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Abstract

A key ingredient in the design of visual object classifi-
cation systems is the identification of relevant class specific
aspects while being robust to intra-class variations. While
this is a necessity in order to generalize beyond a given set
of training images, it is also a very difficult problem due to
the high variability of visual appearance within each class.
In the last years substantial performance gains on challeng-
ing benchmark datasets have been reported in the literature.
This progress can be attributed to two developments: the
design of highly discriminative and robust image features
and the combination of multiple complementary features
based on different aspects such as shape, color or texture.
In this paper we study several models that aim at learn-
ing the correct weighting of different features from train-
ing data. These include multiple kernel learning as well as
simple baseline methods. Furthermore we derive ensemble
methods inspired by Boosting which are easily extendable to
several multiclass setting. All methods are thoroughly eval-
uated on object classification datasets using a multitude of
feature descriptors. The key results are that even very sim-
ple baseline methods, that are orders of magnitude faster
than learning techniques are highly competitive with multi-
ple kernel learning. Furthermore the Boosting type methods
are found to produce consistently better results in all exper-
iments. We provide insight of when combination methods
can be expected to work and how the benefit of complemen-
tary features can be exploited most efficiently.

1. Introduction
In this paper we address the problem of object category

classification by combining multiple diverse feature types.
For a given test image the learned classifier has to decide
which class the image belongs to. This problem is chal-
lenging because the instances belonging to the same class
usually have high intraclass variability.

To overcome the problem of variability, one strategy is
to design feature descriptors which are highly invariant to

the variations present within the classes. Invariance is an
improvement, but it is clear that none of the feature descrip-
tors will have the same discriminative power for all classes.
For example, features based on color information might per-
form well when classifying leopards or zebras, whereas a
classifier for cars should be invariant to the actual color of
the car. Therefore it is widely accepted that, instead of us-
ing a single feature type for all classes it is better to adap-
tively combine a set of diverse and complementary features
– such as features based on color, shape and texture infor-
mation – in order to discriminate each class best from all
other classes.

Finding these feature combinations is a recent trend
in class-level object recognition and image classification.
One popular method in computer vision is Multiple Kernel
Learning (MKL), originally proposed in [9]. In the appli-
cation of MKL to object classification, the approach can be
seen to linearly combine similarity functions between im-
ages such that the combined similarity function yields im-
proved classification performance [8, 11, 20].

In Section 2 we give a general overview of the problem
addressed in this paper. The Sections 3-5 describes several
combination approaches. Experiments are presented in Sec-
tion 6 and 7. We conclude with a discussion in Section 8.1

2. Feature Combination Methods

We begin with a formal definition of the problem we ad-
dress in this paper.

Definition 1 (Feature Combination Problem) Given a
training set {(xi, yi)}i=1,...,N of N instances consisting
of an image xi ∈ X and a class label yi ∈ {1, . . . , C},
and given a set of F image features fm : X → Rdm ,
m = 1, . . . , F where dm denotes the dimensionality of
the m’th feature, the problem of learning a classification
function y : X → {1, . . . , C} from the features and training
set is called feature combination problem.

1The code and scripts used to produce the results in this paper are avail-
able online at http://www.vision.ee.ethz.ch/˜pgehler/



A typical example of such a feature fm would be a bag-of-
visual-words histogram of the image. Then, the correspond-
ing dimensionality dm would be the codebook size used for
the vector quantization step. In the following, we will use
the name feature combination method for all methods which
address the feature combination problem.

Kernel methods. The object classification problem is a
special case of multiclass classification. In computer vision
the problem of learning a multiclass classifier from training
data is often addressed by means of kernel methods. Kernel
methods make use of kernel functions defining a measure
of similarity between pairs of instances. In the context of
feature combination it is useful to associate a kernel to each
image feature as follows. For a kernel function k between
real vectors we define the short-hand notation

km(x, x′) = k(fm(x), fm(x′)),

such that the image kernel km : X × X → R only con-
siders similarity with respect to image feature fm. If the
image feature is specific to a certain aspect, say, it only con-
siders texture information, then the kernel measures simi-
larity only with regard to this aspect. The subscript m of
the kernel can then be understood as indexing into the set of
features.

In the following, for notational convenience, we will de-
note the kernel response of the m’th feature for a given
sample x ∈ X to all training samples xi, i = 1, . . . , N
as Km(x) ∈ RN with

Km(x) = [km(x, x1), km(x, x2), . . . , km(x, xN )]T .

In case x is the i’th training sample, i.e. x = xi, then
Km(x) is simply the i’th column of the m’th kernel matrix.

Feature selection as kernel selection In this paper we
study a class of kernel classifiers that aim to combine sev-
eral kernels into a single model. Since we associate image
features with kernel functions, kernel combination/selection
translates naturally into feature combination/selection.

A conceptually simple approach is the use of Cross
Validation (CV) to select a single kernel from the set
{k1, . . . , kF }. Every feature combination method should
be able to outperform this baseline method or at least match
its performance if a single feature is sufficient for good clas-
sification.

In the following we will present several methods in a
unified setting along with their training procedures. An
overview of the different methods in their multiclass vari-
ant can also be found in the Table 1.

3. Methods: Baselines
We include two simple baseline methods, both of which

combine kernels in a pre-defined deterministic way and sub-
sequently use the resulting kernel for SVM training.

3.1. Averaging Kernels

Arguably the simplest method to combine several ker-
nels is to average them. We define the kernel function
k∗(x, x′) = 1

F

∑F
m=1 km(x, x′), which is subsequently

used in a support vector machine (SVM).

Training The only free parameters are the SVM parame-
ters. We use CV to estimate the best regularization constant.
A multiclass variant is build using a one-versus-all scheme.

3.2. Product Kernels

The next baseline method we consider is to combine
several kernels by multiplication. In this case we use
k∗(x, x′) = (

∏F
m=1 km(x, x′))1/F as the single kernel in

a SVM.

Training Same as for averaging.

4. Methods: Multiple Kernel Learning
Another approach to perform kernel selection is to learn

a kernel combination during the training phase of the al-
gorithm. One prominent instance of this class is MKL. Its
objective is to optimize jointly over a linear combination of
kernels k∗(x, x′) =

∑F
m=1 βmkm(x, x′) and the parame-

ters α ∈ RN and b ∈ R of an SVM.
MKL was originally introduced in [1]. For efficiency and

in order to obtain sparse, interpretable coefficients, it re-
stricts βm ≥ 0 and imposes the constraint

∑F
m=1 βm = 1.

Since the scope of this paper is to access the applicability
of MKL to feature combination rather than its optimization
part we opted to present the MKL formulations in a way al-
lowing for easier comparison with the other methods. We
write its objective function as

min
α,β,b

1
2

F∑
m=1

βmα
TKmα (1)

+C
N∑
i=1

L(yi, b+
F∑

m=1

βmKm(x)Tα)

sb.t.
F∑

m=1

βm = 1, βm ≥ 0, m = 1, . . . , F,

where L(y, t) = max(0, 1 − yt) denotes the Hinge loss.
We compare two different algorithms solving this problem
for their runtime performance, namely SILP [18]2 and Sim-
pleMKL [17]3.

The final binary decision function of MKL is of the fol-
lowing form

FMKL(x) = sign

(
F∑

m=1

βm(Km(x)Tα+ b)

)
. (2)

2Available online:www.shogun-toolbox.org/
3Available online:mloss.org/software/view/174/



Name Test-time function Coefficients Training Parameters References

Averaging y(x) = argmax
c=1,...,C

[
“

1
F

PF
m=1Km(x)

”T

αc + bc]
α ∈ RC×N (α, b)c, ind. Cc

b ∈ RC

Product y(x) = argmax
c=1,...,C

[

„“QF
m=1Km(x)

”1/F
«T

αc + bc]
α ∈ RC×N (α, b)c, ind. Cc

b ∈ RC

MKL y(x) = argmax
c=1,...,C

PF
m=1 β

c
m

`
Km(x)Tαc + bc

´ β ∈ RC×F (αc, bc, β
c)c Cc [20, 18, 1]

α ∈ RC×N ind.
b ∈ RC

CG-Boost y(x) = argmax
c=1,...,C

[
PF

m=1Km(x)Tαc,m + bc] α ∈ RC×F×N (α, b)c, ind. Cc [2]
b ∈ RC

LP-β y(x) = argmax
c=1,...,C

PF
m=1 βm

`
Km(x)Tαc,m + bc,m

´ β ∈ RF 1. (α, b)c, ind 1. Cm [4]
α ∈ RC×F×N 2. β, jointly 2. ν ∈ (0, 1)
b ∈ RC×F

LP-B y(x) = argmax
c=1,...,C

PF
m=1B

c
m

`
Km(x)Tαc,m + bc,m

´ B ∈ RF×C 1. (α, b)c, ind 1. Cm, [4]
α ∈ RC×F×N 2. B, jointly 2. ν ∈ (0, 1)
b ∈ RC×F

Table 1. Comparison of multiclass learning approaches to the feature combination problem in image and object classification. In the column
“Training” it is also noted which parameters are trained independently (ind.) over the classes c and which are trained jointly.

A slightly different MKL variant was proposed in [20]
where the norm-1 constraint on β is replaced with an extra
term in the objective function. Although this formulation is
different to (1) we empirically found that in case of strong
regularization both yield exactly the same solution. Since
high values ofC turn out to work best for the experiments in
this paper (consistent with the results of [20] where C=1000
is fixed) both variants can be regarded as being equal.

Training The only free parameter in the MKL approaches
is the regularization constant C, which is chosen using CV.
A multiclass decision is resolved with a one-versus-rest
scheme, see Table 1 for the final decision function. All one-
versus-rest classifiers can be trained in parallel.

Multiclass MKL For strongly unbalanced datasets a
MKL classifier trained as a multiclass classifier might be
preferable over the one-versus-rest setup. The authors
of [22] derive such a MC-MKL formulation in which all
parameters for all classes are trained jointly. Due to perfor-
mance issues this approach renders infeasible for the exper-
iments presented here.4

5. Methods: Boosting Approaches
As last class of feature combination methods we look at

boosting approaches and in particular propose two meth-
ods which are inspired by the MKL decision function. All
methods in this section are, as MKL, based on mixture of
kernels.

5.1. LPBoost

With the mixing coefficients βm summing to one, the
MKL decision function is a convex linear combination of

4Personal correspondence with the authors.

the real valued output of F SVMs fm(x) = Km(x)Tα+ b.
Furthermore we observe that all of the SVMs included in
the sum share the same parameter set {α, b}. Having noted
this, MKL can be understood as a restricted version of the
following more general form

F (x) = sign
F∑

m=1

βmfm(x), (3)

where fm(x) are some real valued functions, not neces-
sarily support vector machines and not necessarily trained
jointly. In Boosting terminology the fm are also known as
weak learners.

This observation leads naturally to the following model.
We use the kernels km to train F separate SVMs fm, re-
sulting in different parameter sets {αm, bm}. Subsequently
we optimize over β in a second step. Each individual func-
tion fm is not restricted to share the parameters but can be
trained to yield maximal generalization. The details of this
two-step learning procedure are given in Section 5.2.

This procedure is searching over the same hypothesis
space as MKL, allowing for multiple α does not enhance
the space of possible decision functions. The resulting de-
cision function of this approach is a convex combination of
several hyperplanes and thus itself a hyperplane. If it were
the optimal one for the MKL problem it could, due to the
representer theorem, be represented as a combination of the
kernel evaluations using only N training points. The train-
ing procedure proposed here with separate training of the
participating SVMs is a different regularization of the same
hypothesis space.

Problem formulation We propose to learn all parameters
of the model in two separate steps. In the first step the func-



tions fm are trained individually. Subsequently we optimize
over β using the following linear program, which is equiva-
lent to ν-LPBoost [4]

min
β,ξ

−ρ+
1
νN

N∑
i=1

ξi (4)

sb.t. yi

F∑
m=1

βmfm(xi) + ξi ≥ ρ, i = 1, . . . , N

F∑
m=1

βm = 1, βm ≥ 0, m = 1, . . . , F,

with ξ being slack variables. The equivalence to LPBoost
can be seen by considering the hypothesis space to be the fi-
nite set of functions {f1, f2, . . . , fF }. The problem can eas-
ily be solved using standard linear programming solvers.5

There is only one hyperparameter ν in the problem which
trades the smoothness of the resulting function with the
hinge loss on the points, analogously to the SVM regular-
ization parameter C.

5.2. Multiclass LPboost variants

It is straightforward to derive a multiclass version of
Problem (4). In the multiclass case with C classes, the func-
tions fm are no longer real-valued but map into a C dimen-
sional space fm(x) → RC . The c’th output of fm will be
denoted by fm,c(x).

We consider two possible variations of learning feature
weights. The first, termed LP-β uses a single vector β for
all classes. This β defines a combination that works well
for all classes jointly. Alternatively each class can have its
own weight vector over the features, in which case there is
a weight matrix B ∈ RF×C , we name this method LP-B.

LP-β. The decision rule of LP-β can be found in Table
1. Again we train the parameters (αm, bm) of fm for all
classes and features in a first step. The mixing coefficients
β are learned by the following multiclass extension of LP-
Boost.

min
β,ξ,ρ

−ρ+
1
νN

N∑
i=1

ξi

sb.t.
F∑

m=1

βmfm,yi(xi)− argmax
yj 6=yi

F∑
m=1

βmfm,yj (xi)

. . .+ ξi ≥ ρ i = 1, . . . , N (5)
F∑

m=1

βm = 1, βm ≥ 0, m = 1, . . . , F

5Due to the special coupled structure in the dense constraint ma-
trix, we found interior-point based solvers to be consistently faster than
simplex based method. We use the MOSEK interior-point solver, see
www.mosek.com.

Since we are only optimizing over C parameters, learning
them in such a true multiclass formulation is feasible. Fur-
thermore we do not need worry about normalization of the
kernels which is an inherent problem of MKL. Another ben-
efit of this method is that β is sparse on the level of the
features. This means features for which βm = 0 need not
to be computed for the final decision function. Although
the MKL solution is sparse for every class separately, it is
not sparse jointly and the one-versus-rest MKL setup and
almost always every feature is selected at least once.

LP-B In this second variant each class is assigned its own
weight vector resulting in a F ×C weighting matrix B. The
decision rule is shown in Table 1. The corresponding learn-
ing problem extends the Hinge loss in (5) to the multiclass
Hinge loss originally proposed by Weston and Watkins [21]
for Support Vector Machines.

min
B,ξ,ρ

−ρ+
1
νN

N∑
i=1

ξi

sb.t.
F∑

m=1

Byi
mfm,yi

(xi)−
F∑

m=1

Byj
m fm,yj

(xi)

. . .+ ξi ≥ ρ i = 1, . . . , N, yj 6= yi,

F∑
m=1

Bcm = 1, m = 1, . . . , F, Bcm ≥ 0 ∀m, c

Note that this is still a linear programming problem, but
more expensive to solve than LP-β due to the increased
number of parameters.

Training The training procedure for LP-β and LP-B is
analogous. Ideally we have enough data to adjust fm and
β on independent sets. Since this is usually not the case,
we use the following two stage scheme to avoid biased es-
timates. First we perform model selection using 5 fold CV
to select the best hyperparameters for each fm individually
(in our case where fm are SVMs we need to select C). At
this point the only parameter left is ν. Since there is no
independent training data left to set this parameter we com-
pute for each fm the CV outputs using its best hyperparme-
ter identified before. This results in a prediction for each
training point using a classifier which was not trained us-
ing that point (but on other 80% of the training data). The
CV outputs of all SVMs fm are used as training data for
LP-β. We perform CV to select the best parameter ν and
subsequently train the final combination β. The main con-
cern using this scheme, is that the input to the LP-β training
is not from the classifier fm later used in the combination.
However it is reasonable to assume that the learners used to
produce the training data for LP-β are not too different. The
experiments validate this assumption as we do not observe
overfitting for the LP-β model. The LP-B results tend to be



Figure 1. Ten example images from the Flowers dataset. Images
in the same column are from the same class.

Single features Combination methods
Method Accuracy Time Method Accuracy Time
Colour 60.9 ± 2.1 3 product 85.5 ± 1.2 2
Shape 70.2 ± 1.3 4 averaging 84.9 ± 1.9 10
Texture 63.7 ± 2.7 3 CG-Boost 84.8 ± 2.2 1225
HOG 58.5 ± 4.5 4 MKL (SILP) 85.2 ± 1.5 97
HSV 61.3 ± 0.7 3 MKL (Simple) 85.2 ± 1.5 152
siftint 70.6 ± 1.6 4 LP-β 85.5 ± 3.0 80
siftbdy 59.4 ± 3.3 5 LP-B 85.4 ± 2.4 98

Table 2. Mean accuracy for all methods on the Oxford Flowers
dataset using the predefined splits [14]. Also plotted is the total
time for model selection, training and testing in seconds.

worse compared to LP-β, so fitting its C × F instead of F
parameters demands for more training data.

5.3. Column generation Boosting for mixtures of
kernels

A different variant of Boosting technique which is based
on the same observation from 5.1 was proposed in [4]. In-
stead of maintaining the separation between the SVM pa-
rameters (α, b) and mixing coefficients β the authors pro-
pose to solve

min
αm

1
2

F∑
m=1

αTmαm + C

N∑
i=1

L(yi, b+
F∑

m=1

Km(xi)Tαm).

This formulation can be understood as training a SVM with
a linear kernel with the kernel evaluations at the training
points as features.6 This method is referred to as CG-Boost
in the experiments.

Training Since the formulation reduces to a linear SVM
the only free parameter is again the regularization parameter
C. It is selected using CV. We experimented with different
loss functions L and found that logistic regression yields
best results while assuring good convergence of the algo-
rithm.

6. Experiments: Oxford Flowers
In this section we present results on the Oxford flowers

dataset [13]. This dataset consists of flower images depict-
ing 17 different types with 80 images per category. Example
images are shown in Figure 1.

6Implemented using liblinear-1.33, a standard solver for linear SVM.

The dataset comes with three predefined splits into test
(17 × 20 images), train (17 × 40 images) and validation
set (17 × 20 images). Furthermore the authors of [14] pro-
vide seven precomputed distance matrices online on their
website7 and those matrices are used for the experiments
presented here. Each matrix is computed using a different
feature type, namely clustered HSV values, SIFT features
on the foreground region, SIFT features on the foreground
boundary and three matrices derived from colour, shape and
texture vocabularies. For brevity we omit details of the fea-
tures and refer to [13, 14].

We first compare the overall performance of all mod-
els presented in this paper. To this end we use the pre-
defined splits for training and model selection. The reg-
ularization parameter is selected from the range C ∈
{0.01, 0.1, 1, 10, 100, 1000}. For LP-β and LP-B the reg-
ularization parameter ν ∈ {0.05, 0.1, . . . , 0.95} of the sec-
ond stage is also selected on the validation set, using the
procedure described in 5.2. Kernel matrices are computed
as exp(−γ−1d(x, x′)) with d being the distance and γ be-
ing fixed to the mean of the pairwise distances.

The results are shown in Table 2, with results using a
SVM with single kernel only are shown in the left, and
combination methods in the right column. From the re-
sults we can draw several conclusions. All feature combi-
nation methods dramatically improve the classification per-
formance. This is consistent with [14] whose results we
herewith restated. Having said this, we note that the single
baselines which are almost always left out in comparisons
(e.g. [14, 20]) yield equally good results but are magnitudes
faster than any other combination method.

These results also shed a new light on the interpretability
of the MKL solution which is mentioned by several authors.
The mixing coefficients of the MKL solution are usually
interpreted as the influence of the features on a particular
class. In the multiclass setting this reasoning is misleading.
One could equally plausible argue, that due to the good re-
sult of the averaging baseline all features are equally impor-
tant for the multiclass decision. LP-β selects only three out
of the seven features while all other methods select every
feature at least once.

As a second experiment we will highlight the benefit of
using a learning approach for feature combination over the
baseline methods. Additional to the seven discriminative
features we add non-discriminative features by generating
random vectors from a three dimensional isotropic Gaus-
sian distribution. A Gaussian kernel is computed on these
noise features and included into the set of kernels. Now the
same experiment as before is repeated. In Figure 3 we plot
the performance of the models against the number of added
noise kernels. The baselines incorporate all features and

7www.robots.ox.ac.uk/˜vgg/research/flowers/
index.html
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Table 3. Accuracy of the different methods with several noise fea-
tures included. Learning based combination methods are robust to
the inclusion of noise features, while baseline techniques are not.

subsequently their performance drops severely. Among the
learning methods MKL and LP-β turn out to be very robust
to uninformative features, while the CG-Boosting approach
slowly decays in performance.

This experiment highlights a feature of MKL and the
boosting technique, namely that it is possible to select ker-
nels out of a large class of potentially un-informative ones,
e.g. wrong kernel parameters. This may not be critical in
terms of performance if each participating feature is indi-
vidually designed to be discriminative.

7. Experiments: Caltech datasets
For the second set of experiments we use the well known

Caltech datasets [5, 7] which are prominent benchmark
datasets for object classification. We follow the experimen-
tal setup proposed by the designers of the datasets. Perfor-
mance is measured as the mean prediction rate per class,
thus balancing the influence of categories with a large num-
ber of test examples. We report results using all 102 classes
of the Caltech101 dataset averaged over three splits and for
256 classes of the Caltech256 dataset, excluding its clutter
category for a single split. The number of training images
is varied using 5, 10, 15, 20, 25, 30 images per category for
training and up to 50 images per category for testing. For
the Caltech256 dataset 25 test images per category are used.

All participating kernels are of the form k(x, x′) =
exp(−γ−1d(x, x′)) with γ selected as before. For the
shape, appearance and LBP descriptors the χ2 distance is
used, whereas all other kernels are computed using a Gaus-
sian kernel. The regularization parameter C is chosen from
the set {0.1, 1, 10, 50, 100, 500, 1000} and ν in the range of
0.05 to 0.95 in steps of 0.05. Values around 0.8 are typical.
For MKL we fix C = 1000 which yields best results.

7.1. Image Descriptors

In the following we give an overview of the features
which were used for the experiments. We compute all but
the V1S+ features in a spatial pyramid as proposed in [10].

A pyramid representation consists of several levels which
themselves consist of several cells. The first level 0 of the
pyramid is the image itself and in each subsequent level
each cell is split into four non-overlapping windows. This
process is repeated up to level L and for each level the fea-
tures of all its are concatenated to build the final descriptor.
These vectors are used to generate kernels for each level
which we refer to as pyramid kernels.

Analog to the spatial pyramid we compute a kernel in
the way proposed by [6]. A subwindow is drawn randomly
and a histogram of SIFT features which fall into this sub-
window is computed. All such histograms define a new im-
age feature for which a kernel is computed. This process is
repeated 100 times and the resulting 100 kernels are finally
averaged yielding a kernel we refer to as subwindow-kernel.

In the following we briefly describe the image features
used for the experiments and refer to the corresponding pub-
lications for more details.

PHOG Shape Descriptor. Shape is modeled using the
PHOG descriptor proposed in [3]. The descriptor is a his-
togram of oriented (Shp360) or unoriented (Shp180) gradi-
ents computed on the output of a Canny edge detector. The
oriented histogram Shp360 contains 40 bins, the unoriented
Shp180 20 bins yielding a total of 2× 4 kernels (L=3).

Appearance Descriptor. Appearance information is
modeled using SIFT descriptors [12] which are computed
on a regular grid on the image with a spacing of 10 pix-
els and for the four different radii r = 4, 8, 12, 16. The
descriptors are subsequently quantized into a vocabulary of
visual words that is generated by k-means clustering. We
use four variants: two codebook sizes (300 and 1000 el-
ements) and grey image descriptors (128 dims) as well as
HSV-SIFT (3*128=384dims)) with a total of 4 × 4 kernels
(L=3)

Region Covariance. We use the covariances of simple
per-pixel features described in [19] (tangent-space pro-
jected). A pyramid representation yields 3 kernels (L=2).

Local Binary Patterns. Ojala et al. [15] argue to use lo-
cally binary pattern (LBP) features, retaining the classifi-
cation performance of textons while being much faster and
simpler to extract. We use histograms of uniform rotation-
invariant LBP8,1-features and create 3 kernels (L=2).

V1S+ In [16] a population of locally normalized, thresh-
olded Gabor functions spanning a range of orientations and
spatial frequencies are derived and advocated as particular
simple features. This generates one kernel (L=0).

7.2. Results

We distinguish two different settings: combining kernels
based on the same feature type, i.e. different levels of a
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Figure 2. Performance of combination methods on the Caltech datasets. (a)+(b) results combining four kernels of a spatial pyramid using
the same image feature type (SIFT or PHOG). (c) combining eight kernels of different image features. (d) comparison of methods using a
total of 39 kernels, (e)+(f) same as (d) but with a comparison to other published results. The exact numbers are stated in the supplementary
material. Plot best viewed in color.

pyramid and combining diverse features e.g. different types
of image features.

In Figure 2 results are shown for combining the four ker-
nels of the spatial pyramid using SIFT (a) or PHOG (b) fea-
tures. The dotted magenta line corresponds to the result of
the best single kernel selected by CV. All models yield sim-
ilar results but several observations can be made.

• Combining pyramid kernels of SIFT features MKL
and CGBoost are outperformed by baseline methods
and even yield worse results than using a single kernel
alone (Fig.(a)). For combination of PHOG pyramid
kernels the baseline results are worse than CGBoost or
MKL.

• LP-β yields the best results for both combinations if
trained with more than five examples.

Figure 2(c) shows the result of combining 8 kernels cor-
responding to different image features (Level 2 of every
feature described previously) which are more diverse than
combining levels of a pyramid.

• All feature combinations yield a significant improve-
ment over the result using the single best kernel.

• CG-Boost and MKL are outperformed by the baseline
methods.

In the next experiment we aim for maximal performance
on the Caltech datasets using a total of 39 different kernels.
In addition to the kernels from Section 7.1 we include the
products of the pyramid levels for each feature resulting in
7 kernels. Furthermore we use two subwindow kernels with
SIFT and HSV-SIFTs (codebooksize 1000). The best single
feature for the Caltech101 dataset (selected using CV) are
the V1S+ features. The result is shown in Figure2(d) and
we observe the same behavior as before. The LPBoosting
techniques yield best performance while the baselines and
MKL are comparable. In Figure 2(e) we compare LP-β as
the best method among the considered ones to several other
results published in the literature.8 Note that most of the
results in (d) yield better performance than all competitors
compared in (e). As mentioned already, LP-β identifies a
sparse solution on the level of the features. For Caltech101
7 out of 39 features are selected (using 30 training exam-
ples) and 15 for Caltech256. The results for Caltech256
are shown in Figure2(f) with LP-β achieving a > 10% im-
provement over the best published result [7]. The results
of LP-β for Caltech101 using 30 training images per cate-
gory are 77.7 ± 0.3 and for Caltech256 45.8% (30 training
images) and 50.8% (50 images per category).9

8We do not compare against [20, 3] since those results are erroneous.
See e.g. supplementary material or authors websites.

9The numerical results of all experiments are included in the supple-
mentary material.



7.3. Training time

Using 15 training examples per class which adds to a
total of 1530 for Caltech101 (3840 for Caltech256) the re-
quired training time for an entire one-versus-rest SVM clas-
sifier using a single kernel is about 5s (50s for Caltech256).
Estimating the 39 coefficients of β takes 60s (8.5m) and
for B 935s (4.9h). A single run of LP-β requires about
6 ∗ 39 ∗ 5s + 60s ≈ 21m (6 ∗ 39 ∗ 50s+8.5m≈ 3.4h) in-
cluding the computation of the CV output. The numbers are
comparable to MKL training which takes about 23m (5h).
Since we perform model selection for LP-β the actual train-
ing times are longer but can be controlled by the number
of parameters one searches over. All implementations can
most likely be optimized, we include these numbers to show
that LP-β has a comparable runtime to MKL, whereas the
baseline methods are orders of magnitudes faster. CGBoost
was intractable for the Caltech256 dataset.

8. Conclusions

In this paper we studied several methods for feature com-
bination. We interpreted the MKL decision function as a
convex combination of SVMs and proposed formulations
based on LPBoost. These are different to CG-Boost, in that
they maintain two sets of parameters.

We found that the LP-β approach consistently outper-
forms all other considered methods. On both Caltech
datasets we observe an > 10% improved performance over
the best published result. We expect even better perfor-
mance if we train with more image features or include other
classification functions. Adding more learners comes with
a reasonable additional cost since it only scales linearly in
F , while any trained weak learners can be reused.

The two step training procedure arguably is less prin-
cipled than a joint optimization. However in practice this
seems not to be a problem and works well even in the case
of few training examples. Due to the two training stages
most of the training can be done in parallel with each piece
being reasonable fast.

Most results turn out to be disadvantageous for MKL.
The baseline methods yield competitive results and outper-
form MKL on several setups. This is due to the fact that
the available kernels on their own are already discrimina-
tive. In the presence of un-informative kernels MKL as the
LPBoosting techniques are able to identify a discriminative
set of kernels and maintain good performance.

We conclude with the observation that the performance
of MKL might have been overestimated in the past. The
baseline methods “average” and “product” should be con-
sidered as its canonical competitors and included in any
study using MKL. With LP-β we derived a method that
yields better performance, is equally fast and leads to sparse
multiclass object classification systems.
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