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Abstract

Most modern computer vision systems for high-level
tasks, such as image classification, object recognition and
segmentation, are based on learning algorithms that are
able to separate discriminative information from noise. In
practice, however, the typical system consists of a long
pipeline of pre-processing steps, such as extraction of dif-
ferent kinds of features, various kinds of normalizations,
feature selection, and quantization into aggregated repre-
sentations such as histograms. Along this pipeline, there
are many parameters to set and choices to make, and their
effect on the overall system performance is a-priori unclear.

In this work, we shorten the pipeline in a principled way.
We move pre-processing steps into the learning system by
means of kernel parameters, letting the learning algorithm
decide upon suitable parameter values. Learning to opti-
mize the pre-processing choices becomes learning the ker-
nel parameters. We realize this paradigm by extending the
recent Multiple Kernel Learning formulation from the finite
case of having a fixed number of kernels which can be com-
bined to the general infinite case where each possible pa-
rameter setting induces an associated kernel.

We evaluate the new paradigm extensively on image clas-
sification and object classification tasks. We show that it is
possible to learn optimal discriminative codebooks and op-
timal spatial pyramid schemes, consistently outperforming
all previous state-of-the-art approaches.

1. Introduction

Kernel Learning Algorithms have considerably influ-
enced the field of Machine Learning and Computer Vision
over the last decade. One of their main advantages is the
possibility to formalize a notion of similarity between com-
plicated objects like images through the construction of a
kernel function. Therefore the design of the kernel function
plays an important part for all kernel learning machines. In
this paper we will show that choosing a kernel is not only a
“burden” but also opens up the possibility to turn choices for

pre-processing steps into kernel parameters which in turn
can be optimized over.

The typical procedure for building a classification func-
tion from data can be split into two parts, the pre-processing
pipeline and the search for the classification function it-
self. The pre-processing pipeline may include many differ-
ent steps and each one influences the overall classification
function. For example for visual object classification typical
pre-processing steps are the choice of type and number of
features to be extracted from each image, its transformation
to aggregated representations such as histograms and pos-
sible normalizations of the latter. The main problem is that
the effect of a single choice somewhere in pipeline on the
final classification function is a-priori unclear. Most often
the only way to quantify its effect is to compare all possible
choices. This is sub-optimal; in an ideal setting one would
like to place a suitable prior over parameter choices and al-
lowing the learning algorithm to freely optimize the quality
of the classification function over all parameter settings.

To get closer to this goal, we propose to apply the fol-
lowing simple paradigm when building classification sys-
tems. Instead of choosing parameters of pre-processing
steps beforehand we turn them into parameters of the kernel
function and thus make them available to the kernel learn-
ing algorithm. In particular we propose to not only use
one parameterizable kernel but general kernel classes from
which the best kernel is chosen. This is implemented using
the well developed technique of Multiple Kernel Learning
(MKL) [2, 16, 15]. Therefore we will not only optimize the
SVM weights, but also optimize over the kernel itself. With
our paradigm pre-processing choices become kernel param-
eters and optimizing over them corresponds to optimizing
the pre-processing parameters.

We will report on several contributions, both algorithmic
and experimental. Since the classical MKL technique in-
volves only a finite number of possible kernels to combine,
we will generalize it to the infinite case. This allows to op-
timize over continuously parametrized kernel classes. Our
second contribution is a new efficient formulation of the `2-
MKL problem which does not restrict the weighting of the
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participating kernels to be sparse, similar in spirit to [9].
In the experiments we will demonstrate how to put our ap-
proach into practice. The proposed learning-based system
is shown to consistently outperform previous approaches.

We present experiments for three different scenarios, i)
learning the individual length scales for given data, ii) learn-
ing the optimal codebook for a bag-of-words representation
and iii) learning the spatial configuration for a spatial kernel
function.

The paper is organized as follows. In the next section 2
we will revisit the MKL formulation and extend it to both
the infinite case as well as to the non-sparse case. We then
present three different experimental sections 3-5. We dis-
cuss more possible applications in Section 6 and conclude
with a discussion in Section 7.

2. Multiple and Infinite Kernel Learning
Multiple kernel learning is a recent development which

follows the route of automatically selecting the kernel dur-
ing the optimization phase of the algorithm [2, 16, 15]. In-
stead of using only one kernel in a support vector machine
(SVM) a number of so-called proposal kernels k(·, ·; θ), θ ∈
Θ are given and linearly combined during training. We
wrote k(·, ·; θ) to make explicit the dependency of the
kernel on its parameters θ. Given some training data
(x1, y1), . . . , (xn, yn) and a set of admissible kernel param-
eters Θ the optimal kernel found by the MKL algorithm is
of the following form k∗(·, x) =

∑
θ∈Θ dθk(·, x; θ). The

final classification function is a SVM classifier using the
combined kernel as follows

f(x) =
n∑
i=1

αi
∑
θ∈Θ

dθk(x, xi; θ) + b. (1)

A MKL algorithm can be understood in the following
way. With fixed weights dθ the problem reduces to the stan-
dard SVM, that is finding the parameters α. The MKL algo-
rithm alternates between the outer loop: update the kernel
mixture weights dθ for fixed α; and the inner loop: update
the SVM weights α for fixed dθ.

This technique was successfully applied to the task of vi-
sual object classification [18], where different kernels cor-
respond to different features, e.g. one for color and one for
shape. The MKL algorithm is then used to figure out a ker-
nel combination which is discriminative for classifying vi-
sual categories.

2.1. Multiple Kernel Learning - the infinite `1 case

In this section we generalize the MKL setting to the infi-
nite case. This enables us to linearly combine kernels from
an infinite set of proposal kernels. We start by adopting the
primal MKL formulation of [15] to write the following con-
vex optimization problem

min
d,v,ξ,b

1
2

∑
θ∈Θ

1
dθ
‖vθ‖2 + C

n∑
i=1

ξi (2)

sb.t. yi(
∑
θ∈Θ

〈vθ, φθ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n∑
θ∈Θ

dθ = 1, dθ ≥ 0. (3)

In order to solve this problem we dualize it, turning con-
straints into variables and vice verse [3]. To this end
we write the Lagrangian, equate its derivative w.r.t. pri-
mal variables to zero and obtain the equivalent convex
formulation[6].

(IKL-Dual) max
α,λ

N∑
i=1

αi − λ (4)

sb.t. α ∈ RN , λ ∈ R
0 ≤ αi ≤ C, i = 1, . . . , N
T (θ;α) ≤ λ, ∀θ ∈ Θ,

where we defined

T (θ;α) =
1
2

n∑
i,j=1

αiαjyiyjk(xi, xj ; θ),

and where λ is the Lagrange multiplier corresponding to
the `1 equality constraint

∑
θ∈Θ dθ = 1. Each possible ker-

nel parameter θ now defines a constraint T (θ;α) ≤ λ. We
want to point out the following important observation. The
dual problem can also be applied to the case of infinitely
many kernels, which corresponds to a infinite set Θ [1, 6].
Then (4) becomes a semi-infinite program [7]. Although
there are an infinite number of proposal kernels one can
prove that at the optimal solution there are only a finite num-
ber non-zero weights dθ. Therefore it suffices to search for
these [7].

The form of (4) suggests a delayed constraint generation
algorithm to solve it. We start with a small finite kernel
parameter set Θ0 ⊂ Θ and call a standard MKL solver to
optimize over this set. This produces the variables α and
also returns the Lagrange multiplier λ. Now we solve the
subproblem

θ∗ = arg max
θ∈Θ

T (θ;α). (5)

If T (θ∗;α) > λ we include θ∗ in the kernel parameter set,
i.e. set Θt+1 = Θt ∪ {θ∗} and reiterate. The algorithm is
summarized below.

At each iteration we have to search for a maximum of
T (·;α) which usually is a non-concave and possibly com-
plicated function. Finding the guaranteed global optimum
is therefore intractable for high dimensional θ. However if
we find some kernel parameter θ for which T (θ;α) > λ, it
is guaranteed that the objective function (4) increases. Ad-
ditionally, we could stop at any iteration and have a valid



Algorithm 1 Infinite Kernel Learning (IKL)
Input: Regularization constantC, Kernel parameter set Θ,

Training set S = {(x1, y1), . . . , (xn, yn)}
Output: Parameters α, b, dθ

1: Select any θv ∈ Θ and set Θ0 = {θv}
2: t← 0
3: loop
4: (α, b, dθ, λ) ← MKL solution with Θt {Solve re-

stricted master problem}
5: θv ← arg maxθ∈Θ T (θ;α) {Solve subproblem}
6: if T (θv;α) ≤ λ then
7: break
8: end if
9: Θt+1 = Θt ∪ {θv}

10: t← t+ 1
11: end loop

classification function of form (1), in other words the prob-
lem is always primal feasible in (2). The IKL solution is
guaranteed to have an equal-or-better objective in (2) than
any finite MKL solution with an a-priori chosen kernel set
Θf , because we can set Θ0 = Θf and improve from there.

2.2. Multiple Kernel Learning - the `2 case

The primal `1-MKL (2) makes use of a simplex con-
straint (3) on the weights in order to enforce a sparse so-
lution with only few non-zero dθ. We change this formu-
lation by replacing the `1 constraint with a `2 norm on the
weights. This is similar to [9], where it was found that a
hard `2-norm constraint outperformed the sparse `1-MKL
for a bioinformatics task. Our variant is more efficient and
implemented by the following convex optimization problem

min
d,v,ξ,b

1
2

∑
θ∈Θ

1
dθ
‖vθ‖2 + C

n∑
i=1

ξi + ‖d‖22 (6)

sb.t. yi(
∑
θ∈Θ

〈vθ, φθ(xi)〉+ b) ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n.

This modification has the following effect. Instead of a
sparse solution at the optimum all weights dθ will be non-
zero. Therefore this formulation cannot be easily general-
ized to the infinite case. The algorithms for solving the `1-
MKL and `2-MKL are very similar and one only needs to
make minor modifications. Again we use the SimpleMKL
algorithm presented in [15] to solve the problem.

The difference between the `1-MKL and the `2-MKL
formulation can also be understood as two different priors
on the set of the proposal kernels. If only a few of them
should be selected the `1 method should be chosen. If on
the other hand all of the possible choices of kernel parame-
ters are reasonable one can use the `2 formulation to include
them all but let the algorithm adjust the ratios between them.
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Figure 1. Chessboard toy example. Left: distribution of training
data in the first two dimensions, right: T (θ) as a function of dif-
ferent kernel parameters θ. The highest value corresponds to the
best kernel parameter that can be added at this iteration, i.e. the
one which yields the largest decrease in the SVM objective.

3. Learning the Scaling
We will now present an example which demonstrates

both how our paradigm can be applied to select among pre-
processing parameters and how the subproblem of the IKL
algorithm can be solved in practice.

A typical feature pre-processing step is to remove the
mean of the data and scale each dimension to unit variance.
It remains unclear if this pre-scaling is helping or hurting
the problem. Therefore we aim to learn the variance in each
single dimension individually. Let x, x′ ∈ RD be two data
points with [x]d denoting the d’th component of x. We offer
the following set of proposal kernels to the IKL algorithm

k(x, x′; {θ1, . . . , θd}) = exp(−
D∑
d=1

θ2
d([x]d − [x′]d)2),

diagonally scaled Gaussian kernels with individual scaling
in each dimension. This set consists of infinitely many ker-
nels, continuously parametrized over θ ∈ Rd+. The final
kernel found by IKL is a finite linear combination of these
proposal kernels.

We sample a total of 300 training points from the chess-
board pattern shown in Figure 1. We add 18 noise dimen-
sions to form a 20 dimensional feature vector. The best pos-
sible kernel would be one setting θ2

d = 0 for noise dimen-
sions d = 3, . . . , 20 and choosing θ1 and θ2 as the inter-
class distance between the points in the two dimensions (2.0
in the first, 1.0 in the second dimension).

The IKL algorithm is started using some random initial
kernel which is not the “correct” one. The first iteration
with this kernel yields the current SVM parameters α. Now
one has to solve the subproblem to find a new kernel to in-
clude in the problem. A 2D slice of the function T (·;α) is
shown in the right plot of Figure 1. The parameter θ is a
20-dimensional vector and for visualization we show only
the first two dimensions, varying θ1, θ2 while keeping the
others fixed θd = 0, d = 3, . . . , 20. The hyperplane asso-
ciated with the Lagrange multiplier λ ≈ 62 is also shown.
All parameters with function values above this hyperplane
correspond to kernels whose inclusion will decrease the ob-



jective function. The plot of Figure1(b) includes the “true”
set of parameters (the ones described above) for the prob-
lem and indeed the objective takes a maximum at this point.
One should be reminded that T is a 20 dimensional non-
concave problem and thus one cannot easily solve for the
global optimum. We implement the search for a local opti-
mum of T (·;α) using gradient ascent initialized at different
starting points. This worked very well in practice.

In the course of the algorithm, IKL identifies the signal
dimensions automatically and selects only a single kernel
which achieves a perfect accuracy on a held out test set. To
achieve the same result with a SVM or MKL learner one
would have to cross-validate over different scaling factors
for each dimension (220 for only two choices per dimen-
sion) or guess the correct scaling for the proposal kernels.
In contrast, the IKL algorithm can use the very general ker-
nel class and one can use T as a handle to implement a
search algorithm rather than to rely on guessing the correct
parameters beforehand as it is necessary for MKL.

4. Learning a Suitable Codebook
Using a “bag-of-visual-words” representation has be-

come standard practice for many computer vision tasks, see
e.g. [14]. The benefit of using a histogram representation
is that it converts sets of arbitrary many elements to a fixed
length feature descriptor. The usual procedure to obtain this
representation is as follows. Descriptors are generated at
some points in the image, e.g. SIFT descriptors. Now a
codebook of sizeK with elements of the same feature space
is created. The feature points are vector-quantized using
the codebook to yield a histogram representation. This non-
linear pre-processing step involves different choices to be
made: Which is the best codebook for a given task? How
should quantization be performed? Should the resulting
representation be normalized and if so, how? Many recent
works have addressed these problems and proposed differ-
ent solutions, see e.g. [14, 11, 17].

The common part of all approaches is the use of a clas-
sification function (most often a SVM) after application
of the pre-processing pipeline. Our approach is to start
with this function directly and design kernels which cor-
respond to the different choices one could have made be-
forehand. It is hard to a-priori distinguish between discrim-
inative and not-so-discriminative codebooks and therefore
explicitly avoid to do so. We regard the codebooks them-
selves as free parameters which are available to the learning
algorithm to optimize.

We design proposal kernels in the following way. Let
x, x′ be bags of D-dimensional image features, e.g. 128
dimensional SIFT features. They are quantized to a his-
togram representation using a codebook C with K code-
words by means of a nearest-neighbor quantization function
qC(x) : RD → NK+ mapping features into a histogram bins

using C. We regard each possibly choice of a codebook as
a parameters of the kernel. The proposal kernels are χ2-
kernels of the following form

k(x, x′; {γ, C}) = exp
(
−γ2χ2(qC(x), qC(x′))

)
,

where χ2 : RD × RD → R denotes the χ2 distance func-
tion. Although we could also optimize over γ, for simplic-
ity we always fix γ2 to be the reciprocal of the median of all
pairwise training distances. The only parameter left to the
problem is thus the codebook C.

Learning the `1-MKL involves the maximization of
T ({C};α) over all possible codebooks. For simplicity, we
optimize T ({C};α) approximately by evaluating it at many
codebooks, randomly sub-sampled from the training set.

A linear combination of kernels which correspond to dif-
ferent codebooks can also be understood as a soft clustering
step. Each feature vector is not only assigned to one code-
book vector but for each kernel to a different one. Therefore
its position in the feature space is described more precisely.

4.1. Experimental Setup

We test the codebook learning approach on four datasets
Brodatz, KTH-TIPS, UIUCTex and Graz-02, some of
which were also used in [14] to investigate the influence
of codebook generation and sampling methods. Some sam-
ple images from the datasets are shown in Figure 2. Graz-
02 is an object classification dataset with three classes
(bikes, persons, cars) consisting of 1096 images (we re-
moved the background class), approximately one third for
each category. KTH-TIPS contains 810 images from ten
categories: aluminum foil, brown bread, corduroy, cotton,
cracker, linen, orange peel, sandpaper, sponge and styro-
foam. The Brodatz dataset consists of 112 texture images,
one per class. These images were subdivided into thirds
horizontally and vertically to produce 9 images per class.
The last dataset UIUCTex consists of 40 images per classes
of 25 textures distorted by significant viewpoint changes
and some non-rigid deformations.

We extract PCA-SIFT [8] feature descriptors from the
images using a dense grid of points. The radius of the
patches we use for feature extraction is varied over 4 dif-
ferent scales (8 to 50 pixels for the UIUCTex images and 4
to 16 pixels for the others). This resulted in the following
numbers of features for the datasets. Brodatz: 1764 fea-
tures, KTH-TIPS 1600, Graz-02 3072 and UIUCTex 1976
features. All features are 36 dimensional and all images
within one dataset have the same number of features.

Each dataset is split 25 times into half for training and
half for testing. The first five splits are used for model selec-
tion: we choose the C from the range 10−2, 10−1, . . . , 103

which yields best performance on the first five splits. This
choice is applied to all 25 splits of the data to obtain the



Brodatz KTH TIPS UIUCTex TU-Graz
Figure 2. Four example images from each of the datasets used for Codebook learning experiments. All datasets are multiclass.

reported result. We resolve multiclass decisions by using
one-versus-rest classifiers.

4.2. Results

We compare four different methods and different sizes
K of the codebooks. The baseline method uses a single
codebook only. For this method we found it to be irrele-
vant whether the codebook is created by random sampling
or k-means clustering of training vectors, a finding consis-
tent with the result of [14]. The other methods all use multi-
ple codebooks. We use i) uniform weights dθ with no learn-
ing, ii) `1-MKL learning, and iii) `2-MKL learning. Results
are shown in Figure 3 and Table 1. We summarize:

1. Use more codebooks and averaging dramatically im-
proves the performance (dashed versus solid lines).

2. Using `2-MKL learning does not significantly improve
the result over a simple averaging step (circles).

3. The `1-MKL yields competitive results only for the
datasets UIUCTex and TU-Graz (stars). The found
codebook is much smaller which is of advantage at test
time. Picking the same number of codebooks at ran-
dom is considerably worse (stars versus dashed lines),
thus there really is something learned by the model.

As a last remark we want to note that even using a small
codebook with only 10 elements yields competitive perfor-
mance on KTH-TIPS and UIUCTex.1

The hard quantization step qC is by no means the only
applicable choice. One could think of using a soft clustering
of the features from the beginning. For example in [17] dif-
ferent types of soft clustering with different normalization
based on uncertainty or plausibility have been proposed and
were compared to each other. In our framework we do not
pick one soft clustering and normalization beforehand but
to simply offer all of them to the learning algorithm.

5. Learning the Optimal Spatial Layout
Kernels making use of spatial information of the image

are an instructive example of how special structure of the
data can be used for kernel design. Instead of comparing

1We checked that there is no further performance gain in averaging over
even more codebooks, the results level out at 250 codebooks.

two images in its entirety only those features which fall into
a certain subwindow are compared, e.g. all those of the up-
per half. This idea lead to the design of the spatial pyramid
kernel [12].

Let us shortly review the main idea behind the spatial
pyramid kernel and then discuss how our paradigm can be
applied to spatial kernels. We subdivide the image into dif-
ferent levels, enumerated by l = 0, 1, . . .. The level l corre-
sponds to a 2l × 2l equally spaced grid on the image plane,
and thus consists of 4l non overlapping cells of equal size.
In this construction higher levels of the pyramid correspond
to a finer griding of the image. We build a histogram for
each cell in a level l individually and stack them to obtain
the final representation (4l ∗K for level l). The spatial pyra-
mid kernel compares two images by measuring the similar-
ity between the concatenated histograms for each level in-
dividually and linearly combining them as

k(x, x′) =
L∑
l=1

dlkl(x, x′),

with kl being the kernel comparing the images only through
level l. The authors of [12] propose to set the weighting co-
efficients as dl = 2−(L−l) with L being the maximum level,
usually three. Although good results are reported using the
spatial pyramid kernel the question arises whether or not the
pyramidal representation of the image is the best for a given
task and if the intuition behind the choice of dk is justified.
In the following we will answer this question.

We want to let the objective function decide on the best
spatial layout and thus design the following class of spatial
kernels. By B we denote a box in the image plane2 and
by dB(x, x′) the χ2-distance comparing two images repre-
sented by a collection of local features by taking into ac-
count only features which fall into the box B. Our proposal
kernels are

k(x, x′; {γ,B}) = exp
(
−γ2dB(x, x′)

)
. (7)

The parameter γ is again chosen as described in Section 4.
During `1-MKL learning we have to maximize the function
T (B;α) over all possible boxes. This could be done by the
efficient subwindow search method [10], but for simplicity

2The box is defined in relative coordinates, so the actual size of the
image does not matter.
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Figure 3. Error rates as function of the number of codebooks on four datasets. The solid line corresponds to the result obtained using
a single codebook, dashed are results averaging over multiple codebooks. The circle and stars correspond to the `2-MKL and `1-MKL
results, respectively. The MKL results are plotted at the position of the x-axis which corresponds to the number of selected kernels.

dataset K Single Average `1-MKL `2-MKL
Brodatz 10 46.3 +- 1.8 11.4 +- 1.6 250 13.4 +- 1.8 11.9 11.1 +- 1.4 250
Brodatz 300 14.4 +- 1.1 9.2 +- 1.6 250 9.8 +- 1.2 6.6 9.0 +- 1.8 250
Brodatz 1000 11.1 +- 1.5 9.1 +- 1.3 250 9.7 +- 1.5 5.1 8.9 +- 1.2 250

KTH TIPS 10 33.4 +- 4.5 8.0 +- 2.5 250 10.4 +- 2.3 28.2 8.3 +- 1.6 250
KTH TIPS 300 13.0 +- 2.2 8.5 +- 2.0 250 8.8 +- 2.6 13.0 8.5 +- 2.4 250
KTH TIPS 1000 11.3 +- 2.2 9.6 +- 2.0 250 9.8 +- 2.1 9.3 9.7 +- 2.2 250
UIUCTex 10 36.4 +- 2.4 6.1 +- 1.0 250 7.3 +- 1.2 20.9 6.2 +- 1.1 250
UIUCTex 300 10.1 +- 1.1 5.8 +- 0.8 250 5.9 +- 0.8 9.7 5.9 +- 0.9 250
UIUCTex 1000 8.7 +- 1.0 6.3 +- 0.8 250 6.6 +- 1.0 7.7 6.3 +- 1.1 250
TU-Graz 10 39.8 +- 3.1 24.2 +- 2.2 250 25.0 +- 2.2 47.3 24.0 +- 2.3 250
TU-Graz 300 24.7 +- 1.8 19.8 +- 2.0 250 20.2 +- 1.8 23.2 19.5 +- 2.0 250
TU-Graz 1000 22.7 +- 2.5 19.2 +- 1.8 250 19.3 +- 1.8 15.4 18.9 +- 1.6 250

Table 1. Classification error and number of selected kernels for Brodatz, KTH-TIPS,
UIUCTex and Graz-02. We compare four methods: single codebook with SVM, averag-
ing of different codebook kernels, and learning the weights using `1 and `2-MKL. Results
are averages of 25 runs where the data is split into 50% training and 50% for testing.

CALsuburb kitchen bedroom

livingroom MITcoast MITinsidecity

MITopencountry MITstreet MITtallbuilding

Table 2. Example images from 9 of 13 cate-
gories of the Scene 13 dataset.

we again resort to approximate optimization by evaluating
T at random samples. We sample a box uniformly from the
set of all boxes which fall entire in the image. In the upper
left picture of Figure 5 we plotted 1000 randomly sampled
boxes on top of each other. Points in the middle appear in
more boxes than points at the boundary.3

5.1. Experimental Setup

To test the effectiveness of our paradigm, we reimple-
mented and augmented the experiments of [12]. Exper-
iments were carried out on two datasets, the Scene 13
dataset [13] consisting of thirteen different scene types like
kitchen, landscape, urban, etc. shown in Table 2 and the
prominent Caltech-101 [5] dataset. We seek to demonstrate
demonstrate how the spatial layout can be optimized over
in our framework. The Scene dataset is split 10 times us-
ing 100 images of each category as training and the rest as
testing images. For Caltech-101 we used 15 and 30 training
images and the remaining ones for testing. The results are
the mean per-class error, to not over-emphasize large cate-
gories and are averaged over five independent splits.

SIFT features of 128 dimensions are extracted from the
image at every 10-by-10 pixel position at four different
scales with the radii 4,8,12 and 16. The features are subse-

3In the pyramidal representation all points fall into the same number of
boxes, thus the corresponding picture would be all-white.

quently quantized to a codebook of size K = 300. For this
experiment we kept one codebook fixed, in order to elimi-
nate the influence of this choice in the results. For the Cal-
tech experiments the regularizer4 was set to C = 1000. For
the Scene 13 dataset we perform model selection to choose
C ∈ {0.1, 1, 10, 100} using five-fold cross validation on the
training set only. As before a one-versus-rest scheme for the
multiclass case is used.

Three different spatial layouts were used for the experi-
ments, i) a pyramidal representation using concatenated his-
tograms for the levels, ii) using all cells of the pyramid as
bounding boxes B in kernel (7) and iii) randomly sampling
bounding boxes as described above.

5.2. Results

The results of the experiments are shown in Figure 4 and
the Tables 3 and 5. We can draw the following conclusions.

1. On both datasets, using randomly sampled boxes out-
performs the spatial pyramid kernel.

2. For the Scene dataset the `1-MKL performs better, on
the Caltech dataset the `2-MKL is better. This is prob-
ably since the Caltech images depict the objects in the
center of the image and thus the average of all bound-
ing boxes (Figure 5, upper left) is an excellent prior.

4The authors of [12] forgot to report on this setting but since our results
are in accordance with theirs, this seems to be a fair choice.
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Figure 5. The upper left image depicts 1000 randomly sampled
boxes plotted on top of each other with equal weights. The other
five images show the learned spatial configuration for different
classes of the Scene13 dataset. Each one outperforms the pyra-
midal representation for both levels and cells.

3. Learning improves over simple averaging, but averag-
ing is a competitive baseline.

4. The choice dl = 2−(L−l) yields good performance but
a simple averaging is equally good.

For the Caltech-101 dataset the best stated result in [12] is
35.4% misclassification using 30 training points (picking
the best obtained test error a-posteriori). We record 36.9%
for our reimplementation of the method using a pyramidal
layout with the choice of dl = 2−(L−l) but 34.1% for ran-
domly sampled subwindows and `2-MKL optimization.

Five spatial layouts found by the `1-MKL algorithm for
the Scene 13 dataset are shown in Figure 5. All of the con-
figurations shown outperform the pyramidal representation
with any choice of weights. For the livingroom and bed-
room classes many small subwindows which are approxi-
mately uniformly distributed over the image are found to be
discriminative. In contrast for the classes MITcoast, MIT-
tallbuilding and CALsuburb, very large boxes are selected
to participate in the final kernel. Here large regions are to
be compared for good results whereas images of bedrooms
and livingrooms consist of many small details.

In summary, the experiment demonstrates that we can
learn a mixture of kernels, each considering only its own
tunable spatial layout. This overcomes the fixed-grid limi-
tation of the standard spatial pyramid kernel and improves
classification performance on all four data sets.

6. Pre-processing steps as Kernel Parameters
Turning pre-processing choices into kernel parameters is

a rather general paradigm and not limited to the few exam-
ples presented above. These were chosen merely because
in the literature codebook learning and spatial kernel design
are most often thought of being individual steps before a
classification algorithm is used. Many more examples are
conceivable and in this section we will list two more.

Dimensionality reduction or whitening vectorial data us-
ing a linear transformation A such as the commonly used
Principal Component Analysis can be turned into a kernel
parameter for any kernel k by using proposal kernels of the
form k(x, x′;A) = k(Ax,Ax′). In the case the kernel k is
differentiable with respect to the parameter A we can use
gradient based methods to solve the subproblem (5).

Product Kernels which we used for the experiment
in Section 3 provide a very flexible class of kernels,
k(x, x′; γ1, . . . γK) =

∏K
k=1 exp (−γkdk(x, x′)), with

some distance functions dk. By setting γk = 0 the dis-
tance or features dk can be ignored altogether. A kernel of
this type recently won the PASCAL VOC 2007 classifica-
tion challenge [4].

7. Discussion and future work
We presented a method to make parameters of the pre-

processing pipeline explicit and offer them to a learning al-
gorithm. The demonstrated benefit is two-fold, i) we are
relieved from making manual parameter choices, ii) the re-
sulting classification functions perform better.

We introduced the IKL formulation as a natural ex-
tension to MKL. The IKL algorithm selected among pre-
processing parameters during learning. In contrast for stan-
dard MKL one would have to choose a finite number of
fixed parameters beforehand.

For the practitioner the experimental results give some
general insights on what can be expected to work: if many
different but equally plausible pre-processing choices exist,
then a simple averaging gives competitive results; we have
seen this behaviour for the codebook learning experiments.
If on the other hand it is expected that only few of many pos-
sible pre-processing choices are effective, then MKL/IKL
can identify the best ones and there is no need for manual
pre-selection; this has been observed on the spatial layout
learning experiment and the Scene13 data set.

We believe the proposed methodology has applications
in all high-level computer vision tasks where machine learn-
ing methods are used successfully.
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Figure 4. Results of the classification task on the Scene-13 dataset (left) and Caltech-101 (right) using 15/30 training images. The dashed
lines correspond to the best result obtained using a pyramidal representation. The solid lines are results from averaging and learning using
randomly sampled boxes. We plot the `1-MKL result as star to mark the number of selected kernels on the x-axis.

Single SVM Average 2−(L−l) `1-MKL `2-MKL
Level Levels Levels Cells Levels Cells Levels Cells Levels Cells
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Table 3. Error rates on the Scene13 dataset. We used different pyramidal setups, either (Levels) concatenating all cell histograms of one
level or (Cells) using each single pyramid cell as one kernel. The last row gives the result when using random subwindows for the layout.

Single SVM Average 2−(L−l) `1-MKL `2-MKL
Level Levels Levels Cells Levels Cells Levels Cells Levels Cells
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1000 random windows - 41.6+-0.3 - 44.6 +- 0.7 (24.2 kernels) 41.4+-0.7

Table 4. As in Table 3 but for the Caltech-101 dataset using 15 training points. Results are averaged over 5 splits.

Single SVM Average 2−(L−l) `1-MKL `2-MKL
Level Levels Levels Cells Levels Cells Levels Cells Levels Cells
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2(4× 4) 37.7 +- 1.0 39.5 +- 0.5 37.1 +- 0.7 37.5 +- 0.6 37.0 +- 0.8 37.8 +- 0.8 37.0 +- 0.8 38.6 +- 0.5 36.6 +- 0.7
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