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Abstract

We propose a new method to study the internal memory used by reinforcement learning
policies. We estimate the amount of relevant past information by estimating mutual in-
formation between behavior histories and the current action of an agent. We perform this
estimation in the passive setting, that is, we do not intervene but merely observe the natu-
ral behavior of the agent. Moreover, we provide a theoretical justi�cation for our approach
by showing that it yields an implementation-independent lower bound on the minimal
memory capacity of any agent that implement the observed policy. We demonstrate our
approach by estimating the use of memory of DQN policies on concatenated Atari frames,
demonstrating sharply di�erent use of memory across 49 games. The study of memory as
information that �ows from the past to the current action opens avenues to understand
and improve successful reinforcement learning algorithms.

1. Introduction

Can you understand the complexity of an agent just by observing its behavior? Herbert
Simon provided a vivid example by imagining an ant moving along a beach (Simon, 1996).
He observed that the path the ant takes while walking toward a certain destination appears
highly irregular and hard to describe. This complexity may indicate a sophisticated decision
making in the ant, but Simon postulated that instead the ant follows very simple rules and
the observed complexity of the path stems from the complexity in the environment.

In this work we aim to understand the complexity of agents acting according to a �xed
policy in an environment. In particular, we are interested in the memory of an agent, that
is, its ability to use past observations to inform future actions. We do not assume a speci�c
implementation of the agent, but instead observe its behavior to derive statements about
its memory.

The study of memory in agents is important for two reasons. First, most state-of-the-
art reinforcement learning approaches assume that the environment is a Markov decision
process (MDP) (Puterman, 1994), but in contrast most real-world tasks have non-Markov
structure and are only partially observable by the agent. In such environments, optimal
decisions may not only depend on the most recent observation but on the entire history
of interactions. That is, to solve a task optimally or even just reasonably well, an agent
might need to remember all previous observations and actions taken (Singh et al., 1994;
Krishnamurthy et al., 2016). Second, in many recent algorithms the policy has access to
memory of certain �xed capacity. Popular choices include using a �xed window of history
(e.g. the last four observations as in Mnih et al. (2015)) or recurrent neural networks as
adaptive memory (Heess et al., 2015; Li et al., 2015). These approaches are practically
successful for speci�c tasks, but it is unclear how much memory capacity they actually use

1



and how much memory capacity to use for di�erent tasks. Our approach allows us to study
the use of memory�measured in bits over time�independent of the implementation of the
agent.

Our method of estimating memory works as follows. We assume we can observe all in-
teractions of an agent's policy with the environment in the form of sequences of observation-
action-reward triples. We then estimate the mutual information between actions and parts
of the history. This approach treats the agent and the environment as black boxes which in
principle also allows the application of the method to humans or animals as agents.

We provide a theoretical justi�cation of the method in two steps. First, we formally de�ne
the minimal memory capacity required to reproduce a given policy. Second, we connect our
practical estimation method with this formal notion by showing that our method estimates
a lower bound to the memory capacity. To demonstrate the usefulness of our approach
we analyze the memory capacity of the state-of-the-art Deep Q-Network policies trained
on 49 Atari 2600 games (Mnih et al., 2015). In summary our work makes the following
contributions:
• A practical method for estimating the memory use of an agent's policy from its be-
havior;
• A theoretical justi�cation in terms of minimum memory capacity;
• Insight into the memory use of successful DQN policies on Atari games.

2. Problem Setting and Notation

We consider the following setting: an agent interacts at discrete times t = 1, 2, . . . with a
stochastic environment by (1) making an observation Xt ∈ X , (2) taking an action At ∈ A
and (3) receiving a scalar reward Rt ∈ R at each of these times. For notational convenience,
we denote the quantities at time t by Zt = (Xt, At, Rt) and the concatenation of several time
steps by Zk:t = (Zk, . . . , Zt−1, Zt). While Xt and Rt are determined by the environment,
the action is sampled from the agent's policy and may depend on the entire previous history
Z1, . . . Zt−1, Xt.

We assume that the environment is stochastic but not necessarily Markov. We are
interested in agents that have mastered a task, which means that learning has mostly ended
and the policy changes slowly if at all. We thus formally assume that the agent's policy is
�xed for notational simplicity.1 A trajectory ξ = (Z1, Z2, . . . , Zn) consisting of n time-steps
is therefore a random vector sampled from a �xed distribution ξ ∼ P . We further assume
that Zt can take only �nitely many values. Given one or more trajectories ξ1, ξ2, · · · ∼ P of
the agent interacting with the environment, our goal is to estimate the amount of memory
required by any agent that implements the observed policy.

3. Method: Memory Lens

Memory allows the action At to depend not only on the most recent observation Xt but
also on the previous history Z1, . . . Zt−1. One intuitive notion to describe the amount of
memory used for some action At is mutual information of action At and history Z1, . . . , Zt−1
given Xt, that is, I(At;Z1:t−1|Xt) = E [DKL(P (At|Xt, Z1:t−1)‖P (At|Xt))] . This conditional
mutual information quanti�es the information in bits or nats about action At one gains by

1. This assumption is not crucial. In the case of changing policies, our results hold for the mixture of

policies followed by the agent.
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getting to know Z1:t−1 when one already knows the value of Xt. If this quantity is zero
for all t, then the policy is Markov, that is, the action depends only on the most recent
observation. If it is nonzero, every implementation of the agent has to use at least some
form of memory. Our approach is to estimate the following mutual information quantities

M0 := I(At;Xt); M1 := I(At;Zt−1|Xt); M2 := I(At;Zt−2|Xt, Zt−1); (1)

M3 := I(At;Zt−3|Xt, Zt−2:t−1); . . . Mt−1 := I(At;Z1|Xt, Z2:t−1). (2)

Each entry Mi of M quanti�es how much additional information about At can be gained
when considering history of length i instead of only i− 1. The �rst entry M0 is the amount
of information Xt shares with At.

3.1 Estimating Mutual Information

Mutual information and conditional mutual information can be written as di�erences of
entropy terms, I(At;Xt) = H(At) +H(Xt)−H(At, Xt) and

I(At;Z1:t−k|Xt, Zt−k+1:t−1) =H(At, Xt, Zt−k+1:t−1) +H(Xt, Zt−k:t−1) (3)

−H(At, Xt, Zt−k:t−1)−H(Xt, Zt−k+1:t−1), (4)

where the entropy of multiple random variables is de�ned by the entropy of their joint
distribution. We can therefore estimate Mi by estimating the individual entropy terms.

We use the entropy estimator by Grassberger (2003) due to its simplicity and com-
putational e�ciency; alternatives (plug-in, Nemenman et al. (2002); Hausser and Strimmer
(2009)) yielded very similar results in our experimental evaluations. The Grassberger (2003)
estimate of the entropy in nats of a random quantity Y of which we have seen k di�erent
values, each n1, . . . , nk times, is (Nowozin, 2012) Ĥ(Y ) = ln(N) − 1

N

∑k
i=1G(ni), where

N =
∑

i ni is the total number of samples and G(n) = ψ(n) + (−1)n
2

(
ψ
(
n+1
2

)
− ψ

(
n
2

))
,

with ψ being the digamma function.

3.2 Test of Signi�cance

In practice the sample size available for estimating the conditional mutual information is
limited. Therefore, our estimates will be a�ected both by bias and statistical variation. To
prevent invalid conclusions due to bias and variation we use a simple permutation test as
follows. We take the original set of samples {(Zt−i:t−1, Xt, At)} for estimating the conditional
mutual information M̂i and replace the last action by sampling a new action Ãt ∼ p̂(At)
from the empirical marginal of At. We then compute the conditional mutual information M̃i

w.r.t. the modi�ed samples {(Zt−i:t−1, Xt, Ãt)}. This action-resampling process is repeated
100 times to obtain the ordered sequence M̃

(1)
i , . . . M̃

(100)
i with M̃

(j)
i ≤ M̃ (j+1)

i for all j. We

consider memory use signi�cant if M̂i is above the 95% percentile of this set, i.e., M̂i ≥ M̃ (95)
i .

4. Experimental Results

We trained Deep Q-Network policies for 50 million time steps on 49 Atari games. The
network structure as well as all learning parameters have been chosen to match the setting
by Mnih et al. (2015). Each policy chooses with probability ε = 0.05 an available action
uniformly at random and otherwise takes the action that maximizes the learned Q-function.
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Figure 1: Estimated use of memory by DQN policies on 49 Atari 2600 games. The top bar
chart shows the mutual information between the chosen action and the current
game screen; The three plots below visualize the additional information used by
the policies from previous frames in temporally decreasing order.

The Q-function takes as input the last four frames of the games as 84 × 84 pixel grayscale
images. We can interpret this as the agent having memory to perfectly store the last 4
observations. We applied our memory lens method and estimated to what extent each of
these observations are actually used when making decisions in each game.

We recorded 10000 games played by each of the fully trained 49 policies. For each policy
we used these 10000 trajectories of length up to at most 10000 time steps to estimate the
memory use. Since we know that the policies are stationary, we expect their use of memory
to be fairly stationary too. We therefore did not estimate M for the actions at each time t
individually but aggregated samples for all actions.

The results are shown in Figure 1. The top bar plot shows the mutual information
estimate M̂0 of action and most recent frame (requires no memory) and the plots below

show M̂1, M̂2 and M̂3 for the policies of each game. Only bars are displayed that indicate
statistically signi�cant dependencies (see Section 3.2).

5. Formalization of Memory

In this section we provide a more formal de�nition of amount of memory required to im-
plement an agent's behavior and relate the quantities M estimated by our memory lens
approach to it. For the sake of conciseness, we focus on �nite-horizon episodic decision
problems with a �xed horizon of H. A single episode ξ is then an element of ZH . We
use the short-hand notation [H] = {1, 2, 3, . . . ,H}. Assume an abstract model of memory
where the state of memory can take K ∈ N di�erent values. Following the formalization by
Chatterjee et al. (2010), we de�ne:

4



De�nition 1 A memory function g : [H] × Z × [K] → [K] maps for each time step the
previous memory and current observations to a new memory con�guration. The policy π
of an agent can be implemented with K memory if and only if there is a memory function
g so that P (At|Xt, Yt−1) = P (At|Xt, Z1:t−1) for all t ∈ [H] where Yt denotes the memory
con�guration after time t. That is Yt = g(t, Zt, Yt−1) for t ∈ [H] and Y0 = 1. We say that g
is a memory function for π in this case and denote the set of memory functions with capacity
K for π byMM,π.

Note that this abstract model of memory is very general and, for example, recurrent neural
networks can be considered a direct implementation of it. We can formally de�ne the
minimum amount of memory required by a policy as

De�nition 2 The memory capacity C(π) of a policy π is the smallest amount of memory
capacity required to reproduce this policy. Formally, it is C(π) = min{K ∈ N : MK,π 6= ∅}.

If the distribution P from which the episodes are sampled from is known, C(π) can be com-
puted in �nite time (there are only �nitely many memory functions). This implies that in
principle C(π) can be estimated just from observations by estimating P and then computing
C(π). However, to determine C(π) one has to perform tests on equality of conditional prob-
abilities (condition in Def. 1). Each conditional probability has to be estimated accurately
which requires infeasibly many samples for any problem beyond simple toy settings. In-
stead, the mutual information quantitiesM used in our method are much easier to estimate.

5.1
∑

i>0Mi is a lower bound on log C(π)

The next corollary states that for any t the sum of all conditional mutual quantitiesM1, . . . ,Mt−1
estimated by our memory lens approach (excludingM0) is a lower bound on the log-memory
capacity.

Corollary 1 For all t ∈ [H],
∑t−1

i=1Mi =
∑t−1

i=1 I(At;Zi|Xt, Zi+1:t−1) ≤ log C(π).

Instead of proving this corollary directly, we show a stronger version in the theorem below.
This theorem allows to restrict the measure P to an event that can be decided based on the
history and shows that this still results in a valid lower bound on log C(π). In some scenarios
one might have prior intuition when an agent uses memory to make a decision. One can
then restrict the measure to the event E where one expects the memory use will be higher
than in Σ \ E and obtain a possibly tighter lower bound on log C(π).

Theorem 1 Let k < t and E ∈ σ(Z1:t−1, Xt) be an event in the sigma-�eld generated by
the history up to time t−1 and the observation at time t. Denote by PE the probability mea-
sure that restricts P to E. Then IE(At;Z1:k|Xt, Zk+1:t−1) ≤ ming∈M∞,π log |g(k,Z, [H])| ≤
logC(π), where IE denotes the (conditional) mutual information with respect to PE.

Proof Since Yt is a function of Yk and Zk+1:t for any k < t, the generated sigma-�elds
satisfy σ(Z1:t−1) ⊇ σ(Yk, Zk+1:t−1) ⊇ σ(Yt−1). From P (At|Xt, Yt−1) = P (At|Xt, Z1:t−1),
it follows that PE(At|Xt, Yt−1) = PE(At|Xt, Z1:t−1) and hence PE(At|Xt, Yk, Zk+1:t−1) =
PE(At|Xt, Z1:t−1). We can then equivalently write

PE(At, Xt, Yk, Zk+1:t−1)PE(Xt, Zk+1:t−1)

PE(Xt, Zk+1:t−1, Yk)PE(Xt, Zk+1:t−1, At)
=
PE(At, Xt, Z1:t−1)PE(Xt, Zk+1:t−1)

PE(Xt, Z1:t−1)PE(Xt, Zk+1:t−1, At)
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which implies that IE(At;Z1:k|Xt, Zk+1:t−1) = IE(At;Yk|Xt, Zk+1:t−1). We then can bound
the conditional mutual information using basic properties of entropies as

IE(At;Z1:k|Xt, Zk+1:t−1) = IE(At;Yk|Xt, Zk+1:t−1)

= HE(Yk|Xt, Zk+1:t−1)−HE(Yk|At, Xt, Zk+1:t−1) ≤ HE(Yk|Xt, Zk+1:t−1)

≤ HE(Yk) ≤ log |Yk(E)| ≤ log |Yk(Ω)|.

6. Related Work

Papapetrou and Kugiumtzis (2016) perform statistical tests based on conditional mutual
information to identify the order of Markov chains. This is similar to our method but we
are only interested on parts of the stochastic process, namely the agent's actions. In the
work of Tishby and Polani (2011) mutual information is used as part of an optimization
objective for policies. Instead of just for maximum cumulative reward, they optimize for the
best trade-o� between information processing cost and cumulative reward.

Our de�nition of a memory function matches the one by Chatterjee et al. (2010). While
we are concerned with the analysis of our method, they use memory functions for asymptotic
theoretical analysis of memory required to solve POMDPs with parity objectives. In the
abstract model of memory in Section 5, the memory state is essentially a su�cient statistic
summarizing all information from the past relevant for any action in the future. Su�cient
statistics for general stochastic processes are discussed by Shalizi and Crutch�eld (2001)
introducing the concept of ε-machines. Unlike ε-machines, we require memory to be updated
recursively and we are only concerned with the predictive power regarding future actions.

7. Conclusion

In this paper, we have proposed an approach for analyzing memory use of an agent that
interacts with an environment. We have provided both a theoretical foundation of our
method and demonstrated its e�ectiveness in an analysis of state-of-the-art DQN policies
playing Atari games. Our treatment of memory usage in agents opens up a wide range of
directions for follow-up work. First, our method assumes discrete observation and action
spaces. The key challenge in extending to continuous space is the need to e�ciently compute
mutual information of high-dimensional, continuous observations. A promising avenue is to
explore approximations that have been developed in domains such as neural coding, such as
variational information maximization (Agakov and Barber, 2004).

Another interesting question to explore is whether the estimate of memory use by a
policy can be improved when the environment can be controlled actively. That is, the
behavior of an agent can actively be explored by manipulating the observations and rewards
the agent receives. The task of identifying the events in which the agents requires the
maximum amount of memory by manipulating its observations could possibly be set up as
a reinforcement learning task itself. Further, estimating the amount of memory necessary
to solve a task could potentially be used as an empirical measure for di�culty of sequential
decision making tasks. Many real-world tasks require high-level reasoning with longer-
term memory. While current reinforcement learning algorithms still mostly fail to achieve
reasonable performance on such tasks, often experts, e.g. humans, can be observed when
solving the task. Analyzing their memory use could not only give an indication of how
di�cult a task is but also possibly inform the design of successful reinforcement learning
architectures.
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