference algorithms for graphical mod-
els with higher order factors using OpenGM. In: DAGM (2010)

[9] Andres, B., Köthe, U., Kroeger, T., Helmstaedter, M., Briggman,
K.L., Denk, W., Hamprecht, F.A.: 3D segmentation of SBFSEM
images of neuropil by a graphical model over supervoxel bound-
aries. Medical Image Analysis 16(4), 796–805 (2012). DOI 10.
1016/j.media.2011.11.004. URL http://www.sciencedirect.
com/science/article/pii/S1361841511001666

[10] Andres, B., Kröger, T., Briggman, K.L., Denk, W., Korogod, N.,
Knott, G., Köthe, U., Hamprecht, F.A.: Globally optimal closed-
surface segmentation for connectomics. In: ECCV (2012)

[11] Batra, D., Kohli, P.: Making the right moves: Guiding alpha-
expansion using local primal-dual gaps. In: Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference on, pp. 1865–
1872. IEEE (2011)

[12] Bergtholdt, M., Kappes, J.H., Schmidt, S., Schnörr, C.: A study of
parts-based object class detection using complete graphs. IJCV 87(1-
2), 93–117 (2010)

[13] Besag, J.: On the Statistical Analysis of Dirty Pictures. Journal of the
Royal Statistical Society. Series B (Methodological) 48(3), 259–302
(1986). DOI 10.2307/2345426

[14] Bonato, T., Jünger, M., Reinelt, G., Rinaldi, G.: Lifting and separa-
tion procedures for the cut polytope. Mathematical Programming A
146(1–2), 351–378 (2014). DOI 10.1007/s10107-013-0688-2. URL
http://dx.doi.org/10.1007/s10107-013-0688-2

[15] Boykov, Y.: Computing geodesics and minimal surfaces via graph
cuts. In: ICCV (2003)

[16] Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy min-
imization via graph cuts. IEEE PAMI 23(11), 1222–1239 (2001).
DOI 10.1109/34.969114. URL http://dx.doi.org/10.1109/
34.969114

[17] Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M.,
Nikoloski, Z., Wagner, D.: On modularity clustering. IEEE Transac-
tions on Knowledge and Data Engineering 20(2), 172–188 (2008)

[18] Călinescu, G., Karloff, H., Rabani, Y.: An improved approximation
algorithm for multiway cut. Journal of Computer and System Sci-
ences 60(3), 564–574 (2000)

[19] Chekuri, C., Khanna, S., Naor, J., Zosin, L.: A linear programming
formulation and approximation algorithms for the metric labeling
problem. SIAM J. Discrete Math. 18(3), 608–625 (2004)

[20] Cocosco, C.A., Kollokian, V., Kwan, R.S., Evans, A.C.: Brainweb:
Online interface to a 3d mri simulated brain database. NeuroImage
5(4) (1997)

[21] IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/
software/integration/optimization/cplex-optimizer/
(2013)

[22] Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate en-
ergy minimization with label costs. International Journal of Com-
puter Vision 96, 1–27 (2012). URL http://www.csd.uwo.ca/
~yuri/Abstracts/ijcv10_lc-abs.shtml

[23] Elidan, G., Globerson, A.: The probabilistic inference challenge
(PIC2011). http://www.cs.huji.ac.il/project/PASCAL/ (2011)

[24] Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation
for early vision. Int. J. Comput. Vision 70(1), 41–54 (2006)

[25] Fix, A., Gruber, A., Boros, E., Zabih, R.: A graph cut algorithm for
higher-order Markov random fields. In: ICCV (2011). DOI 10.1109/
ICCV.2011.6126347. URL http://dx.doi.org/10.1109/ICCV.
2011.6126347

[26] Gallagher, A.C., Batra, D., Parikh, D.: Inference for order reduction
in Markov random fields. In: CVPR (2011)

[27] Globerson, A., Jaakkola, T.: Fixing max-product: Convergent mes-
sage passing algorithms for MAP LP-relaxations. In: NIPS (2007)

[28] Goldberg, D.: What every computer scientist should know about
floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991).
DOI 10.1145/103162.103163

19

[29] Gorelick, L., Veksler, O., Boykov, Y., Ben Ayed, I., Delong, A.:
Local submodular approximations for binary pairwise energies. In:
Computer Vision and Pattern Recognition (2014)

[30] Gould, S., Fulton, R., Koller, D.: Decomposing a scene into geomet-
ric and semantically consistent regions. In: ICCV (2009)

[31] Guignard, M., Kim, S.: Lagrangean decomposition: a model yield-
ing stronger lagrangean bounds. Mathematical programming 39(2),
215–228 (1987)

[32] Hoiem, D., Efros, A.A., Hebert, M.: Recovering occlusion bound-
aries from an image. IJCV 91(3), 328–346 (2011)

[33] Hutter, F., Hoos, H.H., Stützle, T.: Efficient stochastic local search
for MPE solving. In: L.P. Kaelbling, A. Saffiotti (eds.) IJCAI, pp.
169–174 (2005)

[34] Jaimovich, A., Elidan, G., Margalit, H., Friedman, N.: Towards an
integrated protein-protein interaction network: A relational markov
network approach. Journal of Computational Biology 13(2), 145–
164 (2006)

[35] Kappes, J.H., Andres, B., Hamprecht, F.A., Schnörr, C., Nowozin,
S., Batra, D., Kim, S., Kausler, B.X., Lellmann, J., Komodakis, N.,
Rother, C.: A Comparative Study of Modern Inference Techniques
for Discrete Energy Minimization Problem. In: CVPR (2013)

[36] Kappes, J.H., Beier, T., Schnörr, C.: MAP-inference on large scale
higher-order discrete graphical models by fusion moves. In: ECCV
- International Workshop on Graphical Models in Computer Vision
(2014)

[37] Kappes, J.H., Savchynskyy, B., Schnörr, C.: A bundle approach to
efficient MAP-inference by Lagrangian relaxation. In: CVPR (2012)

[38] Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schnörr, C.: Glob-
ally optimal image partitioning by multicuts. In: EMMCVPR (2011)

[39] Kappes, J.H., Speth, M., Reinelt, G., Schnörr, C.: Higher-
order segmentation via multicuts. ArXiv e-prints (2013).
Http://arxiv.org/abs/1305.6387

[40] Kappes, J.H., Speth, M., Reinelt, G., Schnörr, C.: Towards efficient
and exact MAP-inference for large scale discrete computer vision
problems via combinatorial optimization. In: CVPR (2013)

[41] Kausler, B.X., Schiegg, M., Andres, B., Lindner, M., Leitte, H.,
Hufnagel, L., Koethe, U., Hamprecht, F.A.: A discrete chain graph
model for 3d+t cell tracking with high misdetection robustness. In:
ECCV (2012)

[42] Kernighan, B.W., Lin, S.: An efficient heuristic procedure for parti-
tioning graphs. The Bell Systems Technical Journal 49(2), 291–307
(1970)

[43] Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation
clustering for image segmentation. In: NIPS, pp. 1530–1538 (2011)

[44] Kim, T., Nowozin, S., Kohli, P., Yoo, C.D.: Variable grouping for
energy minimization. In: CVPR, pp. 1913–1920 (2011)

[45] Kleinberg, J., Tardos, É.: Approximation algorithms for classifi-
cation problems with pairwise relationships: Metric labeling and
Markov random fields. In: Proceedings of the Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS) (1999)

[46] Kohli, P., Ladicky, L., Torr, P.: Robust higher order potentials for en-
forcing label consistency. International Journal of Computer Vision
82(3), 302–324 (2009). DOI 10.1007/s11263-008-0202-0

[47] Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles
and Techniques. MIT Press (2009)

[48] Kolmogorov, V.: Convergent tree-reweighted message passing for
energy minimization. PAMI 28(10), 1568–1583 (2006)

[49] Kolmogorov, V., Rother, C.: Comparison of energy minimization
algorithms for highly connected graphs. In: ECCV, pp. 1–15 (2006)

[50] Kolmogorov, V., Zabih, R.: What energy functions can be minimized
via graph cuts? In: ECCV (2002). URL http://dl.acm.org/
citation.cfm?id=645317.649315

[51] Komodakis, N., Paragios, N.: Beyond loose LP-relaxations: Opti-
mizing MRFs by repairing cycles. In: ECCV (2008)

[52] Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimiza-
tion and beyond via dual decomposition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 33(3), 531–552 (2011)

[53] Komodakis, N., Tziritas, G.: Approximate labeling via graph cuts
based on linear programming. IEEE PAMI 29(8), 1436–1453 (2007).
DOI 10.1109/TPAMI.2007.1061. URL http://dx.doi.org/10.
1109/TPAMI.2007.1061

[54] Kovtun, I.: Partial optimal labeling search for a np-hard subclass
of (max, +) problems. In: B. Michaelis, G. Krell (eds.) DAGM-
Symposium, Lecture Notes in Computer Science, vol. 2781, pp. 402–
409. Springer (2003)

[55] Lauritzen, S.L.: Graphical Models. Oxford University Press (1996)

[56] Lellmann, J., Schnörr, C.: Continuous Multiclass Labeling Ap-
proaches and Algorithms. SIAM J. Imag. Sci. 4(4), 1049–1096
(2011)

[57] Lempitsky, V., Rother, C., Roth, S., Blake, A.: Fusion moves for
markov random field optimization. IEEE Transactions on Pattern
Analysis and Machine Intelligence 32(8), 1392–1405 (2010). DOI
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.143

[58] Martins, A.F.T., Figueiredo, M.A.T., Aguiar, P.M.Q., Smith, N.A.,
Xing, E.P.: An augmented lagrangian approach to constrained MAP
inference. In: ICML, pp. 169–176 (2011)

[59] Nieuwenhuis, C., Toeppe, E., Cremers, D.: A survey and comparison
of discrete and continuous multi-label optimization approaches for
the Potts model. International Journal of Computer Vision (2013)

[60] Nowozin, S., Lampert, C.H.: Structured learning and prediction in
computer vision. Foundations and Trends in Computer Graphics and
Vision 6(3–4), 185–365 (2011)

[61] Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., Kohli, P.:
Decision tree fields. In: ICCV, pp. 1668–1675. IEEE (2011)

[62] Orabona, F., Hazan, T., Sarwate, A., Jaakkola, T.: On Measure
Concentration of Random Maximum A-Posteriori Perturbations. In:
Proc. ICML (2014)

[63] Osokin, A., Vetrov, D., Kolmogorov, V.: Submodular decomposition
framework for inference in associative markov networks with global
constraints. In: CVPR, pp. 1889–1896 (2011)

[64] Otten, L., Dechter, R.: Anytime AND/OR depth-first search for com-
binatorial optimization. In: Proceedings of the Annual Symposium
on Combinatorial Search (SOCS) (2011)

[65] Papandreou, G., Yuille, A.: Perturb-and-MAP Random Fields: Us-
ing Discrete Optimization to Learn and Sample from Energy Models.
In: Proc. ICCV (2011)

[66] Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks
of Plausible Inference. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1988)

[67] Prua, D., Werner, T.: Universality of the local marginal polytope. In:
CVPR, pp. 1738–1743. IEEE (2013)

[68] Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Opti-
mizing binary MRFs via extended roof duality. In: CVPR (2007)

[69] Rother, C., Kumar, S., Kolmogorov, V., Blake, A.: Digital tapestry.
In: Proceedings of the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 -
Volume 01, CVPR ’05, pp. 589–596. IEEE Computer Society, Wash-
ington, DC, USA (2005). DOI 10.1109/CVPR.2005.130

[70] Savchynskyy, B., Kappes, J.H., Swoboda, P., Schnörr, C.: Global
MAP-optimality by shrinking the combinatorial search area with
convex relaxation. In: NIPS (2013)

[71] Savchynskyy, B., Schmidt, S.: Getting feasible variable estimates
from infeasible ones: MRF local polytope study. In: Workshop on
Inference for Probabilistic Graphical Models at ICCV 2013 (2013)

20

[72] Savchynskyy, B., Schmidt, S.: Getting feasible variable estimates
from infeasible ones: MRF local polytope study. In: Advanced
Structured Prediction. MIT Press (2014)

[73] Savchynskyy, B., Schmidt, S., Kappes, J.H., Schnörr, C.: Efficient
MRF energy minimization via adaptive diminishing smoothing. In:
UAI 2012, pp. 746–755 (2012)

[74] Schlesinger, M.: Sintaksicheskiy analiz dvumernykh zritelnikh sig-
nalov v usloviyakh pomekh (Syntactic analysis of two-dimensional
visual signals in noisy conditions). Kibernetika 4, 113–130 (1976)

[75] Sontag, D., Choe, D.K., Li, Y.: Efficiently searching for frustrated
cycles in MAP inference. In: N. de Freitas, K.P. Murphy (eds.) UAI,
pp. 795–804. AUAI Press (2012)

[76] Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov,
V., Agarwala, A., Tappen, M., Rother, C.: A comparative study
of energy minimization methods for Markov random fields with
smoothness-based priors. IEEE PAMI 30(6), 1068–1080 (2008).
DOI 10.1109/TPAMI.2007.70844. URL http://dx.doi.org/10.
1109/TPAMI.2007.70844

[77] Tarlow, D., Batra, D., Kohli, P., Kolmogorov, V.: Dynamic tree block
coordinate ascent. In: Proceedings of the International Conference
on Machine Learning (ICML) (2011)

[78] Verma, T., Batra, D.: Maxflow revisited: An empirical comparison
of maxflow algorithms for dense vision problems. In: BMVC, pp.
1–12 (2012)

[79] Wainwright, M.J., Jaakkola, T., Willsky, A.S.: MAP estimation via
agreement on trees: message-passing and linear programming. IEEE
Trans. Inf. Theory 51(11), 3697–3717 (2005)

[80] Werner, T.: A linear programming approach to max-sum problem:
A review. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1165–1179
(2007). DOI 10.1109/TPAMI.2007.1036

[81] Wesselmann, F., Stuhl, U.: Implementing cutting plane man-
agement and selection techniques. Tech. rep., University of
Paderborn (2012). http://www.optimization-online.org/
DB_HTML/2012/12/3714.html

[82] Woodford, O.J., Torr, P.H.S., Reid, I.D., Fitzgibbon, A.W.: Global
stereo reconstruction under second order smoothness priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence 31(12),
2115–2128 (2009)

[83] Yanover, C., Schueler-Furman, O., Weiss, Y.: Minimizing and learn-
ing energy functions for side-chain prediction. Journal of Computa-
tional Biology 15(7), 899–911 (2008)

[84] Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free
energy approximations and generalized belief propagation
algorithms. MERL Technical Report, 2004-040 (2004).
Http://www.merl.com/papers/docs/TR2004-040.pdf

21

