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Abstract

RANSAC is an important algorithm in robust optimiza-

tion and a central building block for many computer vision

applications. In recent years, traditionally hand-crafted

pipelines have been replaced by deep learning pipelines,

which can be trained in an end-to-end fashion. However,

RANSAC has so far not been used as part of such deep

learning pipelines, because its hypothesis selection proce-

dure is non-differentiable. In this work, we present two dif-

ferent ways to overcome this limitation. The most promising

approach is inspired by reinforcement learning, namely to

replace the deterministic hypothesis selection by a proba-

bilistic selection for which we can derive the expected loss

w.r.t. to all learnable parameters. We call this approach

DSAC, the differentiable counterpart of RANSAC. We apply

DSAC to the problem of camera localization, where deep

learning has so far failed to improve on traditional ap-

proaches. We demonstrate that by directly minimizing the

expected loss of the output camera poses, robustly estimated

by RANSAC, we achieve an increase in accuracy. In the fu-

ture, any deep learning pipeline can use DSAC as a robust

optimization component1.

1. Introduction

Introduced in 1981, the random sample consensus

(RANSAC) algorithm [11] remains the most important al-

gorithm for robust estimation. It is easy to implement, it

can be applied to a wide range of problems and it is able

to handle data with a substantial percentage of outliers,

i.e. data points that are not explained by the data model.

RANSAC and variants thereof [39, 28, 7] have, for many

years, been important tools in computer vision, including

multi-view geometry [16], object retrieval [29], pose esti-

mation [36, 4] and simultaneous localization and mapping

(SLAM) [27]. Solutions to these diverse tasks often in-

volve a common strategy: Local predictions (e.g. feature

matches) induce a global model (e.g. a homography). In

1We will make our source code publicly available on the DSAC project

website.

this schema, RANSAC provides robustness to erroneous lo-

cal predictions.

Recently, deep learning has been shown to be highly

successful at image recognition tasks [37, 17, 13, 31],

and, increasingly, in other domains including geometry

[10, 19, 20, 9]. Part of this recent success is the ability to

perform end-to-end training, i.e. propagating gradients back

through an entire pipeline to allow the direct optimization of

a task-specific loss function, examples include [41, 1, 38].

In this work, we are interested in learning components of

a computer vision pipeline that follows the principle: pre-

dict locally, fit globally. As explained earlier, RANSAC is

an integral component of this wide-spread strategy. We ask

the question, whether we can train such a pipeline end-to-

end. More specifically, we want to learn parameters of a

convolutional neural network (CNN) such that models, fit

robustly to its predictions via RANSAC, minimize a task

specific loss function.

RANSAC works by first creating multiple model hy-

potheses from small, random subsets of data points. Then

it scores each hypothesis by determining its consensus with

all data points. Finally, RANSAC selects the hypothesis

with the highest consensus as the final output. Unfortu-

nately, this hypothesis selection is non-differentiable, mean-

ing that it cannot directly be used in an end-to-end-trained

deep learning pipeline.

A common approach within the deep learning commu-

nity is to soften non-differentiable operators, e.g. argmax
in LIFT [41] or visual word assignment in NetVLAD [1]. In

the case of RANSAC, the non-differentiable operator is the

argmax operator which selects the highest scoring hypoth-

esis. Similar to [41], we might substitute the argmax for a

soft argmax, which is a weighted average of arguments [6].

We indeed explore this direction but argue that this substitu-

tion changes the underlying principle of RANSAC. Instead

of learning how to select a good hypothesis, the pipeline

learns a (robust) average of hypotheses. We show experi-

mentally that this approach learns to focus on a narrow se-

lection of hypotheses and is prone to overfitting.

Alternatively, we aim to preserve the hard hypothesis se-

lection but treat it as a probabilistic process. We call this
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approach DSAC – Differentiable SAmple Consensus – our

new, differentiable counterpart to RANSAC. DSAC allows

us to differentiate the expected loss of the pipeline w.r.t.

to all learnable parameters. This technique is well known

in reinforcement learning, for stochastic computation prob-

lems like policy gradient approaches [34].

To demonstrate the principle, we choose the problem of

camera localization: From a single RGB image in a known

static scene, we estimate the 6D camera pose (3D transla-

tion and 3D rotation) relative to the scene. We demonstrate

an end-to-end trainable solution for this problem, build-

ing on the scene coordinate regression forest (SCoRF) ap-

proach [36, 40, 5]. The original SCoRF approach uses a

regression forest to predict the 3D location of each pixel

in an observed image in terms of ‘scene coordinates’. A

hypothesize-verify-refine RANSAC loop then randomly se-

lect scene coordinates of four pixel locations to generate an

initial set of camera pose hypotheses, which is then itera-

tively pruned and refined until a single high-quality pose es-

timate remains. In contrast to previous SCoRF approaches,

we adopt two CNNs for predicting scene coordinates and

for scoring hypotheses. More importantly, the key novelty

of this work is to replace RANSAC by our new, differen-

tiable DSAC.

Our contributions are in short:

• We present and discuss two alternative ways of mak-

ing RANSAC differentiable, by soft argmax and prob-

abilistic selection. We call our new RANSAC version,

with the latter option, DSAC (Differentiable SAmple

Consensus).

• We put both options into a new end-to-end trainable

camera localization pipeline. It contains two separate

CNNs, linked by our new RANSAC, motivated by pre-

vious work [36, 23].

• We validate experimentally that the option of proba-

bilistic selection is superior, i.e. less sensitive to over-

fitting, for our application. We conjecture that the ad-

vantage of probabilistic selection is allowing hard de-

cisions and, at the same time, keeping broad distribu-

tions over possible decisions.

• We exceed the state-of-the-art results on camera local-

ization by 3.3%.

1.1. Related Work

Over the last decades, researchers have proposed many

variants of the original RANSAC algorithm [11]. Most

works focus on either or both of two aspects: speed

[8, 28, 7], or quality of the final estimate [39, 8]. For de-

tailed information about RANSAC variants we refer the

reader to [30]. To the best of our knowledge, this work

is the first to introduce a differentiable variant of RANSAC

for the purpose of end-to-end learning.

In the following, we review previous work on differen-

tiable algorithms and solutions for the problem of camera

localization.

Differentiable Algorithms. The success of deep learning

began with systems in which a CNN processes an image

in one forward pass to directly predict the desired output,

e.g. class probabilities [22], a semantic segmentation [25]

or depth values and normals [10]. Given a sufficient amount

of training data, CNNs can autonomously discover useful

strategies for solving a task at hand, e.g. hierarchical part-

structures for object recognition [42].

However, for many computer vision tasks, useful strate-

gies have been known for a long time. Recently, researchers

started to revisit and encode such strategies explicitly in

deep learning pipelines. This can reduce the necessary

amount of training data compared to CNNs with an un-

constrained architecture [35]. Yi et al. [41] introduced a

stack of CNNs that remodels the established sparse fea-

ture pipeline of detection, orientation estimation and de-

scription, originally proposed in [26]. Arandjelovic et

al. [1] mapped the Vector of Locally Aggregated Descrip-

tors (VLAD) [2] to a CNN architecture for place recogni-

tion. Thewlis et al. [38] substituted the recursive decoding

of Deep Matching [32] with reverse convolutions for end-

to-end trainable dense image matching.

Similar in spirit to these works, we show how to train

an established, RANSAC-based computer vision pipeline

in an end-to-end fashion. Instead of substituting hard as-

signments by soft counterparts as in [41, 1], we enable end-

to-end learning by turning the hard selection into a proba-

bilistic process. Thus, we are able to calculate gradients to

minimize the expectation of the task loss function [34].

Camera Localization. The SCoRF camera localization

pipeline [36], already discussed in the introduction, has

been extended in several works. Guzman-Rivera et al. [14]

trained a random forest to predict diverse scene coordinates

to resolve scene ambiguities. Valentin et al. [40] trained the

random forest to predict multi-model distributions of scene

coordinates for increased pose accuracy. Brachmann et

al. [5] addressed camera localization from an RGB image

instead of RGB-D, utilizing the increased predictive power

of an auto-context random forest. None of these works sup-

port end-to-end learning.

In a system similar to SCoRF but for the task of object

pose estimation, Krull et al. [23] trained a CNN to measure

hypothesis consensus by comparing rendered and observed

images. In this work, we adopt the idea of a CNN measur-

ing hypothesis consensus, but learn it jointly with the scene

coordinate regressor and in an end-to-end fashion.

Kendall et al. [20] demonstrated that a single CNN is

able to directly regress the 6D camera pose given an RGB

image, but its accuracy on indoor scenes is inferior to a

RGB-based SCoRF pipeline [5].
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Figure 1. Stochastic Computation Graphs [34]. A graphical representation of three RANSAC variants investigated in this work. The

variants differ in the way they select the final model hypothesis: a) non-differentiable, vanilla RANSAC with hard, deterministic argmax

selection; b) differentiable RANSAC with deterministic, soft argmax selection; c) differentiable RANSAC with hard, probabilistic se-

lection (named DSAC). Nodes shown as boxes represent deterministic functions, while circular nodes with yellow background represent

probabilistic functions. Arrows indicate dependency in computation. All differences between a), b) and c) are marked in red.

2. Method

2.1. Background

As a preface to explaining our method, we first briefly

review the standard RANSAC algorithm for model fitting,

and how it can be applied to the camera localization prob-

lem using discriminative scene coordinate regression.

Many problems in computer vision involve fitting a

model to a set of data points, which in practice usually in-

clude outliers due to sensor noise and other factors. The

RANSAC algorithm was specifically designed to be able to

fit models robustly in the presence of noise [11]. Dozens of

variations of RANSAC exist [39, 8, 28, 7]. We consider a

general, basic variant here but the new principles presented

in this work can be applied to many RANSAC variants, such

as to locally-refined preemptive RANSAC [36].

A basic RANSAC implementation consists of four steps:

(i) generate a set of model hypotheses by sampling minimal

subsets of the data; (ii) score hypotheses based on some

measure of consensus, e.g. by counting inliers; (iii) select

the best scoring hypothesis; (iv) refine the selected hypoth-

esis using additional data points, e.g. the full set of inliers.

Step (iv) is optional, though in practice important for high

accuracy.

We introduce our notation below using the example ap-

plication of camera localization. We consider an RGB im-

age I consisting of pixels indexed by i. We wish to esti-

mate the parameters h̃ of a model that explains I . In the

camera localization problem this is the 6D camera pose, i.e.

the 3D rotation and 3D translation of the camera relative to

the scene’s coordinate frame. Following [36], we do not fit

model h̃ directly to image data I , but instead make use of

intermediate, noisy 2D-3D correspondences predicted for

each pixel: Y (I) = {y(I, i)|∀i}, where y(I, i) is the ‘scene

coordinate’ of pixel i, i.e. a discriminative prediction for

where the point imaged at pixel i lives in the 3D scene co-

ordinate frame. We will use yi as shorthand for y(I, i).
Y (I) denotes the complete set of scene coordinate predic-

tions for image I , and we write Y for Y (I). To estimate h̃

from Y we apply RANSAC as follows:

1. Generate a pool of hypotheses. Each hypothesis is

generated from a subset of correspondences. This sub-

set contains the minimal number of correspondences

to compute a unique solution. We call this a minimal

set YJ with correspondence indices J = {j1, ..., jn},

where n is the minimal set size. To create the set,

we uniformly sample n correspondence indices: jm ∈
[1, . . . , |Y |] to get YJ := {yj1 , ...,yjn}. We assume

a function H which generates a model hypothesis as

hJ = H(YJ) from the minimal set YJ . In our appli-

cation, H is the perspective-n-point (PNP) algorithm

[12], and n = 4.

2. Score hypotheses. Scalar function s(hJ , Y ) measures

the consensus / quality of hypothesis hJ , e.g. by count-
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ing inlier correspondences. To define an inlier in our

application, we first define the reprojection error of

scene coordinate yi:

ei = ‖pi − ChJyi‖, (1)

where pi is the 2D location of pixel i and C is the cam-

era projection matrix. We call yi an inlier if ei < τ ,

where τ is the inlier threshold. In this work, instead

of counting inliers, we to aim to learn s(hJ , Y ) to di-

rectly regress the hypothesis score from reprojection

errors ei, as we will explain shortly.

3. Select best hypothesis. We take

hAM = argmax
hJ

s(hJ , Y ) . (2)

4. Refine hypothesis. hAM is refined using function

R(hAM, Y ). Refinement may use all correspondences

Y . A common approach is to select a set of inliers

from Y and recalculate function H on this set. The

refined pose is the output of the algorithm h̃AM =
R(hAM, Y ).

2.2. Learning in a RANSAC Pipeline

The system of Shotton et al. [36] had a single learned

component, namely the regression forest that made the pre-

dictions y(I, i). Krull et al. [23] extended the approach to

also learn the scoring function s(hJ , Y ) as a generalization

of the simpler inlier counting scheme of [36]. However,

these have thus far been learned separately.

Our work instead aims to learn both, the scene coordinate

predictions and the scoring function, and to do so jointly in

an end-to-end fashion within a RANSAC framework. Mak-

ing the parameterizations explicit, we have y(I, i;w) and

s(hJ , Y ;v). We aim to learn parameters w and v, where

w affects the quality of poses that we generate, and v affects

the selection process which should choose a good hypoth-

esis. We write Y w to reflect that scene coordinate predic-

tions depend on parameters w. Similarly, we write h
w,v
AM to

reflect that the chosen hypothesis depends on w and v.

We would like to find parameters w and v such that the

loss ℓ of the final, refined hypotheses over a training set of

images I is minimized, i.e.

w̃, ṽ = argmin
w,v

∑

I∈I

ℓ(R(hw,v
AM , Y w),h∗), (3)

where h∗ are ground truth model parameters for I . To al-

low end-to-end learning, we need to differentiate w.r.t. w

and v. We assume a differentiable loss ℓ and differentiable

refinement R.

One might consider differentiating h
w,v
AM w.r.t. to w via

the minimal set YJ of the single selected hypothesis of

Eq. 2. But learning a RANSAC pipeline in this fashion fails

because the selection process itself depends on w and v,

which is not represented in the gradients of the selected hy-

pothesis.2 Parameters v influence the selection directly via

the scoring function s(h, Y ;v), and parameters w influence

the quality of competing hypotheses h, though neither influ-

ence the initial uniform sampling of minimal sets YJ .

We next present two approaches to learn parameters w

and v – soft argmax selection (Sec. 2.2.1) and probabilistic

selection (Sec. 2.2.2) – that do model the dependency of the

selection process on the parameters.

2.2.1 Soft argmax Selection (SoftAM)

To solve the problem of non-differentiability, one can relax

the argmax operator of Eq. 2 and substitute it for a soft

argmax operator [6]. The soft argmax turns the hypothesis

selection into a weighted average of hypotheses:

h
w,v

SoftAM =
∑

J

P (J |v,w)hw

J (4)

which averages over candidate hypotheses hw

J with

P (J |v,w) =
exp(s(hw

J , Y w;v))
∑

J ′ exp(s(hw

J ′Y w;v))
. (5)

In this variant, scoring function s(hw

J , Y w;v) has to pre-

dict weights that lead to a robust average of hypotheses (i.e.

model parameters). This means that model parameters cor-

rupted by outliers should receive sufficiently small weights,

such that they do not affect the accuracy of h
w,v

SoftAM.

Substituting h
w,v
AM for h

w,v

SoftAM in Eq. 3 allows us to cal-

culate gradients to learn parameters w and v. We refer the

reader to the supplementary materials for details.

By utilizing the soft argmax operator, we diverge from

the RANSAC principle of making one hard decision for a

hypothesis. Soft argmax hypothesis selection bears simi-

larity with an independent strain within the field of robust

optimization, namely robust averaging, see e.g. the work of

Hartley et al. [15]. While we explore soft argmax selection

in the experimental evaluation, we introduce an alternative

in the next section, that preserves the hard hypothesis selec-

tion, and is empirically superior for our task.

2.2.2 Probabilistic Selection (DSAC)

We substitute the deterministic selection of the highest scor-

ing model hypothesis in Eq. 2 by a probabilistic selection,

i.e. we chose a hypothesis probabilistically according to:

h
w,v
DSAC = hw

J , with J ∼ P (J |v,w), (6)

where P (J |v,w) is the softmax distribution of scores pre-

dicted by s(hw

J , Y w;v) (see Eq. 5).

2We observed in early experiments that the training loss immediately

increases without recovering.
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The inspiration for this approach comes from policy gra-

dient approaches in reinforcement learning that involve the

minimization of a loss function defined over a stochastic

process [34]. Similarly, we are able to learn parameters w

and v that minimize the expectation of loss of the stochastic

process defined in Eq. 6:

w̃, ṽ = argmin
w,v

∑

I∈I

EJ∼P (J|v,w) [ℓ(R(hw

J , Y w))] . (7)

As shown in [34], we can calculate the derivative w.r.t. pa-

rameters w as follows (similarly for parameters v):

∂

∂w
EJ∼P (J|v,w) [ℓ(·)] =

EJ∼P (J|v,w)

[

ℓ(·)
∂

∂w
logP (J |v,w) +

∂

∂w
ℓ(·)

]

, (8)

i.e. the derivative of the expectation is an expectation over

derivatives of the loss and the log probabilities of model

hypotheses. We inlcude further steps of the derivation of

Eq. 8 in the supplementary materials.

We call this method of differentiating RANSAC, that

preserves hard hypothesis selection, DSAC – Differentiable

SAmple Consensus. See Fig. 1 for a schematic view of

DSAC in comparison to the RANSAC variants introduced

at the beginning of this section. While learning parameters

with the vanilla RANSAC is not possible, as mentioned be-

fore, both new variants (SoftAM and DSAC) are sensible

options which we evaluate in the experimental section.

3. Differentiable Camera Localization

We demonstrate the principles for differentiating

RANSAC for the task of one-shot camera localization from

an RGB image. Our pipeline is inspired by the state-of-the-

art pipeline of Brachmann et al. [5], which is an extension

of the original SCoRF pipeline [36] from RGB-D to RGB

images. Brachmann et al. use an auto-context random for-

est to predict multi-modal scene coordinate distributions per

image patch. After that, minimal sets of four scene coordi-

nates are randomly sampled and the PNP algorithm [12] is

applied to create a pool of camera pose hypotheses. A pre-

emptive RANSAC schema iteratively refines, re-scores and

rejects hypotheses until only one remains. The preemptive

RANSAC scores hypotheses by counting inlier scene co-

ordinates, i.e. scene coordinates yi for which reprojection

error ei < τ . In a last step, the final, remaining hypothe-

sis is further optimized using the uncertainty of the scene

coordinate distributions.

Our pipeline differs from Brachmann et al. [5] in the fol-

lowing aspects:

• Instead of a random forest, we use a CNN (called ‘Co-

ordinate CNN’ below) to predict scene coordinates.

For each 42x42 pixel image patch, it predicts a scene

coordinate point estimate. We use a VGG style archi-

tecture with 13 layers and 33M parameters. To reduce

test time we process only 40x40 patches per image.

• We score hypotheses using a second CNN (called

‘Score CNN’ below). We took inspiration from the

work of Krull et al. [23] for the task of object pose

estimation. Instead of learning a CNN to compare ren-

dered and observed images as in [23], our Score CNN

predicts hypothesis consensus based on reprojection

errors. For each of the 40x40 scene coordinate pre-

dictions yi we calculate the reprojection error ei for

hypothesis hJ (see Eq. 1). This results in a 40x40 re-

projection error image, which we feed into the Score

CNN, a VGG style architecture with 13 layers and 6M

parameters.

• Instead of the preemptive RANSAC schema, we score

hypotheses only once and select the final pose, either

by applying the soft argmax operator (SoftAM), or

by probabilistic selection according to the softmaxed

scores (DSAC).

• Only the final pose is refined. We choose inlier object

coordinate predictions (at most 100), i.e. scene coor-

dinates yi with reprojection error ei < τ , and solve

PNP [24] again using this set. This is iterated multiple

times. Since the Coordinate CNN predicts only point

estimates we do no further pose optimization using un-

certainty.

See Fig. 2 for an overview of our pipeline. Where appli-

cable we use the parameter values reported by Brachmann

et al. in [5], e.g. sampling 256 hypotheses, using 8 refine-

ment steps and an inlier threshold of τ = 10px.

4. Experiments

For comparability to other methods, we show results on

the widely used 7-Scenes dataset [36]. The dataset consists

of RGB-D images of 7 indoor environments where each

frame is annotated with its 6D camera pose. A 3D model of

each scene is also available. The data of each scene is com-

prised of multiple sequences (= independent camera paths)

which are assigned either to test or training. The number

of images per scene ranges from 1k to 7k for training resp.

test. We omit the depth channels and estimate poses using

RGB images only. See the supplementary materials for a

discussion of the difficulty of the 7-Scenes dataset.

We measure accuracy by the percentage of images for

which the pose error is below 5◦ and 5cm. For training, we

use the following differentiable loss which is closely corre-

lated with the task loss:

ℓpose(h,h
∗) = max(∡(θ,θ∗), ‖t− t∗‖), (9)

where h = (θ, t), θ denotes the axis-angle representa-

tion of the camera rotation, and t is the camera translation.
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Figure 2. Differentiable Camera Localization Pipeline. Given an RGB image, we let a CNN with parameters w predict 2D-3D cor-

respondences, so called scene coordinates [36]. From these, we sample minimal sets of four scene coordinates and create a pool of

hypotheses h. For each hypothesis, we create an image of reprojection errors which is scored by a second CNN with parameters v. We

select a hypothesis probabilistically according to the score distribution. The selected pose is also refined.

We measure angle ∡(θ,θ∗) between estimated and ground

truth rotation in degree, and distance ‖t − t∗‖ between es-

timated and ground truth translation in cm.

Since the dataset does not include a designated valida-

tion set, we separated multiple blocks of 100 consecutive

frames from the training data to be used as validation data

(in total 10% per scene). We fixed all learning parameters

on the validation set (e.g. learning rate and total amount of

parameter updates). Once all hyper parameters are fixed,

we re-train on the full training set.

4.1. Componentwise Training

Our pipeline contains two trainable components, namely

the Coordinate CNN and the Score CNN. First, we explain

how to train both components using surrogate losses, i.e.

train them not in an end-to-end fashion but separately. End-

to-end training using differentiable RANSAC will be dis-

cussed in Sec. 4.2.

Scene Coordinate Regression. Similar to Brachmann et

al. [5], we use the depth information of training images to

generate scene coordinate ground truth. Alternatively, this

ground truth can also be rendered using the available 3D

models. We train the Coordinate CNN using the follow-

ing surrogate loss: ℓcoord(y,y
∗) = ‖y − y∗‖, where y is

the scene coordinate prediction and y∗ is ground truth. We

also experimented with other losses including L2 (squared

distance), Huber [18] and Tukey [3] which consistently per-

formed worse on the validation set.

We trained with mini batches of 64 randomly sampled

training patches. We used the Adam [21] optimizer with a

learning rate of 10−4. We cut the learning rate in half after

each 50k updates, and train for a total of 300k updates.

Score Regression. We synthetically created data to train the

Score CNN in the following way. By adding noise to the

ground truth pose of training images, we generated poses

above and below the pose error threshold of 5◦ and 5cm.

Using the scene coordinate predictions of the trained Coor-

dinate CNN, we compute reprojection error images of these

poses. Poses with a large pose error w.r.t. the ground truth

pose will lead to large reprojection errors, and we want the

Score CNN to predict a small score. Poses close to ground

truth will lead to small reprojection errors, and we want the

Score CNN to predict a high score. More formally, the

pose error ℓpose(h,h
∗) of a hypothesis h should be nega-

tively correlated with the score prediction s(h, Y ;v). Thus,

we train the Score CNN to minimize the following loss:

ℓscore(s, s
∗) = |s − s∗|, where: s∗ = −βℓpose(h,h

∗). Pa-

rameter β controls the broadness of the score distribution

after applying softmax. We use this distribution for weights

in SoftAM (see Eq. 5) and to sample a hypothesis in DSAC

(see Eq. 6). A value of β = 10 gave reasonable distribu-

tions on the validation set, i.e. poses close to ground truth

had a high probability to be selected, and poses far away

from ground truth had a low probability to be selected.

We trained the Score CNN with a batch size of 64 repro-

jection error images of randomly generated poses. We used

Adam [21] for optimization with a learning rate of 10−4.

We train for a total of 2k updates.

Table 2. Median pose errors of the complete 7-Scenes dataset

(17000 frames). Most accurate result marked bold.

Brachmann

et al. [5]
4.5cm, 2.0◦

Ours, Trained

Componentwise

RANSAC 4.2cm, 1.1◦

SoftAM 4.2cm, 1.1◦

DSAC 4.3cm, 1.1◦

Ours, Trained

End-To-End

SoftAM 4.5cm, 1.2◦

DSAC 4.1cm, 1.1◦

Results. We report the accuracy of our pipeline, trained

componentwise, in Table 1. We present the accuracy per

scene and the average over scenes. Since scenes with few

test frames like Stairs and Heads are overrepresented in the

average, we additionally show accuracy on the dataset as a

whole (denoted Complete, i.e. 17000 test frames).

We distinguish between RANSAC, i.e. non-differentiable

argmax hypothesis selection, SoftAM, i.e. differentiable

soft argmax hypothesis selection and DSAC, i.e. differen-

tiable probabilistic hypothesis selection.

As can be seen in Table 1, RANSAC, SoftAM and DSAC
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Table 1. Accuracy measured as the percentage of test images where the pose error is below 5cm and 5◦. Complete denotes the combined set

of frames (17000) of all scenes. Numbers in green denote improved accuracy after end-to-end training for SoftAM resp. DSAC compared

to componentwise training. Similarly, red numbers denote decreased accuracy. Bold numbers indicate the best result for each scene.

Ours

Sparse Brachmann Trained Componentwise Trained End-To-End

Features [36] et al. [5] RANSAC SoftAM DSAC SoftAM DSAC

Chess 70.7% 94.9% 96.8% 96.8% 97.1% 97.3% +0.5% 97.4% +0.3%

Fire 49.9% 73.5% 71.8% 72.0% 71.4% 71.9% -0.1% 71.6% +0.2%

Heads 67.6% 48.1% 66.7% 67.3% 68.5% 67.9% +0.6% 67.0% -1.5%

Office 36.6% 53.2% 57.6% 58.5% 57.4% 47.8% -10.7% 59.4% +2.0%

Pumpkin 21.3% 54.5% 59.0% 58.7% 57.6% 57.0% -1.7% 58.3% +0.7%

Kitchen 29.8% 42.2% 40.1% 40.4% 38.6% 40.2% -0.2% 42.7% +4.1%

Stairs 9.2% 20.1% 12.8% 13.5% 13.7% 12.3% -1.2% 13.4% -0.3%

Average 40.7% 55.2% 57.8% 58.2% 57.7% 56.3% -1.4% 58.5% +0.8%

Complete 38.6% 55.2% 56.8% 57.2% 56.3% 54.4% -2.8% 58.0% +1.7%

achieve very similar results when trained componentwise.

The probabilistic hypothesis selection of DSAC results in a

slightly reduced accuracy of -0.5% on the complete dataset,

compared to RANSAC.

We compare our pipeline to the sparse features baseline

presented in [36] and the pipeline of Brachmann et al. [5],

which is state-of-the-art on this dataset at the moment. All

variants of our pipeline surpass, on average, the accuracy of

both competitors. Note, conceptually the main advantage

over Brachmann et al. [5] is the new scoring CNN. We also

measured the median pose error of all frames in the dataset,

see Table 2. Compared to Brachmann et al. [5] we are able

to decrease both rotational and translational error. PoseNet

[20] states median translational errors of around 40cm per

scene, so it cannot compete in terms of accuracy.

4.2. End­to­End Training

In order to facilitate end-to-end learning as described in

Sec. 2, some parts of the pipeline need to be differentiable

which might not be immediately obvious. We already in-

troduced the differentiable loss ℓpose. Furthermore, we need

to derive the model function H(YJ) and refinement R w.r.t.

learnable parameters.

In our application, H(YJ) is the PNP algorithm. Off-

the-shelf implementations (e.g. [12, 24]) are fast enough for

calculating the derivatives via central differences.

Refinement R involves determining inlier sets and re-

solving PNP in multiple iterations. This procedure in non-

differentiable because of the hard inlier selection procedure.

However, because the number of inliers is large (100 in our

case), refined poses tend to vary smoothly with changes to

the input scene coordinates. Hence, we treat the refinement

procedure as a black box, and calculate derivatives via cen-

tral differences, as well. For stability, we stop refinement

early, in case less than 50 inliers have been found. Because

of the large number of inputs and to keep central differences

tractable, we subsample the scene coordinates for which

gradients are calculated (we use 1%), and correct the gra-

dient magnitude accordingly (×100).

Similar to e.g. [41] or [20], we found it important to

have a good initialization when learning end-to-end. Learn-

ing from scratch quickly reached a local minimum. Hence,

we initialize the Coordinate CNN and the Score CNN with

componentwise training, see Sec. 4.1.

We found the same set of training hyperparameters to

work well for the validation set for both, SoftAM and

DSAC. We use the following learning rate schedule for the

Coordinate CNN: αt = 10−4/(1 + 0.1t) where αt is the

learning rate at iteration t. For the Score CNN we use a

fixed learning rate of 10−7. Our end-to-end pipeline con-

tains substantial stochasticity because of the sampling of

minimal sets YJ . Instead of the Adam procedure, which

was unstable, we use stochastic gradient descent with mo-

mentum [33] of 0.9, and we clamp all gradients to the range

of -0.1 to 0.1, before passing them to the Score CNN or the

Coordinate CNN. We train for 10k updates.

Results. See Table 1 for results of both strategies. Com-

pared to the initialization (trained componentwise), we

observe a significant improvement for DSAC (+1.7% on

the complete dataset, standard error of the mean ±0.4%).

DSAC improves accuracy for most scenes, with strongest

effects for Office (+2.0%) and Kitchen (+4.1%). SoftAM

significantly decreases accuracy compared to the compo-

nentwise initialization (-2.8% on the complete dataset).

SoftAM overfits severely on the Office scene (-10.7%) and

decreases accuracy for most other scenes.

The pipeline learned end-to-end with DSAC improves on

the results of Brachmann et al. [5] by 3.3% (scene average)

resp. 2.8% (complete set). DSAC also improves the median

pose error, see Table 2.

4.3. Insights and Detailed Studies

Ablation Study. We study the effect of learning the Score

CNN and the Coordinate CNN in an end-to-end fashion, in-
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Figure 3. (a) Effect of end-to-end learning on pose accuracy w.r.t.

individual components. (b) Effect of end-to-end training on the

average entropy of the score distribution. We used the Office test

set for both studies. Set text for details.

dividually. We use componentwise training as initialization

for both CNNs. See Fig. 3 a) for results on the Office scene.

For DSAC, training both components in an end-to-end fash-

ion is important for best accuracy. For SoftAM, we see that

the bad results on this scene are not due to overfitting on the

Score CNN, but its way of learning the Coordinate CNN.

-10cm +10cm±0cm

Change in Prediction Error w.r.t Initialization after End-to-End Training:

Improvement Decrease

d) SoftAM e) DSAC

a) Input RGB
b) Scene Coordiante

Ground Truth

c) Scene Coordiante

Prediction (Initial.)

Figure 4. Prediction quality. We analyze scene coordinate pre-

diction quality on an Office test image (a) with ground truth scene

coordinates (b) (XYZ mapped to RGB). The prediction after com-

ponentwise training can be seen in (c). We vizualize the relative

change of prediction error w.r.t. componentwise training in (d) for

SoftAM, resp. in (e) for DSAC. We observe an aggressive strat-

egy of SoftAM which focuses large improvements on small areas

(14% of predictions improve). DSAC shows small improvements

but on large areas (38% of predictions improve). Note that DSAC

achieves superior pose accuracy on this scene.

Analysis of Scene Coordinate Predictions. In the com-

ponentwise training, the Coordinate CNN learned to min-

imize the surrogate loss ℓcoord, i.e. the distance ‖yi − y∗
i ‖

of scene coordinate predictions yi w.r.t. ground truth y∗
i . In

Fig. 4, we visualize how the prediction of the Coordinate

CNN changes when trained in an end-to-end fashion, i.e. to

minimize the loss ℓpose. Both end-to-end learning strategies,

SoftAM and DSAC, increase the accuracy of scene coordi-

nate predictions in some areas of the scene at the cost of

decreasing the accuracy in other areas. We observe very

extreme changes for the SoftAM strategy, i.e. the increase

and decrease in scene coordinate accuracy is large in mag-

nitude, and improvements are focused to small scene areas.

The DSAC strategy leads to a much more cautious tradeoff,

i.e. changes are smaller and widespread. Note that we use

identical learning parameters for both strategies. We con-

clude that SoftAM tends to overfit due to overly aggressive

changes in scene coordinate predictions.

Score Distribution Entropy. See Fig. 3 b) for an analysis

of the effect of end-to-end learning on the average entropy

of the softmax score distribution (see Eq. 5). We observe

a clear reduction in entropy for the SoftAM strategy. The

larger the pose error of a hypothesis is, the larger is also

its influence on the pose average (see Eq. 4). SoftAM has

to weigh down such poses aggressively for a good average.

DSAC can allow for a broader distribution (see the increase

in entropy) because poses which are unlikely to be chosen,

do not affect the loss of poses which are likely to be chosen.

This is an additional factor in the stability of DSAC.

Restoring the argmax Selection. After end-to-end train-

ing, one may restore the original RANSAC algorithm, e.g.

selecting hypotheses w.r.t. scores via argmax. In this case,

the average accuracy of DSAC stays at 58.5%, while the ac-

curacy of SoftAM decreases further to an average of 55.8%.

Further Discussions. See the supplementary materials for

a discussion of run time and the potential benefits of mod-

eling multi-modal scene coordinate distributions.

5. Conclusion

We presented two strategies for differentiating the

RANSAC algorithm: Using a soft argmax operator, and

probabilistic selection. By experimental evaluation we con-

clude that probabilistic selection is superior and call this

approach DSAC. We demonstrated the use of DSAC for

learning a camera localization pipeline end-to-end. How-

ever, DSAC can be deployed in any deep learning pipeline

where robust optimization is beneficial, for example learn-

ing structure from motion or SLAM end-to-end.

Acknowledgements: This project has received funding

from the European Research Council (ERC) under the Eu-

ropean Unions Horizon 2020 research and innovation pro-

gramme (grant agreement No 647769). The computations

were performed on an HPC Cluster at the Center for Infor-

mation Services and High Performance Computing (ZIH)

at TU Dresden. We thank the Torr Vision Group of the Uni-

versity of Oxford for inspiring discussions.

6691



References
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