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Abstract

This supplementary document contains details that were
omitted from the main paper due to a lack of space. These
are in particular:

1. Further notes regarding the expressive power of the
RTF model;

2. A procedural guide detailing how to perform inference
in the RTF model;

3. Analytic expressions for computation of the negative
log-pseudolikelihood objective function and the gradi-
ent with respect to the model parameters, as well as a
proof of convexity of the former;

4. Further result images.

1. Details on:
Expressive Power of RTF Model (Sec. 1)

In the introduction of the main paper, we mention that
in discrete labeling tasks, a high-dimensional mapping of
the discrete labels into continuous space increases the ex-
pressive power of the RTF model. This effect is empirically
demonstrated in Section 4; here, we provide an additional
perspective on the matter.

Consider a learning task involving m discrete labels. In
our model, we encode these discrete labels using m or-
thonormal basis vectors (e.g. [1,0,0]T , [0,1,0]T , [0,0,1]T

form = 3). The energy of a pairwise term assumes the form

Ep(yij ,x,W) =
1

2
⟪yijy

T
ij ,Θij(⋅)⟫ − ⟨yij ,θij(⋅)⟩,

where yij = [yi,yj]
T ∈ R2m is the vector of stacked pixel

labels. In contrast, in a discrete model, the energy of a par-
ticular pairwise labeling (yi,yj) is determined by am ×m
table that assigns each label configuration a particular en-
ergy. Using the abovem-dimensional orthonormal basis en-
coding, it is always possible to choose the coefficients Θ ∈
S2m++ and θ ∈ R2m such that each continuously encoded dis-
crete label indeed receives precisely the energy assigned by
any discrete m ×m energy table. Using an additional con-
stant bias term in the quadratic form, the same property can

be achieved by encoding them discrete labels viam− 1 or-
thonormal basis vectors and a single 0 vector.1 Even repul-
sive energy tables can be “fitted” this way. This is illustrated
by Figure 1 for the special case of m = 2, i.e. binary labels.
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Figure 1. Quadratic fit of a
repulsive pairwise discrete en-
ergy table assigning E(0,0) =
4.16,E(0,1) = 4.06,E(1, 0) =
4.12 and E(1,1) = 4.05.

Note that such fitting of
energy tables is not in
general possible using
lower-dimensional en-
codings. To verify this,
we tried to fit the coeffi-
cients of a quadratic form
(including a bias term)
to random 3 × 3 energy
tables (i.e. m = 3), where
each entry was chosen
uniformly at random from
(0,5) at each run, and
the coefficients of the quadratic form were chosen such
as to minimize the sum of squared errors of the assigned
energies (subject to the positive-definite constraint on
the quadratic coefficients). The experiment was repeated
10,000 times, using a one-dimensional encoding of the
three discrete labels as {0, 1

2
,1}, and a two-dimensional

encoding {[1,0]T , [0,1]T , [0,0]T }. Using the latter, it
was always possible to achieve a residual of zero, whereas
using the former, the residual was never zero, with a mean
residual of 8.88 and a variance of 27.67.

However, while the ability to match energy values at any
given set of points is a necessary condition for accurate
modeling of the underlying world distribution, this prop-
erty alone is not sufficient. For instance, there may be a
large probability mass far away from any discrete labeling
(c.f . Figure 1). We leave the question of formalizing this
trade-off for further study.

2. Details on: Efficient Inference (Sec. 2.4)

One of the immediate benefits of restricting the global
energy E(y,x,W) to be quadratic is that the labelling that
minimizes this energy can be readily found in closed form,
y∗ = [Θ(x,W)]−1θ(x,W). Incidentally, this is precisely
the mean of the associated Gaussian density, as well as

1In our actual model, we always use m-dimensional basis vectors
(rather thanm−1) because the quadratic forms do not include a bias term.
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the solution of the linear system Θ(x,W)y = θ(x,W).
Direct linear algebra methods that solve this problem are
readily available. However, their asymptotic complexity of
O(m3∣V∣3) is typically prohibitive.

Several efficient iterative methods are available that can
exploit the sparsity of Θ(x,W), e.g. Gaussian belief prop-
agation [4] and the conjugate gradient (CG) method. We
find CG particularly convenient because it is guaranteed to
converge and does not require line search. Procedurally, this
translates into the following steps at test time:

• For each factor, find the selected leaf node of the re-
gression tree associated with its type u or p, and pre-
compute the linear basis functions, if any.

• Add up the contributions of the local terms (Figure 4)
in order to instantiate the right-hand side θ(x,W).

• Solve the linear system using conjugate gradient,
which determines our prediction y∗.

The final step only requires sparse matrix-vector prod-
ucts of the kind Θ(x,W)y, which can be computed on-
the-fly without ever actually instantiating Θ(x,W). This
operation is summarized in Figure 4. An attractive alterna-
tive is to pre-compute the matrix, since for typical neigh-
bourhood structures, Θ(x,W) exposes a banded sparsity
pattern that allows for storage in DIA format, which is par-
ticularly efficient for CG implementation on a GPU [1].

3. Details on:
Negative Log-Pseudolikelihood (Sec. 3.2)

We next demonstrate that the maximum pseudolikeli-
hood estimation problem is convex, and point out how to
compute the objective and the gradient with respect to the
model parameters analytically.

Convexity of the estimation problem. Recall that the en-
ergyE(yi,yV∖i,x,W) of labeling yi of a conditioned sub-
graph around pixel i assumes the form

1

2
⟪yiy

T
i ,Θi(x,W)⟫ − ⟨yi,θi(yV∖i,x,W)⟩.

This function is linear in W , and hence convex. Consider
next the logarithm of the partition function normalizing

p(yi ∣ yV∖i,x;W) ∝ exp(−E(yi,yV∖i,x,W)),

defined as

A(yV∖i,x,W) = log∫
Rm

exp(−E(ŷi,yV∖i,x,W))dŷi.

Convexity of this function in the model parameters can most
easily be seen from its variational representation [3]:

sup(µi,Σi)� − 1
2
⟪µiµ

T
i ,Θi(x,W)⟫

+ ⟨µi,θi(yV∖i,x,W)⟩ +H(µi,Σi)�,

sb.t. Σj −µjµ
T
j ≻ 0.

(10)

The objective is linear in W , and the problem attains a
unique optimum at µ∗i = [Θi(x,W)]−1θi(yV∖i,x,W)
and Σ∗i = [Θi(x,W)]−1 + µiµ

T
i , so by Danskin’s theo-

rem [2, Proposition B.25], A(⋅) is convex in W . Together
with linearity of the energy and convexity of constraint set
Ω, this establishes convexity of the overall problem. ◻

Computation of objective and gradient. First of all, it
is necessary to understand how the canonical parameters
θi(yV∖i,x,W) and Θi(x,W) of a conditioned subgraph
around pixel i come into existence. In writing the energy
E(yi,yV∖i,x,W) in canonical form, we need to ensure
that—modulo constants that do not involve yi—it contains
the same terms that are also present in the global energy
E(y,x,W). Observe that this is the case for the expres-
sions given in Figure 2. Using these definitions, one can
then compute the objective and the gradient analytically, as
shown in Figure 3. The gradient can most easily be derived
by again writing the log partition function in its variational
representation (10) and invoking Danskin’s theorem.

4. Further Experimental Results (Sec. 4)

We show some additional test set predictions on the
structured noise denoising task in Figure 5; for the regu-
lar pixel-independent denoising task, we show in Figure 6
some further test set results for all methods we evaluated.
Further face colorization results are shown in Figure 7.

Finally, exemplary training data and test predictions of
the detection and registration task are given in Figures 8–9.
Note that the goal of this task is to demonstrate the wide
range of applications for our model. In particular this task
is a mix of continuous and discrete variables. There are
many alternatives methods to address this problem, such as
wide-baseline optical flow paired with binary segmentation.
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Remark regarding the notation in the below figures.
We use the bracket notation [⋅]j to denote them×1 block of a stacked vector corresponding to pixel j, and [⋅]ij to denote the
m ×m block of a 2m × 2m matrix involving the rows of pixel i and the columns of pixel j. For instance, in [Θp

ij(x,W)]ji,
the m ×m block in the lower left corner is selected (the top rows of the matrix correspond to pixel i, while the bottom half
corresponds to j; similarly, the columns on the left concern pixel i, while the right half concerns pixel j).

θj(yV∖j ,x,W) = ∑
u

δj∈Vuθu
j (x,w) + ∑

p,(i,j)∈Ep

�[θp
ij(x,W)]j − 1

2
�[Θp

ij(x,W)]Tij + [Θp
ij(x,W)]ji�yi�

+ ∑
p,(j,k)∈Ep

�[θp
jk(x,W)]j − 1

2
�[Θp

jk(x,W)]Tkj + [Θp
jk(x,W)]jk�yk�

(1)

Θj(x,W) = ∑
u

δj∈VuΘu
j (x,W)+ ∑

p,(i,j)∈Ep

[Θp
ij(x,W)]jj + ∑

p,(j,k)∈Ep

[Θp
jk(x,W)]jj (2)

Figure 2. Explicit expressions for the canonical parameters of a conditioned subgraph centered around j. Recall that θu
j (x,W) selects

model parameterwul∗ via l∗ = Leaf(u, i,x), and the other local terms are defined likewise.

�j(W) = ⟨θj(yV∖j ,x,W),µj−yj⟩ +
1

2
�⟪Θj(x,W),yjy

T
j −Σj⟫ + log det(Σj−µjµ

T
j ) +m log(2πe)� (3)

∇wul �j(W) = δj∈Vul [µj−yj] (4)

∇wpl �j(W) = δ∃i∶(i,j)∈Epl �0 µj−yj�
T

+ δ∃k∶(j,k)∈Epl �µj−yj 0�
T

(5)

∇Wul �j(W) =
1

2
δj∈Vul �yjy

T
j −Σj� (6)

∇W pl �j(W) =
1

2
�δ∃i∶(i,j)∈Epl �

0 yiy
T
j −yiµ

T
j

yjy
T
i −µjy

T
i yjy

T
j −Σj

� + δ∃k∶(j,k)∈Epl �
yjy

T
j −Σj yjy

T
k −µjy

T
k

yky
T
j −ykµ

T
j 0

�� (7)

Figure 3. Analytic expressions for the negative log-pseudolikelihood �j(W)
def
= − log p(yj ,yV∖jx;W) and the gradient with re-

spect to the parameters for a single conditioned subgraph centered around j. Recall that the mean parameters are given by µj =
[Θj(x,W)]

−1θj(yV∖j ,x,W) and Σj = [Θj(x,W)]
−1 +µjµ

T
j .

[θ(x,W)]j = ∑
u

δj∈Vuθu
j (x,w) + ∑

p,(i,j)∈Ep

[θp
ij(x,W)]j + ∑

p,(j,k)∈Ep

[θp
jk(x,W)]j (8)

[Θ(x,W)y]j = ∑
u

δj∈VuΘu
j (x,W)yj + ∑

p,(i,j)∈Ep

�[Θp
ij(x,W)]jjyj + [Θp

ij(x,W)]jiyi�

+ ∑
p,(j,k)∈Ep

�[Θp
jk(x,W)]jjyj + [Θp

jk(x,W)]jkyk�
(9)

Figure 4. Expressions required to solve the linear systemΘ(x,W)y = θ(x,W) for y using conjugate gradient at test time. This involves
computing the right-hande side, as well as the product of the system matrix with an arbitrary vector. The equations give them-dimensional
block corresponding to pixel j, both of the right-hand side and the matrix-vector product. This enables trivial parallelization over the pixels.
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Figure 5. Additional representative test set results for image denoising with structured noise. First and third row: input images with
simulated dust on the camera lens. Second and last row: RTF denoising results with a 3x3 model and decision trees of depth ten (PSNR
27.85).

Figure 6. Additional test set denoising results, σ = 30. From left to right: Noisy input image; ground truth; FoE MAP 3x3; FoE MAP 5x5;
FoE MMSE 3x3; FoE MMSE PW; BM3D; RTF 3x3.
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(a) (b) (c) (d) (e) (f)
Figure 7. Face colorization (top rows: full images, bottom rows: zoom-in). Given a gray-scale test image (b), the goal is to recover its
color. (a) The ground truth. (c,d) Two competitors (see Fig. 12 in main paper for details). (e) Our result with unaries only (one tree,
depth ten). While the overall result is encouraging the details are unfortunately blurry (see zoom-in). This is likely caused by the fact that
neighboring pixels make independent decisions. (f) Our result with field (4-connectivity, one unary tree, two pairwise trees, all depth 10,
separately trained). The overall result, as well as the zoom-in, looks very convincing.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Training data for experiment: Detection and Registration
(main paper: Sec. 4.4 and Figure 13). Left is input image and right
is ground truth labeling.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Results on test data for experiment: Detection and Reg-
istration (main paper: Sec. 4.4 and Figure 13). Each row from left
to right: input image, ground truth (RGB), unary prediction, RTF
3x3 prediction.
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