
Supplementary Material –
Scalable Gaussian Process Structured Prediction

for Grid Factor Graph Applications

1 Algorithm complexity
Based on sections 3 and 4 of the main paper, we are in a position to outline the complete
algorithm’s complexity.

Learning occurs in each weak learner in parallel. For each weak learner t, a one-
time setup phase involves computing the kernel matrix from the features, and taking
its Cholesky: with |Vt| subsampled pixels and |Dt| subsampled images, the kernel
computation takes O(M2), and a Cholesky factorisation takes O(M3), where M is
|Vt| × |Dt| + |Y|2. Space requirements here are dominated by the storage of the
Cholesky matrix. The ESS runtime is dominated by likelihood computations. Each
PL computations takes O(|Vt||Dt||Y|2). In practice the number of required MCMC
iterations seems adequate when each WL runs for 12 hours.

Partial prediction (1c in section 4) is carried out on each weak learner, for each
image in sequence. Runtime is dominated by the TRW computation for each image,
for each sample Ẽt obtained by ESS. Space requirements are dominated by storing the
marginals for each such sample, and by the train-test and test-test kernel matrices: for
a weak learner t with |Vtest| pixels in each test image, these matrices contain |Vt||Vtest|
and |Vtest|2 elements respectively, but they need not be present in memory simultane-
ously since partial predictions are independent for different images. GPstruct has this
in common with other kernel methods that at test time, it needs to evaluate, store and
take the Cholesky of these matrices.

Aggregate prediction (stage 2 in section 4) is carried out for each image indepen-
dently and is the fastest stage, consisting of averaging the marginals over weak learners.

2 Image segmentation: quality of the predicted class
posteriors

The models assessed in the main paper produce probabilistic output, therefore not only
predictive accuracy, but also the quality of predictions is relevant.

We find that GPstruct produces better-calibrated predictions than CRF LBMO,
which is a state-of-the-art method for semantic segmentation. To assess whether pre-
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Figure 1: Quality of the predicted class posteriors as measured by the negative log
marginal posteriors −

∑
pixel positions i log Pr(y∗

i |x∗) (smaller is better). The experimen-
tal setup is that of the Stanford Background Dataset, with a training set of 50 images.
We report per-pixel averages over 5 folds. The size of the weak learner set used for pre-
diction (notedNWL) varies between 1 (a single weak learner is used for prediction) and
50 (the predictions of all the available weak learners are aggregated). For each NWL,
the number of weak learner sets which are evaluated and averaged is max(5, 50/NWL).

dictions are well-calibrated, we evaluate a loss function for each prediction, taking into
account the marginal probability associated with each pixel’s labels. In our present
task, no label-dependent loss function is given; therefore we can simply use log-loss
and the marginal for the correct prediction, given by the test data labels:

−
∑

pixel positions i

log Pr(y∗
i |x∗) (1)

The good calibration is due to the ”Bayesian” property of the GPstruct model (cf.
[1], section 2.3): i.e., uncertainty in the parameters is preserved during training and
carried over to the prediction stage. This gives GPstruct an advantage in real-life tasks
requiring well-calibrated probabilistic predictions.

3 Image Denoising
In our third experiment, we adapt the experimental protocol of [2]. We create a binary
denoising problem using the Berkeley Segmentation Dataset1. We use 100 images of

1http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
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Image Denoising Results
σ = 2.5 σ = 1.5

independent 24.4 39.9
CRF PL 6.7 12.9
CRF LBMO 6.4 11.7
GPstruct 6.8 11.9

Table 1: Per-pixel accuracy on the image denoising task. GPstruct is comparable to
the state-of-the-art method CRF LBMO.

size 50 × 100, binarised pixel-wise with a threshold at the image mean gray level.
We use 30 images for training, and 70 for testing. The noisy images are generated as
xi = yi(1−tσi )+(1−yi)tσi , where yi is the true binary label, and ti ∈ [0, 1] is a uniform
random variable. The variable σ ∈ (1,∞) is the noise level, where lower values
correspond to more noise. We experiment with σ = 2.5 and σ = 1.5. Even though
this is a toy problem, the ability to systematically vary the noise level is illustrative to
highlight the model mis-specification issue [2]. Unary features are (1, xi). Pairwise
features are data independent pairwise Potts factors [3].

GPstruct is used with 50 weak learners, and the kernel used for the unary fea-
tures is the squared exponential kernel described in the paper, while the kernel for the
pairwise features is an identity kernel with a scale factor of 0.01. We retain 50 subsam-
pled pixels and their corresponding four neighbours per image in the PL computation.

Results are presented in table 1.
At low noise level (σ = 2.5), the three methods which incorporate pairwise smooth-

ness terms perform equally well. At lower noise level (σ = 1.5), the performance of
GPstruct remains comparable to CRF LBMO.

These experimental results confirm that GPstruct, a likelihood-based method, is
on par with state-of-the-art marginal optimisation methods, and copes for model mis-
specification.
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