
DISCO Nets: DISsimilarity COefficient Networks
Supplementary material

Diane Bouchacourt
University of Oxford

diane@robots.ox.ac.uk

M. Pawan Kumar
University of Oxford

pawan@robots.ox.ac.uk

Sebastian Nowozin
Microsoft Research Cambridge

sebastian.nowozin@microsoft.com

In this supplementary material, we refer to equations and sections of the main paper, and to figures
and tables of this supplementary material, unless otherwise stated.

1 Toy example experimental details.

In this section, we provide details on the toy example presented in Section 1. We used the following
simple experimental setting. All covariances for the bidimensional distributions are diagonal, therefore
all bidimensional Gaussian distributions are parametrised by 4 parameters (µ1, µ2, σ1, σ2) where µ, σ
is a mean-variance pair on each dimension. We consider a data distribution that is a mixture of 2
bidimensional Gaussian distributions, referred as GMM. The first Gaussian of the mixture, G1, is
parametrised by (1, 1.5, 2, 0.8) and the second Gaussian G2 is parametrised by (0,−0.5, 0.7, 0.6).
The mixture weights are 0.7 and 0.3, such that GMM = 0.7 × G1 + 0.3 × G2. We consider two
models to capture the true data distribution GMM. Each model is able to represent a bidimensional
Gaussian distribution parametrised by (µ1, µ2, σ1, σ2). The sets in which to search for the parameters
are the same in both dimensions and both models. The set to search the means ranges from −3 to 3
by 1, and the set to search the variances ranges 0.1 to 2 by 0.5. The training dataset is composed
of N = 10000 examples drawn randomly from GMM, denoted as (x1, ...,xN). The testing dataset
is composed of 1000 examples drawn randomly from GMM. During training, we draw K = 2
samples from the model and estimate the probabilistic loss defined as:

1

N

N∑
n=1

[1

K

∑
k

∆M (xn, GM (zk))− 1

2

1

K(K − 1)

∑
k

∑
k′ 6=k

∆M (GM (zk′), GM (zk))
]

(1)

where M indexes the model, ∆M is the model’s specific loss, and G(zk))M is the kth sample drawn
from M for the training data xn. During testing of a model, we draw K = 10 samples from the
model and choose a pointwise prediction with the MEU method. The MEU method employs the same
loss as the evaluation loss. Each model is tested with its own loss and the loss of the other model.

2 Details on the MEU method

For an input x, to choose a single prediction y among K candidate outputs sampled for x, DISCO
Nets use the principle of Maximum Expected Utility (MEU). The prediction y∆task maximises the
expected utility, or rather minimises the expected task-specific loss ∆task, estimated using the sampled
candidates. Formally, the prediction is made as follows:

y∆task = argmax
k∈[1,K]

EU(yk) = argmin
k∈[1,K]

K∑
k′=1

∆task(yk,y
′
k) (2)

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Table 1: Evaluation metrics. N is the number of testing example pairs (xn,yn) and y∆metric,n is the
prediction, specific to the metric, for the nth input example xn. J is the number of joints of the hand.

Shorthand & Definition ∆metric Formula
ProbLoss: Probabilistic Loss of K sampled poses. ∆ProbLoss = ||.||β2 F̂ (∆ProbLoss,θ) with γ = 0.5

MeJEE (Mean Joint Euclidean Error) : per-joint
Euclidean distance between the pointwise pose and the

goundtruth, averaged by J and N .
∆MeJEE =

1

J

∑J
j=1 ||.||

jointj
2

1

N

N∑
n=1

1

J

J∑
j=1

||yjn − y
j
∆MeJEE,n

||2
jointj

MaJEE (Max Joint Euclidean Error) per-joint maximal
Euclidean distance between the pointwise pose and the

goundtruth averaged by N .
∆MaJEE = maxj∈[1,J] ||.||jointj

2

1

N

N∑
n=1

max
j∈[1,J]

||yjn − y
j
∆MaJEE,n

||2
jointj

FF(d) (Fraction of Frames) : fraction of test examples that
have all predicted joints of the pointwise pose below a
given maximum Euclidean distance d in mm from the

ground-truth.

∆FF = −1maxj∈[1,J] ||.||
jointj
2 ≤d

(note the minus sign since we want
to maximise FF)

1

N

N∑
n=1

1
maxj∈[1,J] ||yj

n−yj
∆FF,n

||2
jointj≤d

where (y1, ...,yK) are the candidates output corresponding to the single input x. For example, for
a given intput x, we need to choose a pointwise output to evaluate the Mean Joint Euclidean Error
(MeJEE). We sample K candidate ouputs values for the input x, and pick:

y∆MeJEE = argmin
k∈[1,K]

K∑
k′=1

∆task(yk,y
′
k) = argmin

k∈[1,K]

K∑
k=1

1

J

J∑
j=1

||yj − yjk||2 (3)

Then when we evaluate MeJEE, the loss encountered on the example x is ∆MeJEE(yGT,y∆MeJEE)
where yGT is the ground-truth output that corresponds to x.

3 Experimental details

We provide in this section additional details on the Hand Pose experiment of Section 3. As in the
main paper, we denote the training loss function ∆training = ∆β(y,y′) = ||y − y′||β2 .

Evaluation metrics. Table 1 details the evaluation metrics we employ.

Cross-validation procedure. We substract I = 10000 examples from the 72757 training frames to
construct a validation dataset. The validation examples are chosen at random and are the same for all
experiments. Let us denote the examples pairs from the validation dataset as V = {xi,yi, i = 1..I},
and y∆training,i is the prediction for the ith example. During training, we monitor the value of the
loss ∆training on the validation dataset. In details, this loss is:

Lval =
1

I

I∑
i=1

||yi − y∆training,i||
β
2 (4)

In order to evaluate Lval for the model BASEβ , we simply use for y∆training the pointwise prediction
of BASEβ . To monitor Lval for DISCOβ,γ , we use the MEU method to pick y∆training . In the MEU
method, we draw K = 100 samples per validation example. In order to reduce variance, we draw
the 100 random noise vectors per example, {z1,1, ...zi,K , ...,zI,1, ...zI,K} once for all before starting
the optimisation Algorithm 1. Indeed, contrarily to the random noise vector drawn to estimate the
gradient of the training objective in step 4 of Algorithm 1, these noise vectors do not influence the
training but are only used for monitoring purposes. They remain independent when the network’s
parameters are optimised. Finally, we choose for each model the best value of C and the best seed
by taking the setting that gives the lowest final value of Lval.

Training procedure All network weights are initialised at random with a Gaussian distribution of
mean 0 and standard deviation 0.01, all biases are initialised to 0. During training, the number of
candidates outputs generated by the probabilistic models DISCOβ,γ is K = 2. This is sufficient to
construct an unbiased estimate of the gradient in step 7 of Algorithm 1 in the main paper. Note that
in step 4 of Algorithm 1 we must draw new noise samples (zn,1, ...zn,k) for each training example

2

at each iteration. Indeed, let us consider the iteration t on a training example xn. The values of the
noise sampled for xn at iteration t− 1, (zt−1

n,1 , ...z
t−1
n,k), were used in the estimation of the gradient,

and thus influenced the update θt ← θt−1. Thus, we need to draw new sample to ensure that the K
candidate outputs for xn, yn = G(ztn,k,xn;θt), k = 1..K, remain independent given xn and θt.
We train all models for 400 epochs as it results in a change of less than 3% in the value of Lval
for BASEβ . Convergence behavior is shown in Figures 1, 2 and 3.

Figure 1: Lval monitoring for the two models, for different values of C, for seed 0.

Figure 2: Lval monitoring for the two models, for different values of C, for seed 1.

Figure 3: Lval monitoring for the two models, for different values of C, for seed 2.

Details on the qualitative results. We estimate the cumulative distribution function of the
mean euclidean metric (MeJEE) using K = 1000 sampled poses for a given test image. This
distribution is better fitted (lower BIC score, using 1000 sampled poses per image) by a bi-
modal Gaussian than a unimodal Gaussian for 3% of the test set (247 out of the 8252 images).
It is never the case when γ = 0 if we do not scale the noise vector (when scaled, the distri-
bution is multimodal for 217 test images). It shows the ability of DISCO Net to capture multimodality.

Details on the quantitative results. We detail here some results of the experiment presented in
Section for all values of C, for the best seed for each C value. We report the BASEβ=1,σ and
DISCOβ=1,γ=0.5 models. In the main paper we report performances using the MEU method for
choosing a pointwise prediction y∆ for an input x. However we can use 3 different methods that are:

• MEU method.
• MEAN method : pick for the non-probabilistic model BASEβ,σ its pointwise prediction.

Therefore the value of the metrics MeJEE, MaJEE and FF are the same regardless of σ.
For DISCOγ,β , pick the mean of the K candidates.

3

• RANDOM method : pick an output y at random among K candidates.

Detailed results show that the model DISCOβ=1,γ=0.5 consistently outperforms BASEβ=1,σ for all
values of C and all methods, and that results are consistent across the pointwise prediction method
employed. Tables 2, 3 and 4 present the results when we use the MEU method to choose the
pointwise estimate.Tables 5, 6 and 7 present the results when we use the MEAN method. Tables 8,
9 and 10 present the results when we use the RANDOM method.

Table 2: Metrics values ± SEM for C = 1e−2 using MEU.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 210.1±0.793 51.9±0.202 92.5±0.325 38.451
BASEβ=1,σ=5 204.8±0.792 52.0±0.201 92.7±0.325 38.257
BASEβ=1,σ=10 201.1±0.791 52.2±0.201 92.8±0.324 37.215
DISCOβ=1,γ=0.5 87.8±0.506 23.5±0.129 50.9±0.264 88.900

Table 3: Metrics values ± SEM for C = 1e−3 using MEU.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 100.8±0.586 24.5±0.142 51.0±0.271 88.742
BASEβ=1,σ=5 96.3±0.579 24.8±0.141 51.2±0.270 88.548
BASEβ=1,σ=10 93.3±0.571 25.1±0.140 51.5±0.268 88.488
DISCOβ=1,γ=0.5 80.4±0.490 20.6±0.123 44.5±0.245 94.292

Table 4: Metrics values ± SEM for C = 1e−4 using MEU.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 103.8±0.627 25.2±0.152 52.7±0.290 86.040
BASEβ=1,σ=5 99.3±0.620 25.5±0.151 52.9±0.289 85.773
BASEβ=1,σ=10 96.3±0.612 25.7±0.149 53.2±0.288 85.664
DISCOβ=1,γ=0.5 83.8±0.503 20.9±0.124 45.1±0.246 94.438

Table 5: Metrics values ± SEM for C = 1e−2 using MEAN.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 210.1±0.793 51.8±0.202 92.5±0.325 38.536
BASEβ=1,σ=5 204.8±0.792 51.8±0.202 92.5±0.325 38.536
BASEβ=1,σ=10 201.1±0.791 51.8±0.202 92.5±0.325 38.536
DISCOβ=1,γ=0.5 87.8±0.506 23.5±0.129 50.7±0.263 90.221

Table 6: Metrics values ± SEM for C = 1e−3 using MEAN.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 100.8±0.586 24.4±0.142 50.9±0.271 88.657
BASEβ=1,σ=5 96.3±0.579 24.4±0.142 50.9±0.271 88.657
BASEβ=1,σ=10 93.3±0.571 24.4±0.142 50.9±0.271 88.657
DISCOβ=1,γ=0.5 80.4±0.490 20.6±0.123 44.3±0.244 94.535

Table 7: Metrics values ± SEM for C = 1e−4 using MEAN.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 103.8±0.627 25.1±0.152 52.7±0.290 85.991
BASEβ=1,σ=5 99.3±0.620 25.1±0.152 52.7±0.290 85.991
BASEβ=1,σ=10 96.3±0.612 25.1±0.152 52.7±0.290 85.991
DISCOβ=1,γ=0.5 83.8±0.503 20.9±0.124 45.0±0.246 94.619

4

Table 8: Metrics values ± SEM for C = 1e−2 using RANDOM.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 210.1±0.793 51.9±0.202 92.5±0.325 38.500
BASEβ=1,σ=5 204.8±0.792 52.1±0.201 92.8±0.324 37.700
BASEβ=1,σ=10 201.1±0.791 52.4±0.201 93.1±0.325 37.082
DISCOβ=1,γ=0.5 87.8±0.506 24.1±0.130 52.1±0.266 88.572

Table 9: Metrics values ± SEM for C = 1e−3 using RANDOM.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 100.8±0.586 24.6±0.142 51.0±0.271 88.694
BASEβ=1,σ=5 96.3±0.579 25.0±0.140 51.4±0.269 88.500
BASEβ=1,σ=10 93.3±0.571 25.5±0.138 51.8±0.267 88.585
DISCOβ=1,γ=0.5 80.4±0.490 20.9±0.123 45.0±0.246 94.062

Table 10: Metrics values ± SEM forC = 1e−4 using RANDOM.

Model ProbLoss MeJEE (mm)MaJEE (mm)FF (80mm)
BASEβ=1,σ=1 103.8±0.627 25.3±0.151 52.8±0.290 86.028
BASEβ=1,σ=5 99.3±0.620 25.7±0.150 53.1±0.288 85.761
BASEβ=1,σ=10 96.3±0.612 26.1±0.148 53.5±0.286 85.822
DISCOβ=1,γ=0.5 83.8±0.503 21.0±0.124 45.3±0.246 94.510

Detailed comparison with cGAN. We aim at performing a fair comparison with the conditional
Generative Adversarial Networks (cGAN) model presented in Mirza and Osindero [1]. However as
mentioned in Section 4.3 we encountered several challenges. We present here additional details on
the comparison with cGAN models.

As mentioned in Section 4.3, we tried 3 different training setting in order to apply cGAN
to hand pose estimation on the NYU dataset. The setting cGAN initialises randomly the Discrimina-
tor and the Generator parameters. The setting cGANinit initialises the convolutional layers of both
the Discriminator and the Generator with the trained convolutional layers of our best DISCO Nets
from Section 3 without keeping it fixed. That is, we try to perform fine-tuning only. The setting
cGANinit, fixed initialises the convolutional layers of both the Discriminator and the Generator with
the trained convolutional layers of our best DISCO Nets from Section 3 and keep these part fixed.
That is, the convolutional parts of the Generator and the Discriminator are feature extractors that are
not trained. This is a setting similar to the one employed for tag-annotation of images in Mirza and
Osindero [1].

Since cGAN model require the training of the additional Discriminator network, each epoch of
training requires ∼ 60 seconds compared to ∼ 20 seconds for DISCO Nets. Therefore, we were
only able to use one random seed for the initialisation of the network parameters. However, DISCO
Nets present a consistent behavior regardless of the seed employed for initialisation. We could
expect a similar behavior for the cGAN model. The experimental setting is similar to the one of
Section 3. We use the exact same training and validation sets as in Section 3. Back-propagation
was used with Stochastic Gradient Descent. The learning rate is fixed to λ = 0.01 and we use
a momentum of m = 0.9. We use a batchsize of 256 samples. We also add L2-regularisation
controlled by a parameter C. We use C = [1e−4, 1e−3, 1e−2]. We use the cross-validation
procedure presented in Section 3 of this supplementary to cross-validate C. We train all models for
400 epochs. For C = 1e−4 we train for more epochs since 400 were not enough to have the final
convergence of cGANinit, fixed (see Figure 4b). However, this does not help the cGAN performances
compared to the one reported for 400 epochs, see Table 11. Figure 4 show the training behavior of
the different settings of cGAN. When the curve is missing, it means that the model has diverged after
the few first iterations and thus we cannot show its behavior. This is always the case forcGANinit.

5

Table 11: Metrics values ± SEM forC = 1e−4 for cGAN model.

Model ProbLoss (mm)MeJEE (mm)MaJEE (mm)FF (80mm)
cGANinit, fixed, 400 epochs of training 128.9±0.480 31.8±0.117 64.3±0.230 78.454
cGANinit, fixed,>1400 epochs of training 134.5±0.591 31.8±0.146 64.0±0.253 74.261

(a) Lval monitoring for cGan with C = 1e−4 for 400
epochs.

(b) Lval monitoring for cGan with C = 1e−4. We
trained for more than 1400 epochs as 400 epochs were
not enough.

(c) Lval monitoring for cGan with C = 1e−3. (d) Lval monitoring for cGan with C = 1e−2.

Figure 4: Lval monitoring for cGan.

References
[1] M. Mirza and S. Osindero. Conditional generative adversarial nets. In NIPS Deep Learning

Workshop, 2014.
[2] Pierre Pinson and Julija Tastu. Discrimination ability of the energy score. Technical University

of Denmark. (DTU Compute-Technical Report-2013; No. 15), 2013.

6

	Toy example experimental details.
	Details on the MEU method
	Experimental details

