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Abstract. After a decade of rapid progress in image denoising, recent
methods seem to have reached a performance limit. Nonetheless, we
find that state-of-the-art denoising methods are visually clearly distin-
guishable and possess complementary strengths and failure modes. Mo-
tivated by this observation, we introduce a powerful non-parametric im-
age restoration framework based on Regression Tree Fields (RTF). Our
restoration model is a densely-connected tractable conditional random
field that leverages existing methods to produce an image-dependent,
globally consistent prediction. We estimate the conditional structure and
parameters of our model from training data so as to directly optimize
for popular performance measures. In terms of peak signal-to-noise-ratio
(PSNR), our model improves on the best published denoising method by
at least 0.26dB across a range of noise levels. Our most practical variant
still yields statistically significant improvements, yet is over 20× faster
than the strongest competitor. Our approach is well-suited for many
more image restoration and low-level vision problems, as evidenced by
substantial gains in tasks such as removal of JPEG blocking artefacts.

1 Introduction

Image restoration has a rich history in image processing, with special cases such
as image denoising having received significant attention over the years. In general
terms, the problem can be defined as follows: a natural image y is corrupted
by a distortion process x = f(y). We are only given the corrupted image x
and our goal is to recover the original image through an estimate ŷ. Ideally,
the estimate could be obtained through the inverse process f−1. However, in
practice f is either stochastic in nature, or deterministic but non-invertible. As
a consequence, perfect reconstruction of y is impossible most of the time.

While one can still aim at finding a reconstruction ŷ that is close to the
original image, this immediately raises the question how the quality of such a
reconstruction should be measured. In the past, the squared error ‖y− ŷ‖22 has
often been chosen because it is convenient computationally. More recently, mea-
sures of perceived quality, such as the structural similarity index [1], have become
popular. When designing an image restoration method, one should be aware of
the implications of optimizing the algorithm for one measure over the other. As
Fig. 1 shows, this choice can considerably impact the reconstructions. Yet, for
many approaches, it is not clear which performance measure they optimize.
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Ground truth
MSE 0, ISSIM 1

Noisy input
MSE 3230, ISSIM 0.785

Output IssimRTF
MSE 313, ISSIM 0.932

Output MseRTF
MSE 273, ISSIM 0.893

Fig. 1: Bias imposed by the loss function: We show reconstructions of an image
corrupted by structured noise (cf. Section 5.3), by two models with identical
specifications, except for one being optimized for information content-weighted
structural similarity (ISSIM) [2], and the other for mean squared error (MSE).

Our contributions. We introduce a novel image restoration framework based
on the recently introduced, non-parametric Regression Tree Fields (RTF) [3],
and extend it such that the method can be optimized for any differentiable
loss function. This enables us to directly optimize all aspects of our model for
involved measures of perceived quality, such as structural similarity.

Our model is a highly-connected conditional random field that produces glob-
ally consistent image reconstructions tailored to specific loss functions. Both
image features and reconstructions made by existing restoration methods are
seamlessly integrated into the random field, and their dependency on the local
image context is represented non-parametrically.

In terms of structural similarity (SSIM), peak signal-to-noise-ratio (PSNR),
and mean absolute error (MAE), we obtain the best published image denoising
results by a statistically significant margin. Our method is visibly better than
the best published methods [4, 5]. We further present results in removal of JPEG
blocking artefacts that surpass the state-of-the-art SA-DCT method [6].

Related work. Our learning approach is closely related to Gaussian conditional
random fields [7], Regression Tree Fields [3], and their discrete counterpart [8].

Image denoising has a rich history in image processing and a wide variety
of image denoising methods exist. Patch-averaging methods such as BM3D [9]
build weighted averages of noisy image patches and combine these into a single
prediction. Sparse coding as in the LSSC method [5] optimize a dictionary of
image patches within each image. Fields-of-Experts (FoE) [10, 11] use a higher-
order Markov random field as generative probabilistic image model and combine
it with an analytic noise model to obtain a posterior distribution over noise-
free images. The recent expected patch log likelihood (EPLL) method [4] uses
an image patch model but combines all individual patch predictions to jointly
maximize the expected patch likelihood of the predicted image.

The importance of optimizing the right loss function has been pointed out
by [12, 13], among others. In [14], a denoising method was explicity optimized for
SSIM, but only using a few manually tuned hyper parameters. Complimentarity
of multiple methods was previously noticed for optical flow estimation [15].
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2 Background

We first give a brief introduction to Gaussian conditional random fields [7] and
point out their relation to regression tree fields [3]. Our main technical contri-
butions will be introduced in Sec. 3.

Notation. Bold uppercase letters denote matrices and functions returning ma-
trices, while vectors and functions that map to vectors are denoted by bold
lowercase letters. Scalar entities are set in regular typeface.

2.1 Gaussian Conditional Random Fields

The conditional version of Gaussian random fields was first introduced in [7].
Consider an observed input image x, and a corresponding labeling, the output
image y. Gaussian CRFs model the probability of each output given an input
image, p(y | x; w) ∝ exp[−E(y | x; w)], via a quadratic energy

E(y | x; w)
def
= 1

2yTQ(x,w)y − yTl(x,w). (1)

Together with the input x, the model parameters w determine the coefficients
Q(x,w) � 0 and l(x,w) of the energy. For a given input x, the prediction
ŷ(x,w) under this model is given by

ŷ(x,w)
def
= argmax

y
p(y | x; w) = [Q(x,w)]−1l(x,w), (2)

which is typically found by solving the sparse linear system Q(x,w)y = l(x,w).
The solution is both the mean and the mode of the Gaussian density p(y | x; w).

Parameter Estimation. Exact maximum likelihood estimation is deemed
computationally infeasible in [7], so the authors estimate the parameters w from
training data D = {(x(i),y(i))}Ni=1 by minimizing the empirical risk

R`(D,w)
def
=

1

N

N∑
i

`
(
ŷ(x(i),w),y(i)

)
≈ Ep(y,x) [` (ŷ(x,w),y)] . (3)

The loss function `(ŷ,y) : Y×Y 7→ R measures the error present in the prediction
ŷ relative to the ground truth y. By choosing ŵ = argminw R(D,w), the model
is determined such that its predictions incur the least possible loss on the training
data. As we will demonstrate empirically throughout this paper, this approach
has benefits beyond the computational perspective.

2.2 Regression Tree Fields

Regression tree fields [3] extend the original Gaussian CRF model in two ways.
First, the energy of a labeling is specified in terms of local models over subsets
of pixels. The parameters of these local models include a linear term and an
inverse covariance matrix, both estimated from data. Second, the local model
that is in effect at a given position of the image is determined via a regression
tree (cf. Fig. 2), rendering the approach non-parametric.
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Fig. 2: Illustration of how regression trees and random fields are combined in the
regression tree field: a pairwise factor type is instantiated on a grid of random
variables. At each instantiation a regression tree is evaluated on the surrounding
image content, performing a sequence of tests (1, 2 and 3) until a leaf node is
reached. Because the image content differs around each factor instantiation, the
leaf node reached can also be different. The selected leaf node determines which
effective interaction is used for the factor. The conditional model now becomes
a Gaussian random field, enabling efficient inference as a solution to a linear
system of equations.

Parameterization. Each local energy term working on a subset of pixels is
called a factor and denoted by F . The components of y corresponding to the
pixels covered by factor F will be denoted by column vector yF . Factors sharing
the same parameters are grouped into types. The set of all factors F of type t
is denoted by Ft. Each factor type t defines a regression tree that stores at its

leaves l ∈ Lt a set of parameters wt = {L(l)
t ,Q

(l)
t }l∈Lt

. We define Lt(xF ) and

Qt(xF ) as maps to the parameters Q
(l∗)
t and L

(l∗)
t of the particular leaf l∗ that

was selected for factor F of type t given the observed input image x.
The energy of a particular factor F of type t then assumes the form

Et(yF | xF ; wt)
def
= 1

2yT
FQt(xF )yF − yT

FLt(xF )bt(xF ), (4)

where bt(xF ) ∈ RBt is a linear basis vector whose dimensionality depends on
the factor type. In the simplest case, this term is constant, bt(·) = 1 ∈ R, but
we will in addition use more general image features in our experiments. For the
parameters, if yF ∈ RDt , we have Lt(xF ) ∈ RDt×Bt and Qt(xF ) ∈ RDt×Dt � 0.

The positive-definiteness constraint on the latter implies that all Q
(l)
t parameters

must also be positive-definite and ensures that

E(y | x; w)
def
=
∑
t

∑
F∈Ft

Et(yF | xF ; wt) (5)

leads to a valid Gaussian density p(y | x; w) ∝ exp[−E(y | x; w)].
For factors of any size, (5) can again be written compactly as in (1), so

higher-order factors do not increase expressiveness of the model. The entries
of Q(x,w) and l(x,w) arise as sums of per-factor contributions Qt(xF ) and

lt(xF )
def
= Lt(xF )bt(xF ), respectively. Predictions are again obtained as in (2).
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∂`(ŷ(x,w),y)

∂wi
=
∂`(ŷ,y)

∂ŷ

∂([Q(x,w)]−1l(x,w))

∂wi
(by chain rule)

= ∂`(ŷ,y)
∂ŷ

[Q(x,w)]−1×[
∂Q(x,w)

∂wi
[Q(x,w)]−1l(x,w) + ∂l(x,w)

∂wi

] (by product rule)

= ĉT ∂Q(x,w)
∂wi

ŷ + ĉT ∂l(x,w)
∂wi

. (ĉ
def
= [Q(x,w)]−1[ ∂`(ŷ,y)

∂ŷ
]T)

Fig. 3: Derivative of the loss function with respect to a single model parameter.

It is straightforward to further develop ∂Q(x,w)
∂wi

and ∂l(x,w)
∂wi

since the entries of
Q(x,w) and l(x,w) are simply affine functions of w, as per factor energy (4).

3 Loss-Specific Training of Regression Tree Fields

The RTF parameterization is powerful, but how can we find trees and leaf param-
eters to minimize the empirical risk? Ideally both the structure of the regression
trees as well as their parameters are jointly chosen to minimize this objective.
But because the RTF model is a random field, all parts of the model interact
with each other and this makes joint minimization challenging. We now show
that joint loss-based training is indeed possible, and can be achieved at compu-
tational cost similar to the original pseudo-likelihood approach of [3]. This is our
main technical contribution.

3.1 Parameter Optimization

Consider first how the model parameters w can be optimized for a given set
of regression trees associated with the factor types of our model. As first noted
by [7], the prediction of a Gaussian CRF under the current model, ŷ(x,w),
can be differentiated with respect to the model parameters w. Since the RTF
parameterization admits the canonical form of a Gaussian CRF, this approach
is applicable in our case.

In Fig. 3, we develop the derivative of the loss function with respect to a
single model parameter wi. To evaluate the loss, the prediction ŷ on the training
image is required. The derivative furthermore requires the solution ĉ to a second
sparse linear system of equal dimensionality. To evaluate the full gradient of the
empirical risk (3), these two solutions need to be obtained once per training

image. A minor technical complication is that the Q
(l)
t parameters must remain

positive-definite, which can be handled efficiently by projecting onto the convex
cone of positive-definite matrices [3]. The parameters can then be optimized
using any projected gradient method [16, 17].

Note that this procedure measures the quality of the actual predictions of our
model on the training data and adjusts the model parameters so as to optimize
these predictions in the specific sense of loss function `. This can be thought of
as a “self correcting” mechanism. The practical benefits of this approach over
pseudo-likelihood estimation, as used in [3], are explored in detail in Sec. 5.
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Fig. 4: Benefits of splitting tree nodes according to the largest increase in gradient
norm. We plot the restoration performance of an RTF that is trained for the ap-
propriate loss as a function of the depth of the regression trees. The performance
is evaluated on test data of the structured noise dataset (cf. Sec. 5). Nodes are
split either by maximizing the norm of the gradient with respect to the model
parameters (gradient norm criterion), or using the classic squared residuals cri-
terion. (a) Comparison in terms of MSE: the squared residuals criterion aims at
the appropriate loss, but cannot take into account that the trees are combined in
a random field. (b) Comparison in terms of ISSIM: again, the squared residuals
criterion disregards dependencies among trees, and additionally optimizes the
wrong loss, so the gradient norm criterion is even more important.

3.2 Tree Induction

Conversely, assume that the model parameters have been optimized for the cur-
rent tree structure. To allow for further descent in the objective, it is desirable
to further grow the trees, effectively introducing new model parameters at the
newly added leaf nodes. A common approach in growing stand-alone regression
trees is to select splits that minimize the sum of squared residuals, i.e. the sum of
squared distances of individual data points from their mean [18]. This approach
is not well-motivated when learning an RTF. First, it is often desirable to use
a loss function other than squared error, and second, the regression trees of the
factor types interact with each other in the random field, so it is misguided to
grow each tree as if their predictions were made separately.

In [3], the authors show that for the pseudo-likelihood objective, it is possible
to efficiently split tree nodes based on the largest increase in gradient norm. An
increase in the gradient norm indicates that further decrease in the objective
function is possible. This approach avoids the mistake of learning trees sepa-
rately, but still does not account for the loss function at test time.

We now demonstrate that a similar approach is possible using any differen-
tiable loss function `, and indeed it results in considerable gains in practice (cf.
Fig. 4). The idea is to consider the gradient contributions by individual factors
as separate data points, in terms of which the split criterion can be evaluated
efficiently. Let us make this more precise.
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Lemma 1 For any differentiable loss function `(·, ·), the derivative of R`(D,w)

with respect to the parameters of leaf l of factor type t, ∂R`(D,w)

∂w
(l)
t

, decomposes

into contributions of the factors F ∈ F (l)
t for which leaf l is active.

Proof. Consider the derivative of the loss function with respect to a single model
parameter wi, given in Fig. 3. By further noting that the entries of Q(x,w) and

l(x,w) are affine functions of the w
(l)
t = {Q(l)

t ,L
(l)
t } parameters, arising from

(5), we develop the derivatives with respect to these parameters as

∂`(ŷ(x,w),y)

∂Q
(l)
t

=
∑

F∈F(l)
t

ĉF ŷT
F and

∂`(ŷ(x,w),y)

∂L
(l)
t

=
∑

F∈F(l)
t

ĉF [bt(xF )]T, (6)

where we again use ŷ and ĉ to denote the solutions to the sparse linear systems
that must be solved (cf. Fig. 3), and ŷF and ĉF denote column vectors containing
only the components corresponding to the pixels covered by F . Notably, ĉ is the
only term in (6) that depends on the loss function, so the decomposition over
factor contributions holds irrespective of the definition of `(·, ·), as long as the
function is differentiable and ĉ is thus well-defined. ut

To state our main result, let w denote the model parameters before a leaf l
is split into two new leaves lleft and lright. We denote by w′ the parameters after
a particular split. Since l is no longer a leaf in the new tree, and two new leaves

are added, we have w′ = {w \w
(l)
t } ∪ {w

(lleft)
t ,w

(lright)
t }.

Proposition 1 The increase in gradient norm, ∆ = ‖∂R`(D,w′)
∂w′ ‖− ‖∂R`(D,w)

∂w ‖,
achieved by a split of leaf l of factor type t can be computed purely locally in

terms of the contributions by the factors F ∈ F (l)
t for which leaf l is active.

Proof. Consider the gradient norm before a split, C
def
= ‖∂R`(D,w)

∂w ‖. The squared
norm decomposes over the components of the individual leaves, so we obtain

∆ =

√
C2 −

∥∥∂R`(D,w)

∂w
(l)
t

∥∥2
2

+
∥∥∂R`(D,w′)

∂w
(lleft)
t

∥∥2
2

+
∥∥∂R`(D,w′)

∂w
(lright)

t

∥∥2
2
− C. (7)

Note that C remains constant among splits and can be pre-computed. By our
result of Lemma 1, the other terms depend only on the individual contributions

of factors F ∈ F (l)
t = F (lleft)

t ∪F (lright)
t and can thus be computed efficiently. ut

In practice, when evaluating split candidates, we initialize the parameters

of the candidate leaves to w
(lleft)
t = w

(lright)
t = w

(l)
t . This way, the increase in

gradient norm achieved by a split can be interpreted as a measure of how much
gain is possible over the current parameter setting. Moreover, this approach
ensures monotonic decrease in the objective function, since immediately after a
split, the same local factor models are in effect as before. However, the degrees
of freedom have increased, so further progress in the objective may be possible.
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Start with trees consisting solely of root nodes;
repeat

(Re-)optimize all parameters w at the current leaf nodes ;
foreach training image i do

Solve two sparse linear systems to obtain ŷ(i) and ĉ(i), as in Fig. 3;

foreach factor type t and its regression tree do
foreach training image i do

foreach factor F ∈ Ft of matching type do

Compute the gradient contribution via ŷ
(i)
F and ĉ

(i)
F , as in (6) ;

Sort F and its contribution into the target leaf ;

foreach leaf l do

From the contributions, find the split that maximizes ‖ ∂R`(D,w′)
∂w′ ‖;

Split node l into new child leaves (lleft, lright) ;

Set w
(lleft)
t ← w

(l)
t and w

(lright)

t ← w
(l)
t ;

until maximum depth reached ;
Optimize all parameters w to final accuracy ;

Alg. 1: The parameters and the tree structure of an RTF can be optimized jointly for
loss function ` in a greedy iterative algorithm. The lines that changed compared to the
original joint pseudo-likelihood training algorithm in [3] are highlighted in blue.

3.3 Summary of Loss-Specific Training

In this section, we developed procedures for optimizing the model parameters
given a fixed set of regression trees, and for splitting the trees given the model
parameters that are optimal for the current tree structure. Using these building
blocks, one can start from regression tree stumps consisting solely of root nodes
and optimize over the model parameters and the tree structure in a greedy
manner. At each iteration, the model parameters are first optimized, and the
leaves of the trees are then split according to the largest increase in gradient
norm to enable further progress in the objective. This iterative scheme is outlined
in Alg. 1. The main hyper parameter is the maximum depth of regression trees,
which we suggest should be determined from validation data.

4 Application to Image Denoising and Deblocking

The image restoration problem maps into our framework as follows. The observed
input image x denotes the corrupted image, which is generated from ground
truth y via some perturbation process. In the classical image denoising setting,
an additive white Gaussian noise assumption is made, that is, x = y + z for z ∼
N (0, σ2I). However, we will also consider images corrupted by JPEG blocking
artefacts and a structured noise model (cf. Fig. 1) in our experiments. In fact,
the ability to handle arbitrary noise models is a major strength of our approach.

The restored image ŷ is then obtained as the prediction of our model given

the corrupted input, i.e. ŷ
def
= ŷ(x,w) = [Q(x,w)]−1l(x,w).
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Fig. 5: Existing denoising methods contain complementary information: we pro-
cess a noisy image (left, σ = 40) using four denoising methods (BM3D, EPLL,
FoE, LSSC). For each pixel and using the ground truth we select the best possi-
ble prediction among the methods (2nd column). Compared to the ground truth
this prediction has some remaining error (3rd column). In different parts of the
image, different methods are selected over larger regions (4th column), indicating
that the methods have varying strengths that depend on the image content.

Feature engineering. Remember that the entries of Q(x,w) and l(x,w) are

sums of per-factor contributions Qt(xF ) and lt(xF )
def
= Lt(xF )bt(xF ), which

depend on the evaluation of a regression tree.
Depending on our system configuration, the basis vector bt(xF ) in the leaf

model of a unary or pairwise factor is initialized from one or more of the following
sources: a) the corrupted image itself, b) responses of a fixed filterbank, and c)
predictions by base methods; at the position of the pixels covered by the factor.

In the regression trees, we use feature tests inspecting the input image, the
filter responses and the output of base methods at offsets relative to the position
of a factor. For JPEG deblocking, we use two more feature tests indicating
whether the position of the factor lies at the boundary of a 4× 4 or 8× 8 block.

For the filter responses, we use the RFS filterbank3 to derive 38 responses
per pixel of the input image. The use of base methods varies depending on the
restoration task and will be described per experiment. Our motivation is as fol-
lows: for many established image restoration tasks, there exist highly engineered
task-specific methods. These competing approaches often contain complemen-
tary information, as illustrated for denoising in Fig. 5. In our non-parametric
field model, the relative contribution of the base methods can be learned per
image context, such that their complementary strenghts can be exploited.

Model selection and training. We use a similar RTF specification as in [3],
considering random fields models with dense pairwise connectivity in either a
3× 3 or a 5× 5 window centered around the current pixel, and tree depths of 1,
3, 5, 7, 8 or 9. The best settings are chosen based on validation data (in most
cases, a 5× 5 field at depth 8 or 9 was selected).

We follow the regularization procedure of [3], i.e., we restrict each Q
(l)
t to

be positive-definite and furthermore bound its eigenvalues by (10−2, 102). We
found loss-specific training to be rather insensitive to the choice of these hyper
parameters, so we did not have to choose them based on model selection.

3 http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
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Fig. 6: What has our model learned about images? On the test set we visualize the
original image and the difference image between our best method, PsnrRTFAll,
and the uniform average of our competitors’ predictions (UniformAvg). One
can clearly see structure in the difference: our model has learned to refine smooth
areas (left), texture patterns (middle), and edges (right).

Ground truth Input (σ=40) Out. PsnrRTFAll Output EPLL

Fig. 7: Visual improvement in denoising quality: Our PsnrRTFAll-system
clearly produces more natural restorations than EPLL [4], see the supplement.

We train and evaluate our systems using peak-signal-to-noise ratio (PSNR);
mean absolute error (MAE); and unweighted structural similarity (SSIM), de-
fined over fixed 8×8 windows as in [2]. To train for MAE, we use the smoothed,
differentiable version in [7], but evaluate in terms of the original definition. All
measures are computed per image and then averaged over the number of images.

5 Experiments

We adhere to a strict experimental protocol, using the disjoint training, valida-
tion and test splits from the BSDS500 database [19] (images scaled by a factor of
0.5). In particular, we pay attention to clearly separate the model selection from
the final performance evaluation. We perform model selection using the valida-
tion set only and evaluate the performance on the test set only once. Given the
final results on the test set, we perform a Wilcoxon signed-ranks test [20] testing
for the null-hypothesis of equal performance between competing methods.

We consider twelve configurations of our method, based on the combinations
of loss functions we optimize (PsnrRTF, MaeRTF, SsimRTF, NlplRTF) and
three different feature sets: using only the filterbank (RTFPlain), the filterbank
and the output of BM3D (RTFBm3d), as well as the filterbank, FoE, BM3D, LSSC
and EPLL (RTFAll). Note that the NlplRTF-systems are trained to minimize
the negative log-pseudolikelihood, so NlplRTFPlain corresponds to the system
configuration in [3]. As for the loss-specific systems, we use joint training of trees
and parameters for the NlplRTF-systems, since [3] have shown this approach
works at least as well as separate training of regression trees.
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Table 1: Denoising test set results for natural images. We compare state-of-the-
art competitors to configurations of our method (RTF). For each measure, the
result of the strongest competitor is printed in blue, and the best RTF result
is printed in green. The gain of our method is statistically significant as per

Wilcoxon signed-ranks test (p < 10−5 for each blue-green pair in each column).

Method PSNR (↑ better) MAE (↓ better) SSIM (↑ better)
σ 20 30 40 50 20 30 40 50 20 30 40 50

Input 22.11 18.59 16.09 14.15 15.96 23.93 31.91 39.89 0.541 0.401 0.307 0.242

FoE [11] 28.87 26.81 25.45 24.47 6.79 8.56 10.03 11.24 0.848 0.776 0.712 0.660
BM3D [9] 29.25 27.32 25.98 25.09 6.40 7.95 9.25 10.22 0.855 0.793 0.741 0.699
LSSC [5] 29.40 27.39 26.08 25.09 6.39 7.96 9.23 10.33 0.861 0.799 0.745 0.700
EPLL [4] 29.38 27.44 26.17 25.22 6.37 7.90 9.12 10.17 0.864 0.800 0.747 0.703

UniformAvg 29.47 27.50 26.21 25.25 6.30 7.84 9.08 10.12 0.863 0.802 0.749 0.705

PsnrRTFPlain 28.95 26.97 25.71 24.76 6.78 8.44 9.72 10.85 0.840 0.771 0.716 0.666
PsnrRTFBm3d 29.52 27.58 26.24 25.38 6.23 7.73 8.99 9.92 0.863 0.803 0.750 0.711
PsnrRTFAll 29.67 27.72 26.43 25.51 6.14 7.62 8.80 9.78 0.868 0.809 0.758 0.717

MaeRTFPlain 28.92 26.94 25.69 24.75 6.78 8.43 9.71 10.81 0.840 0.771 0.715 0.669
MaeRTFBm3d 29.53 27.58 26.22 25.36 6.21 7.71 8.96 9.88 0.863 0.803 0.750 0.711
MaeRTFAll 29.67 27.72 26.43 25.50 6.12 7.59 8.77 9.74 0.867 0.808 0.758 0.717

SsimRTFPlain 28.49 26.55 25.31 24.41 7.17 8.92 10.23 11.34 0.844 0.778 0.721 0.676
SsimRTFBm3d 29.17 27.13 25.69 24.85 6.60 8.31 9.80 10.79 0.868 0.809 0.757 0.719
SsimRTFAll 29.23 27.14 25.67 24.75 6.60 8.39 9.96 11.06 0.872 0.815 0.766 0.726

NlplRTFPlain 28.61 26.66 25.32 24.42 7.09 8.80 10.28 11.37 0.828 0.758 0.694 0.653
NlplRTFBm3d 29.43 27.44 26.10 25.21 6.32 7.88 9.16 10.13 0.861 0.799 0.747 0.708
NlplRTFAll 29.60 27.64 26.34 25.40 6.20 7.71 8.92 9.93 0.866 0.806 0.755 0.714

5.1 Denoising

We perturb the images of the BSDS500 database with additive white Gaussian
noise (AWGN), for noise levels σ ∈ {20, 30, 40, 50}. The results achieved by our
system configurations, as well as the strongest competitors, are shown in Table 1.

In all cases, an RTFAll-system trained for the specific loss achieves the best
result. In terms of PSNR, the gains over the best published method range from
0.26dB to 0.29dB across the different noise levels. This is a substantial im-
provement and is clearly visible, as shown in Fig. 7. The gains are even more
pronounced in terms of MAE and SSIM. Note that it is not at all apparent how
the other systems could be made to take into account these measures.

Many applications require the right trade-off between speed and quality. In
Table 2, we show the average running time of the considered denoising methods
on 241 × 161 pixel images. The improvement of our RTFBm3d-systems over the
best published methods (LSSC and EPLL) ranges from 0.07dB to 0.16dB and
is statistically significant, yet the method runs over twenty times faster.

Observe that RTFs trained for a specific loss perform much better than
the NlplRTF-systems of [3]. The impressive difference between PsnrRTFPlain

and NlplRTFPlain ranges from 0.31db to 0.39db. This gap narrows as more
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Table 2: Typical running time of denoising methods, for a single natural image
(241× 161 pixels) on an 8-core Intel Xeon machine (2.4GHz). RTF using BM3D
as a feature (RTFBm3d) offers the best computational trade-off, as it is better
than the strongest competitor (EPLL), yet about twenty times faster.

FoE BM3D LSSC EPLL RTFPlain RTFBm3d RTFAll

Running time (s) 1,063 0.9 172 38 0.7 1.6 1,275
PSNR (σ = 30) 26.81 27.32 27.39 27.44 26.97 27.58 27.72

Ground truth Lossy JPEG Out. MaeRTFSadct Output SA-DCT

Fig. 8: Improvement in JPEG deblocking (quality 10): SA-DCT fails to remove
the blocking artefacts in the sky while our MaeRTFSadct-system succeeds.

powerful features are added to the models, but remains statistically significant.
However, training of NlplRTF-systems is typically faster (for example 22h for
NlplRTFBm3d versus 35h for PsnrRTFBm3d), and it supports subsampling of
pixels both for parameter estimation and node splitting, while subsampling is
only possible for the latter in our approach.

A natural question is whether the gains of our approach simply stem from
averaging of strong base methods. This is not the case – in Table 1, we show the
performance achieved by averaging the predictions of our competitors uniformly
(UniformAvg). Our RTFAll-systems outperform this näıve strategy by a wide
margin. The difference is statistically significant and clearly visible, cf. Fig. 6.

5.2 Deblocking

To demonstrate once more that our approach is very flexible and can be applied
to numerous low-level vision and imaging problems, we distort the images of
the BSDS500 database by JPEG blocking artefacts. We use the JPEG quality
settings 10, 20, 30 and 40 in Matlab JPEG encoder. Again, we compare our loss-
specific system configurations to the original RTF approach based on pseudo-
likelihood (NlplRTF) [3], as well as the state-of-the-art deblocking method SA-
DCT [6]. We consider configurations of our system that use only the filterbank
(RTFPlain), as well as those that include SA-DCT as a base method (RTFSadct).

Again, loss-specific training of RTFs achieves the best results (cf. Table 3).
The gains over SA-DCT are statistically significant and clearly visible, as demon-
strated in Fig. 8. The PSNR and MAE measures are strongly correlated in this
task, so there is little difference between PsnrRTF and MaeRTF, but SsimRTF
achieves better results in terms of the loss it optimizes.
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Table 3: JPEG deblocking results for natural images. We compare SA-DCT, a
state-of-the-art deblocking method, to configurations of our method (RTF). The
best RTF result is printed in green. Statistically significant gains are underlined.

Method PSNR (↑ better)) MAE (↓ better) SSIM (↑ better)
quality 10 20 30 40 10 20 30 40 10 20 30 40

Input 26.62 28.80 30.08 31.01 8.64 6.64 5.70 5.11 0.790 0.868 0.900 0.918

SA-DCT [6] 27.44 29.48 30.70 31.58 7.67 6.00 5.20 4.69 0.810 0.880 0.909 0.926

PsnrRTFPlain 27.66 29.84 31.15 32.10 7.49 5.78 4.95 4.44 0.817 0.886 0.914 0.930
PsnrRTFSadct 27.70 29.86 31.17 32.12 7.43 5.75 4.94 4.42 0.819 0.887 0.915 0.931

MaeRTFPlain 27.66 29.83 31.16 32.10 7.46 5.77 4.94 4.43 0.817 0.886 0.914 0.930
MaeRTFSadct 27.71 29.87 31.17 32.13 7.40 5.73 4.93 4.41 0.818 0.887 0.915 0.930

SsimRTFPlain 27.18 29.47 30.81 31.80 8.07 6.12 5.23 4.66 0.823 0.889 0.916 0.932
SsimRTFSadct 27.25 29.49 30.82 31.82 7.97 6.10 5.22 4.64 0.824 0.890 0.917 0.932

NlplRTFPlain 27.50 29.69 31.01 31.96 7.64 5.90 5.05 4.53 0.813 0.883 0.913 0.928
NlplRTFSadct 27.61 29.76 31.06 32.00 7.52 5.84 5.01 4.49 0.816 0.885 0.913 0.929

5.3 Structured Noise

We simulate synthetic dust artifacts as follows. For each image we sample a
random number of dust particles (Poisson-distributed with λ = 20), and then for
each particle we sample a position uniformly at random on the image plane. Each
dust particle decreases the image intensity according to a fixed 2D Gaussian-
shaped function with scaling of s = 5 (small dust) or s = 20 (large dust) pixels.
Our restoration framework is highly capable of recovering the images, even for
the large-dust case (cf. Fig. 1), while all other denoising methods we discussed are
unsuitable. For lack of a competitor, further results are shown in the supplement.

6 Conclusion

We proposed a novel framework for image restoration, based on three ideas.
First, non-parametric regression tree fields as a flexible representation. Second,
loss-specific training, selecting all aspects of the model so as to optimize a task-
specific loss such as SSIM. Third, making efficient use of existing restoration
methods, combining and improving their predictions. All three ideas together
produce a new state-of-the-art in image denoising and JPEG deblocking.

Importantly, we leveraged the work that has been invested into specialized
methods for these tasks by incorporating their predictions into our field model.
This makes our model future-proof and applicable to a wide variety of tasks.

Is image denoising solved? We believe it is not, since common performance
measures are just a proxy for the quality as perceived by a human. With our
model we can efficiently optimize for a given measure, and by analyzing the loss-
specific predictions, we hope that in the future this will provide insight into the
shortcomings that are possibly remaining in measures such as SSIM.
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