
Tighter Relaxations for MAP-MRF Inference:
A Local Primal-Dual Gap based Separation Algorithm

Dhruv Batra Sebastian Nowozin Pushmeet Kohli
TTI-Chicago Microsoft Research Cambridge Microsoft Research Cambridge

Abstract

We propose an efficient and adaptive method
for MAP-MRF inference that provides in-
creasingly tighter upper and lower bounds
on the optimal objective. Similar to Sontag
et al. (2008b), our method starts by solving
the first-order LOCAL(G) linear program-
ming relaxation. This is followed by an adap-
tive tightening of the relaxation where we in-
crementally add higher-order interactions to
enforce proper marginalization over groups of
variables. Computing the best interaction to
add is an NP-hard problem. We show good
solutions to this problem can be readily ob-
tained from “local primal-dual gaps” given
the current primal solution and a dual repa-
rameterization vector. This is not only ex-
tremely efficient, but in contrast to previous
approaches, also allows us to search over pro-
hibitively large sets of candidate interactions
to add. We demonstrate the superiority of
our approach on MAP-MRF inference prob-
lems encountered in computer vision.

1 Introduction

A number of problems in computer vision, compu-
tational biology and machine learning are naturally
formulated as discrete labelling problems. Markov
Random Fields (MRFs) (Wainwright and Jordan,
2008; Koller and Friedman, 2009) provide a principled
framework for modelling and solving these problems.
Maximum a posteriori (MAP) inference in MRFs is
thus of fundamental importance in these domains but
known to be NP-hard in general (Shimony, 1994).

LP Relaxations. Linear Programming (LP) relax-
ations of MAP-MRF are powerful techniques that
have have been independently (re-)discovered by dif-

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

ferent communities in pattern recognition (Schlesinger,
1976), constraint satisfaction (Koster et al., 1998;
Chekuri et al., 2004) and machine learning (Wain-
wright et al., 2005) (See Werner (2007) for a re-
view). From a polyhedral perspective, LP relaxations
for MAP correspond to approximating the intractable
marginal polytope with an outer-bound, called the local
polytope (Wainwright and Jordan, 2008).

Unfortunately, as various authors have noted (Meltzer
et al., 2005; Kolmogorov, 2006; Yanover et al., 2006;
Sontag et al., 2008b; Komodakis and Paragios, 2008;
Werner, 2008) the standard LP relaxation is rarely
tight on real applications. This motivates the need for
cluster-based LPs (Sontag et al., 2008b,a), where local
consistency is enforced on clique or cluster marginals.
The relaxation becomes tighter as larger cliques are
added, but since solving the clique-relaxation is expo-
nential in the size of the clique, the problem of finding
the right cliques to add, also referred to as cluster-
pursuit, becomes a critical ones.

Cluster Pursuit. Most approaches for cluster-
pursuit can be understood as Dictionary-Enumeration
techniques. They define a small dictionary of clusters
and enumerate over all members in this dictionary to
add the member with the highest “score”, which is typ-
ically a measure of the benefit of adding this cluster
to the relaxation. For example, Sontag et al. (2008b)
define their dictionary to be all 3-cycles in a graph (or
4-cycles for grids); Werner (2008) consider all 4-cycles
for grids and Komodakis and Paragios (2008) consider
all 1x1, 1x2, 2x1-cycles for grids.

Separation Problem and Hardness Result. Let
F = {A} denote a dictionary of clusters A, and w(A)
denote the score of cluster A. Then, the cluster-pursuit
problem can be written as:

A∗ = argmax
A∈F

w(A) (1)

Ideally, we would like w(A) to be the gain in the
tightness of the relaxation due to the addition of A.
However, for a general cluster A, this value is hard to
compute without actually adding A to the relaxation
and re-solving, defeating the very purpose of cluster-

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm

pursuit. Therefore dictionary-enumeration methods
typically choose w(A) to be a lower-bound on the im-
provement (Sontag et al., 2008b), and enumerate over
small cycles in graphs. However, Sontag (2010) has
shown that even for this “easier” scoring function, the
separation problem (1) is NP-hard for arbitrary length
cycles in the graph for general MRFs. In the view of
this hardness result, it becomes important to look for
surrogate or approximate scoring functions that are
quickly computable and allow for efficient search.

Contribution. In this work we propose an approxi-
mate separation algorithm for the marginal polytope
based on a novel cluster-scoring function we call, Lo-
cal Primal-Dual Gap (LPDG). LPDG is a generaliza-
tion of the complementary slackness condition in the
primal-dual programs of the LP relaxations of MAP-
MRF. Intuitively, LPDG quantifies by how much the
complementary slackness condition is violated, and
attributes violations to individual potentials. More-
over, LPDG can be computed as a byproduct in dual
message-passing algorithms, essentially for free, and
also enables search over arbitrary length cycles in a
graph, which cannot be done via lower-bound based
scoring functions (Sontag, 2010).

We first introduce the basic concepts in Section 2.
Our novel contribution, the local primal-dual gap and
a separation algorithm are discussed in Section 3.
The performance of the proposed algorithm is demon-
strated experimentally in Section 4.

2 LP relaxation of MAP-MRF

Notation. We try to closely follow the notation
of Werner (2008). For any positive integer n, let [n]
be shorthand for the set {1, 2, . . . , n}. We consider a
set of discrete random variables X = {x1, x2, . . . , xn},
each taking value in a finite label set, xi ∈ Xi. For a
set A ⊆ [n], we use xA to denote the tuple {xi | i ∈ A},
and XA to be the joint label space ×i∈AXi. Let
G = (V, E) be a hypergraph defined over these vari-
ables (i.e., V = [n], E = {A | A ⊆ V), and let
θA : XA → R be a function defining the cost/energy at
each hyperedge for the labelling of variables in scope.

The goal of MAP inference can then be succinctly
written as: minX∈XV

∑
A∈E θA(xA). For the special

case of pairwise MRFs, G is a simple graph (with
no hyper-edges), and the energy can be written as:
minX∈XV

∑
i∈V θi(xi) +

∑
(i,j)∈E θij(xi, xj).

Schlesinger’s LP. It is well-known (Wainwright and
Jordan, 2008) that the above discrete optimization
problem can be written as a linear programming prob-
lem over the so-called marginal polytope M(G):

min
µ∈M(G)

θ · µ (2)

M(G) =

{
µ
∣∣∣ ∃p(X) s.t.

µi(xi) =
∑
XV\i

p(X)

µ(xi, xj) =
∑
XV\i,j

p(X)

}
,

where θ · µ
.
=

∑
i∈V θi(xi)µi(xi) +∑

(i,j)∈E θij(xi, xj)µij(xi, xj), p(X) is a Gibbs
distribution that factorizes over the graph G, and µ is
a vector holding node and edge marginal distributions,
i.e., µ = {µi(·), µe(·) | i ∈ V, e ∈ E}.

Problem (2) is NP-hard to solve in general and the
marginal polytope cannot be characterized with a
polynomial number of inequalities (Wainwright and
Jordan, 2008). The standard LP relaxation of
the MAP problem (2), also known as Schlesinger’s
bound (Schlesinger, 1976; Werner, 2007), is given by
minµ∈L(G) θ · µ, with

L(G) =

{
µ ≥ 0

∣∣∣∣∣
∑
xi
µi(xi) = 1,∑

xi,xj
µij(xi, xj) = 1,∑

xi
µij(xi, xj) = µj(xj)

}
, (3)

where µ is now a vector of local beliefs, which are
forced to be “edge-consistent”, meaning that the
marginalized edge beliefs agree with the node beliefs
(known as marginalization constraints). Optimizing
over (3) is possible in polytime, and by L(G) ⊇M(G)
this provides a lower bound on the optimal objective.
Unfortunately, this edge-consistent relaxation is guar-
anteed to be tight only for special classes of graphs
and energies (Wainwright and Jordan, 2008).

Tighter LPs. In practice, this LP is rarely tight,
and various authors have suggested improved relax-
ations in the form of cluster-based LPs which involve
beliefs over cliques µA. Cluster-based LPs general-
ize marginalization constraints from (3) to cliques as
follows: Let J = {(A,B, xB) | B ⊂ A ⊆ [n]} be
a collection of triplets (called pencil). Although the
members of J are triplets (A,B, xB), with a slight
abuse of notation we use A ∈ J to mean there ex-
ists a pencil/triplet in J containing A, i.e., A ∈ J .

=
{A | ∃(A,B, xB), (Z,A, xA) ∈ J}.

A cluster-based local polytope L(J) is defined as:

L(J) =

{
µ ≥ 0

∣∣∣∣∣
∑
xA
µA(xA) = 1, A ∈ J,∑

xA\B
µA(xA) = µB(xB),

(A,B, xB) ∈ J

}
. (4)

Clearly, the local polytope L(G) in (3) is a special case

of L(J) for J = {(A,B, xB) | A ∈
(
[n]
2

)
∩ E , B ⊂ A},

where
(
[n]
2

)
is the set of all 2-element subsets of [n]. The

quality of the relaxation is determined by the choice of
J . The larger J is, the better the relaxation will be; in
the extreme case of J = {(A,B, xB) | A ∈ 2V , B ⊂ A},
we have L(J)|V,E = M(G), that is, the projection of
the local polytope onto the vertex and edge marginals
yields the true marginal polytope (Werner, 2008).

Dhruv Batra, Sebastian Nowozin, Pushmeet Kohli

min
µ

θ · µ max
h,y

1 · h
sb.t.

∑
xA

µA(xA) = 1, sb.t. hA ∈ R, ∀A ∈ J∑
xA\B

µA(xA) = µB(xB), yA→B(xB) ∈ R, ∀(A,B, xB) ∈ J

µA(xA) ≥ 0. hA ≤ θA(xA) +
∑

Z|(Z,A,xA)∈J

yZ→A(xA)−
∑

B|(A,B,xB)∈J

yA→B(xB), ∀A ∈ J, xA.

Figure 1: Cluster-based linear programming relaxation L(J). Both the primal and dual LP are shown.

We are now faced with conflicting goals. In order to
have a strong relaxation, we would like the set J to be
as large as possible. However, solving the relaxation
over L(J) has exponential dependence in the size of
the largest clique in J . Thus, we follow the approach
of Sontag et al. (2008b): we start with Schlesinger’s
LP relaxation and then incrementally add elements to
it that will improve the bound.

Search Problem. As defined in (1), this search
problem may be written as: argmaxA∈F w(A), where
a natural choice for F is the set of all cliques with
clique-width smaller than a parameter m, i.e., F =
{A | A ⊂ [n], |A| ≤ m}. Ideally, we would like to
define the weight of a clique as the gain in the re-
laxation value caused by adding marginalization con-
straints over A and its subsets to J , i.e., w∗(A) =
minµ∈L(J∪A) θ ·µ−minµ∈L(J) θ ·µ, where we use J∪A
to denote the set J ∪ {(A,B, xB) | B ⊂ A}. However,
for this ideal definition, even computing the weight of
a clique requires solving the tightened LP, defeating
the very purpose of incremental cluster-pursuit.

The next section describes our proposed weight func-
tion, which is both quickly computable and allows for
(approximate) fast search over cliques.

3 Local Primal-Dual Gap

We propose a novel cluster-scoring function that we
call Local Primal-Dual Gap (LPDG). Before we define
LPDG, we consider the dual-LP of the cluster-based
LP. Figure 1 shows both the primal and dual programs
corresponding to the cluster-based polytope L(J).

Reparameterization. Given dual-feasible vectors
{hA, yA→B}, a reparameterized cost vector θ̃A(·) is de-
fined as:

θ̃A(xA)
.
= θA(xA) +

∑
Z|(Z,A,xA)∈J

yZ→A(xA)

−
∑

B|(A,B,xB)∈J

yA→B(xB). (5)

This is a generalization of the reparameterization
operations discussed in (Kolmogorov, 2006; Sontag
and Jaakkola, 2009). Intuitively, the θ̃A(xA) can
be thought of as the new cost for state xA at
hyperedge A after incorporating the dual variables
{yZ→A, yA→B}. Energy is preserved under repa-
rameterization, i.e., for any labeling X , we have

xj

xpA = (xpi , x
p
j)

xi A

θA θ̃A,

l(A) = θA(x
p
A)−minxA θ̃A(xA)

Figure 2: Illustration of the quantities used for computing

the local primal-dual gap l(A) for a hyperedge A. The pri-

mal contribution θA is evaluated at the primal integral iter-

ate xpA = (xpi , x
p
j). The dual part of the LPDG is computed

by locally minimizing the reparameterized cost θ̃A(xA).∑
A∈E θ̃A(xA) =

∑
A∈E θA(xA). Note, however, that

this does not imply that θ̃A(xA) = θA(xA).

Complementary Slackness. Let {µ∗A} and
{h∗A, y∗A→B} be a pair of optimal primal and dual so-
lutions of the LPs in Figure 1. The complementary
slackness condition (Bertsimas and Tsitsiklis, 1997) for
this pair is given by:

µ∗A(xA) ·

(
θA(xA) +

∑
Z|(Z,A,xA)∈J

y∗Z→A(xA)

−
∑

B|(A,B,xB)∈J

y∗A→B(xB)− h∗A

)
= 0. (6)

We can re-write the complementary slackness in terms
of the reparameterized vector as follows:

µA(xA) ·
(
θ̃A(xA)−min

x̂A

θ̃A(x̂A)

)
= 0. (7)

We now define the LPDG for a hyperedge as a gener-
alization of this complementary slackness condition:

Definition (Local Primal-Dual Gap). Given
a reparameterized cost vector θ̃ and a (pos-
sibly non-optimal) integral primal labelling
X p = {xp1, x

p
2, . . . , x

p
n}, the local primal-dual gap

l(A) for each hyperedge A ∈ J is:

l(A) = θ̃A(xpA)︸ ︷︷ ︸
primal

−min
xA

θ̃A(xA)︸ ︷︷ ︸
dual

. (8)

Comparing (7) and (8), we can see that intuitively
LPDG quantifies by how much the complementary
slackness condition is violated, and attributes viola-
tions to individual potentials. More precisely, we state
the following properties of LPDG:

Proposition 1 Non-negativity: l(A) ≥ 0, ∀A.

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm

Proposition 2 Distributed Primal-Dual Gap: If P =∑
A∈E θA(xpA) is the energy of the primal labelling, and

D = 1 · h the current dual value, then LPDG for all
cliques sums to the integrality gap, i.e.,

∑
A∈E l(A) =

P −D.
Proposition 3 Slackness: If LPDG for the best
clique is zero, i.e. maxA∈J l(A) = 0, then complemen-
tary slackness conditions hold and thus the LP over
L(J) is tight, i.e. we have solved the problem.
Proof Sketches. Prop. 1 follows directly from
the definition (8). Prop. 2 just utilizes that hA =
minxA

θ̃(xA) (for the dual) and conservation of to-
tal energy under reparameterization (for the primal).
Prop. 3 follows from complementary slackness.

Most interesting from a computational perspective is
the fact that for each clique A, LPDG l(A) can be
computed essentially for free from standard message-
passing algorithms, as we already have access to dual
variables or messages.

3.1 LPDG-based Cluster-Pursuit

We now describe our approach for finding clusters
based on LPDG scores. Recall that our goal is to find a
cluster A from a family of clusters F that maximizes a
cluster-scoring function, i.e., argmaxA∈F ω(A). Also
recall that the ideal cluster scoring function ω∗(A) is
intractable as it requires actually solving the tightened
LP to find out the usefulness of A. We define a surro-
gate cluster scoring function ωl(A), which is based on
LPDG:

ωl(A) =
∑

B⊂A|B∈J

l(B). (9)

Our proposed function is simply the sum of the local
primal-dual gaps of subsets of A that are already in
our relaxation.

Example 1: Triplet Search of Sontag et al. (2008b).
If we consider a pairwise MRF, solve Schesinger’s LP
and look for triplet cliques to add, then F = {(i, j, k) |
(i, j), (j, k), (k, i) ∈ E} and our proposed scoring func-
tion would be: ωl({i, j, k}) = l(i)+l(j)+l(k)+l(i, j)+
l(j, k) + l(k, i).

Example 2: Square Search of Werner (2008). If we
consider a grid MRF and search for 4-cycles, F =
{(a, b, c, d) | (a, b), (b, c), (c, d), (d, a) ∈ E} and our pro-
posed scoring function would be: ωl({a, b, c, d}) =
l(a)+ l(b)+ l(c)+ l(d)+ l(a, b)+ l(b, c)+ l(c, d)+ l(d, a).

Comparison with Sontag et al. (2008b). Son-
tag et al. (2008b) define the weight ws(A) of a clique
A to be the improvement in the relaxation achieved
by adding A and passing one round of messages (as
opposed to passing messages till convergence). This
can be shown to be a lower-bound on the ideal scor-
ing function, ωs(A) ≤ ω∗(A). In contrast our LPDG-

based scoring function wl(A) is neither a lower-bound
nor an upper-bound on w∗(A) (we have empirically
observed violations of both), but rather is simply well-
correlated with the ideal score in practice. More im-
portantly, LPDG is significantly more efficient to com-
pute than ws(A). Concretely, using the triplet search
in a pairwise MRF example, let A = {i, j, k} be a
triplet-clique, and e be an edge.

ws(A) =
∑
e∈A

max
xe

be(xe)−max
xA

[∑
e∈A

be(xe)

]
, (10)

where be is the equivalent of our θ̃ij . The exact form of
be is not important for this discussion. The important
point is that computing the second part of ωs(A) takes
O(k3) time, while computing LPDG-based wl(A) takes
O(k2) time, where k is the number of labels. Moreover,
in the case of LPDG, computations done on an edge
can be shared for all triplets involving that edge, but
for ws(A) this cannot be done, thus the actual com-
parison is O(n3 · k3) vs O(n3 +mk2) (where m is the
number of edges). More generally, for an arbitrary
family of clusters F , the score computation time for
each cluster will be O(k|A|) for Sontag et al. (2008b)
vs O(k|B|) for us (|B| will always be smaller than |A|).
As we show in our experiments, these savings can re-
sult in significant speed-ups.

Algorithm. Our cluster-pursuit algorithm may be
described as follows: We start by solving Schlesinger’s
LP. We then consider a family F of clusters to add. For
small families like all triplets in a graph or 4-cycles in
a grid, we follow the dictionary-enumeration paradigm
and compute LPDG-based cluster score for each mem-
ber of F . We then add the cluster with the highest
score of the relaxation L(J) and re-solve the relax-
ation (by “warm starting” the the previous solution).
For larger families, where dictionary-enumeration is
impractical, we use a greedy search algorithm that
constructs a “heavy” cluster by incrementally adding
parts (nodes, edges) with the highest local-primal dual
gap. MAX-Clique is an NP-hard problem and even
approximating the clique number within a factor of
O(n1−ε) is NP-hard for any ε > 0 (Zuckerman, 2007),
so approximations are our best hope. Alg. 1 summa-
rizes our approach.

Hybrid Methods. LPDG is efficient to compute, but
ws(A) has strong lower-bound guarantees on improve-
ment of the dual value. It is natural to consider hybrid
methods that use LPDG to quickly propose candidate
clusters with high LPDG-scores, and then only com-
pute the expensive ws(A) scores for these candidates.
We consider two such hybrids:

1. LPDGcrisp+Sontag08 : We can ignore actual
LPDG scores and only use LPDG to prune clus-
ters. We only need to compute expensive ws(A)

Dhruv Batra, Sebastian Nowozin, Pushmeet Kohli

Algorithm 1 IterativeMAP

1: (µ∗V,E) = IterativeMAP(G, J(0), θ,F)
2: Input: G = (V, E), graph instance,

3: J(0) initial set of pencils {Typically J(0) =
{(A,B, xB) | A = E , B ⊂ A}}

4: θ = {θA} energy vector
5: F ⊆ 2V , family of clusters to search over
6: Output: µ∗A ∈ [0, 1]XA , (relaxed) solution vector
7: Algorithm:
8: for t = 0, 1, . . . do

9: µ
(t)

J(t) ← argmin
µ∈L(J(t))

θ · µ {Current relaxation}

10: if integral(µ
(t)

J(t)
) then

11: break {Optimal solution}
12: end if
13: A← argmax

A∈F
ω(A) {Scoring}

14: if ω(A) = 0 then
15: break {LP tight over F}
16: end if
17: J(t+1) ← J(t) ∪A
18: end for

19: µ∗V,E ← µ
(t)

J(t)|V∪E

scores for all clusters that have non-zero LPDG,
because zero LPDG indicates that ws(A) will be
zero. Interestingly, we found that Sontag et al.
(2008b) already use such a measure in their pub-
licly available implementation.

2. LPDG+Sontag08 : The second option is to use the
LPDG score to propose a set of K candidates of
highest LPDG score, and to compute the expen-
sive ws(A) scores only for these top candidates.

4 Experiments and Results

We worked with synthetic problems and two real world
computer vision applications: stereo vision and image
de-convolution. Both the applications are well-studied
vision problems, and are known to be difficult both
from a vision and an inference perspective, consisting
of thousands of nodes, tens of thousands of edges and
in one case half a million triplets.

In all cases, we solve LP relaxations using the gen-
eralized MPLP message-passing algorithm of Glober-
son and Jaakkola (2007); Sontag et al. (2008b), which
is a block co-ordinate ascent algorithm on the dual
LP (shown in Fig. 1). To ensure our experiments as-
sess the relative performance of our proposed LPDG
score and are not influenced by the particular details
of the dual message-passing implementation, we use
the MPLP implementation provided by Sontag et al.
(2008b) for all our experiments. Therefore the relative
performance differences can be directly attributed to
the different scoring functions.

In all experiments, we first solve Schlesinger’s edge-
consistent LP for at most 1000 MPLP iterations with
increase in dual of at least 10−4 at each iteration.

For all experiments except one de-convolution MRF
(with half a million triplets), we perform dictionary-
enumeration. We test the following five scoring func-
tions:

• Sontag08-alone (where ω(A) = ωs(A) is com-
puted for all dictionary members),

• LPDGcrisp+Sontag08 (where ω(A) = ωs(A) is
computed only for dictionary members with non-
zeros LPDG score),

• LPDG-alone (where ω(A) = ωl(A) for all dictio-
nary members),

• LPDG+Sontag08 (where ωl(A) is computed for
all dictionary members, and only for the top K
scoring candidates we compute ωs(A)), and

• Random (where ω(A) is sampled from a uniform
distribution).

For synthetic experiments, we search over all 3-cycles
in K30 and all 4-cycles in a 20x20 grid. For stereo
vision, our graphs are 4-connected grid-graphs, and
our family of clusters is all 4-cycles in the graph. For
de-convolution, our graphs are densely-connected grid-
graphs, and we search over all 3-cliques.

In all experiments, we add clusters till either the inte-
grality gap is small enough (≤ 10−4) or if all dictionary
members are added (typical for smaller experiments)
or if the increase in dual value due to adding clusters is
small (≤ 10−4) (typical for larger experiments). Simi-
lar to Sontag et al. (2008b), we perform 20 iterations
of MPLP between ever round of cluster addition. If
we stop due to the integrality gap threshold, we can
say that the MAP solution has been found.

We evaluate the quality of the five cluster-scores in
three ways: 1) dual-value vs MPLP iterations, 2) dual-
value vs time, and 3) primal-dual gap vs time. Dual
value is the objective function of the dual LP (Fig. 1),
which provides a lower-bound on the MAP value. A
larger value means that the relaxation is tighter. At
each MPLP iteration, integral primal labellings are
generated by independently minimizing node repa-
rameterized energy vectors, i.e. xpi = argminxi

θ̃i(xi),
breaking ties arbitrarily. The energy of this primal la-
belling provides an upper-bound on the MAP value.
At each MPLP iteration, primal-dual gap is the differ-
ence between the best upper-bound so far and lower-
bound at this iteration. A primal-dual gap of zero
means that we have obtained an optimal solution to
the problem and guarantee of optimality. A non-zero
primal-dual gap of g provides a per-instance guarantee
that the current primal solution is at most g worse in
energy than the MAP solution. Note that while the
dual value monotonically increases with iterations, the
primal values are not guaranteed to monotonically de-
crease. Thus, using the best primal labelling so far

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm

200 400 600 800 1000

650

700

750

800

850

MPLP Iterations

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(a) Dual vs. MPLP iterations.

0 50 100 150 200 250
600

650

700

750

800

850

Time (sec)

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(b) Dual Value vs. Time.

0 200 400 600
350

400

450

500

550

600

650

700

Time (sec)

Pr
im

al
D

ua
l G

ap

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(c) Primal-Dual Gap vs. Time.

Figure 3: Synthetic K30: Randomly adding triplets performs better (higher dual-value and lower primal-dual gap) than
Sontag08-alone and LPDGcrisp+Sontag08. LPDG is non-zero for most cycles and thus LPDGcrisp+Sontag08 performs
the same as Sontag08.

1000 1500 2000
860

880

900

920

940

960

980

MPLP Iterations

Lo
w

er
Bo

un
d

 Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(a) Dual vs. MPLP iterations.

500 1000 1500

860

880

900

920

940

960

980

Time (sec)

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(b) Dual Value vs. Time.

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

Time (sec)

Pr
im

al
D

ua
l G

ap

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(c) Primal-Dual Gap vs. Time.

Figure 4: Synthetic 20x20 grid: LPDG-alone and Random perform poorly, while LPDG+Sontag08 performs the best
(with highest dual value and lowest primal-dual gap at any given time). Interestingly, LPDGcrisp+Sontag08 performs
significantly better than Sontag08-alone so LPDG does have some information in it.

to compute LPDG scores might be better than using
the decoding at each iteration. In preliminary exper-
iments, we found this to be the case, however all ex-
periments in this paper use independent decodings at
each iteration.

Scoring functions come into play only after the edge-
consistent LP is solved, so our plots show behaviour
immediately after this point. We point out that
LPDGcrisp+Sontag08 and Sontag08-alone compute
exactly the same scores and differ only in the time
taken to compute these scores. Hence they will be ex-
actly the same curve in dual-value vs iteration plots.

All experiments are performed on a 64-bit 8-Core Mac
Pro with 8GB RAM and the timing reported is cpu-
time (via the c++ clock() function).

Our results will demonstrate the effectiveness of LPDG
as both a scoring function for cliques by itself and as
an efficient candidate generation heuristic to compute
expensive ws scores on only a subset of cliques. We
will show that the hybrid method LPDG+Sontag08
leads to the tightest relaxation (highest value of dual
and lowest value of primal-dual gap) and provides sig-
nificant speed-ups over all other methods. Moreover,
LPDG scores are decomposable and will allow greedy
non-dictionary-enumerative clique search which is crit-

ical cases where the dictionary size is prohibitively
large.

4.1 Synthetic Problems

For synthetic problem we experimented with two
graph structures: a complete graph on 30 nodes, K30;
and a 20x20 grid.

K30 : Each variable in the model took 20 states. We
create synthetic energy functions by sampling from
Gaussians, θi(xi) ∼ N (0, 1) and θij(xi, xj) ∼ N (0, 4).
Fig. 3 shows dual-value vs MPLP iterations, dual-
value vs time and primal-dual gap vs time. We can see
that the edge-consistent LP is solved in ∼200 iteration
and less than 10 sec, but it leaves a primal-dual gap of
around 700. There are a total of

(
30
3

)
= 4060 triplets

in this model, and we added triplets in batches of 20.
For LPDG+Sontag08, we first find 60 candidates with
the highest LPDG scores, and then add the 20 (of
the 60) with the highest ws scores. For this model,
the times taken by various methods for each round
triplet-search were 3-4 secs for Sontag08-alone and
LPDGcrisp+Sontag08, 5-10 millisecs for LPDG-alone,
50-80 millisecs for LPDG+Sontag08 and 5-10 millisecs
for Random. We can see that computing LPDG scores
is really cheap – almost as fast as sampling scores
randomly. As a comparison, the time taken for one

Dhruv Batra, Sebastian Nowozin, Pushmeet Kohli

0 2000 4000 6000 8000 10000

670

665

660

655

MPLP Iterations

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(a) Dual vs. MPLP iterations.

0 200 400 600

670

665

660

655

Time (sec)

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(b) Dual Value vs. Time.

0 200 400 600 800
0

10

20

30

40

50

Time (sec)

Pr
im

al
D

ua
l G

ap

 Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(c) Primal-Dual Gap vs. Time.

Figure 5: Image Deconvolution: 3x3 blur kernel. We observe that LPDG+Sontag08 performs the best, but even LPDG-
alone performs very well, and leads to lower primal-dual gap than Sontag08-alone.

5 10 15
x 104

670

660

650

640

630

620

MPLP Iterations

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(a) Dual vs. MPLP iterations.

1 2 3 4 5
x 104

670

660

650

640

630

620

Time (sec)

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(b) Dual Value vs. Time.

0 1 2 3 4 5
x 104

50

60

70

80

90

100

110

Time (sec)

Pr
im

al
D

ua
l G

ap

 Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(c) Primal-Dual Gap vs. Time.

Figure 6: Image Deconvolution: 5x5 blur kernel. This model contains ∼ 450, 000 triplets. LPDG-based methods allow
for non-dictionary-enumerative greedy search methods, which perform significantly better than randomly adding cycles
and baselines.

round of message-passing was 0.01 sec before adding
any triplets, and 1-2 secs after adding all 4060 cycles
(the message-passing time depends on the number of
triplets in J). Thus, in the time taken by Sontag08 to
search for the best cycles, LPDG-based methods can
add cycles and run between 3 and 345 extra rounds
of message passing (depending on how many triplets
are already in the relaxation). This is exactly why
we see LPDG-based methods producing higher dual
values and lower primal-dual gaps at corresponding
time budgets. Interestingly, in this case, we also ob-
serve that randomly adding triplets performs better
than Sontag08-alone and LPDGcrisp+Sontag08. This
is not surprising given that the θs are randomly gen-
erated, thus a priori, no clique has any reason to be
significantly more helpful than any other. However,
this will not be true for real applications where the
energies have a lot of structure to them and typically
a few very helpful cliques. The pattern that we do
see in all our experiments is that clique-search times
dominate message-passing times (at least till a large
number of cliques are added to the relaxation), and
this makes LPDG-based methods very important.

20x20 grid: Each variable in this model took 50
states. The node energies were again sampled from
standard Gaussians. With edge-energies we tried to
simulate the contrast-sensitive Potts model, commonly

used in vision problems, i.e., θij(xi, xj) = λij · δ(xi −
xj), where δ(·) is the dirac-delta function which is 1 if
the input argument is 0, and 0 otherwise. λij is sam-
pled from a uniform distribution, λij ∼ [−1 1]. Fig. 4
shows the results. 4-cycles were added in batches of
1, and 10 candidates were generated by LPDG for
LPDG+Sontag08. We can see that as before the edge-
consistent LP is solved quickly, and most of the time is
spent in finding 4-cycles to add to the relaxation. Ran-
dom performs the worst and LPDG+Sontag08 per-
forms the best, both in terms of having the highest
dual-value and lowest primal-dual gap at any time.

4.2 Image De-convolution

Given a blurry and noisy (binary) input image the task
in image de-convolution is to reconstruct the ground
truth. Raj and Zabih (2005) formulated generalized
image deconvolution as a MAP-inference problem and
Rother et al. (2007) gave models for binary images. We
use the “CVPR” model of Rother et al. (2007).1 Fig. 8
shows the blurry (20x50) image. Given an n× n blur-
kernel, the MRF connectivity is (2n− 1)× (2n− 1)−
1. For a 3x3 blur-kernel, this model contains ∼45,000
triplets, and for a 5x5 blur-kernel ∼450,000 triplets.

Fig. 5 shows the results for the 3x3 blur-kernel. Again,

1Unfortunately, they did not create an “AISTATS”
model.

Tighter Relaxations for MAP-MRF Inference: A Local Primal-Dual Gap based Separation Algorithm

1000 1500 2000

1.5101

1.5102

1.5103

1.5104

1.5105
x 105

MPLP Iterations

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(a) Dual vs. MPLP iterations.

800 1000 1200 1400 1600

1.5101

1.5102

1.5103

1.5104

1.5105

x 105

Time (sec)

Lo
w

er
Bo

un
d

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(b) Dual Value vs. Time.

500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

Time (sec)

Pr
im

al
D

ua
l G

ap

Sontag08 alone
LPDGcrisp+Sontag08
LPDG alone
LPDG+Sontag08
Random

(c) Primal-Dual Gap vs. Time.

Figure 7: Stereo Vision: Tsukuba. Even though Schlesinger’s LP is not tight, it is very close to the MAP. Out of
∼ 17, 500 cycles LPDG scores for all but ∼50 cycles were completely zero (≤ 10−12). As a result, randomly adding cycles
performs very poorly and both LPDGcrisp+Sontag08 and LPDG+Sontag08 give significant improvement over random.

(a) Original Image. (b) Blurry Noisy Image. (c) Schlesinger’s LP solution. (d) MAP from Triplet LP.

Figure 8: Image Deconvolution: 3x3 blur kernel. We can see that edge-consistent LP solution is of poor quality, while
the MAP state almost completely recovers the original image. Image courtesy Rother et al. (2007)

we find that adding random triplets performs the poor-
est and LPDG+Sontag08 performs the best.

In initial experiments with the 5x5 blur-kernel model,
the implementation of Sontag et al. (2008b) ran out
of memory while computing scores for half a million
triplets. However, with modifications suggested by
the authors (personal communication), we were able to
run their code on this model. For LPDG-based meth-
ods, we implemented a greedy search algorithm that
constructs a heavy cluster by incrementally adding
parts (nodes, edges) with the highest LPDG scores.
We also use LPDG to propose top 100 candidates and
only computed expensive ws scores on those. Fig. 6
shows the results. Again, LPDG+Sontag08 performs
the best.

4.3 Stereo Vision

Stereo vision involving predicting disparity labels for
each pixel given a pair of stereo images. Graphical
models for this problem have been proposed by Tap-
pen and Freeman (2003) and extensively studied by
Meltzer et al. (2005). For our experiments, we use the
Tsukuba MRF of Sontag et al. (2008b). The graph
is 4-connected grid-graph (116x154 pixels) with each
variable having 16 labels.

Fig. 7 shows the results. This model contains (116 −
1) × (154 − 1) ∼ 17, 500 4-cycles and we found that
after solving the edge-consistent LP, LPDG scores for
all but ∼50 cycles were completely zero (≤ 10−12).
This tell us that the edge-consistent LP is a very tight
approximation to the MAP, and the cycle-selection
problem is indeed very important because most of

the cycles in this model are now completely useless.
As an immediate result, randomly adding cycles per-
forms very poorly and both LPDGcrisp+Sontag08
and LPDG+Sontag08 give significant improvement
over Sontag08-alone. To give an idea of times,
each message-passing iteration takes 0.65-0.90 sec,
while each round of cycle-search takes 14-15 sec
for Sontag08-alone, 0.1 sec for LPDGcrisp+Sontag08,
0.07 sec for LPDG-alone, 0.08 sec for LPDG+Sontag08
and 0.04 sec for Random.

5 Conclusions

In summary, we presented a cluster-scoring function
for obtaining cluster-based LPs relaxation to MAP in-
ference in MRFs. Our cluster-scoring function, which
we call Local Primal-Dual Gap, is a generalization of
the complementary slackness condition in the primal
dual programs of LP relaxation of MAP-MRF. Intu-
itively LPDG quantifies by how much the complemen-
tary slackness condition is violated, and attributes vi-
olations to individual potentials. This combined with
the fact that LPDG can be computed very cheaply
from the primal and dual variables, makes LPDG a
powerful clique pruning heuristic. We showed that
combining LPDG with the expensive scoring function
of Sontag et al. (2008b) works best in practice. More-
over, LPDG allows for non-dictionary-enumerative
greedy search techniques, which we plan on using to
solve previously insolvable problems.

References

D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear
Optimization. 1997.

Dhruv Batra, Sebastian Nowozin, Pushmeet Kohli

C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A lin-
ear programming formulation and approximation algo-
rithms for the metric labeling problem. SIAM Journal
on Discrete Mathematics, 18(3):608–625, 2004.

A. Globerson and T. Jaakkola. Fixing max-product:
Convergent message passing algorithms for map lp-
relaxations. In NIPS, 2007.

D. Koller and N. Friedman. Probabilistic Graphical Models:
Principles and Techniques. MIT Press, 2009.

V. Kolmogorov. Convergent tree-reweighted message pass-
ing for energy minimization. PAMI, 28(10):1568–1583,
2006.

N. Komodakis and N. Paragios. Beyond loose LP-
relaxations: Optimizing MRFs by repairing cycles. In
ECCV, 2008.

A. Koster, C. P. M. van Hoesel, and A. W. J. Kolen. The
partial constraint satisfaction problem: Facets and lift-
ing theorems. Operations Research Letters, 23:89–97,
1998.

T. Meltzer, C. Yanover, and Y. Weiss. Globally optimal
solutions for energy minimization in stereo vision using
reweighted belief propagation. In ICCV, pages 428–435,
2005.

A. Raj and R. Zabih. A graph cut algorithm for generalized
image deconvolution. In ICCV, volume 2, pages 1048–
1054 Vol. 2, oct. 2005.

C. Rother, V. Kolmogorov, V. Lempitsky, and M. Szum-
mer. Optimizing binary MRFs via extended roof duality.
In CVPR, June 2007.

M. I. Schlesinger. Syntactic analysis of two-dimensional
visual signals in noisy conditions (in Russian). Kiber-
netika, 4:113–130, 1976.

S. E. Shimony. Finding maps for belief networks is NP-
hard. Artificial Intelligence, 68(2):399–410, August
1994.

D. Sontag. Approximate Inference in Graphical Models us-
ing LP Relaxations. PhD thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering and
Computer Science, 2010.

D. Sontag and T. Jaakkola. Tree block coordinate descent
for MAP in graphical models. In AISTATS, volume 8,
pages 544–551. JMLR: W&CP, 2009.

D. Sontag, A. Globerson, and T. Jaakkola. Clusters and
coarse partitions in LP relaxations. In NIPS, 2008a.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and
Y. Weiss. Tightening LP relaxations for MAP using
message passing. In UAI, 2008b.

M. Tappen and W. Freeman. Comparison of graph cuts
with belief propagation for stereo, using identical MRF
parameters. In ICCV, pages 900–906 vol.2, oct. 2003.

M. Wainwright, T. Jaakkola, and A. Willsky. Map esti-
mation via agreement on (hyper)trees: Message-passing
and linear-programming approaches. IEEE Trans. Inf.
Th., 51(11):3697–3717, 2005.

M. J. Wainwright and M. I. Jordan. Graphical models,
exponential families, and variational inference. Founda-
tions and Trends in Machine Learning, 1(1-2), 2008.

T. Werner. A linear programming approach to max-sum
problem: A review. PAMI, 29(7):1165–1179, 2007.

T. Werner. High-arity interactions, polyhedral relaxations,
and cutting plane algorithm for soft constraint optimi-
sation (MAP-MRF). In CVPR, 2008.

C. Yanover, T. Meltzer, and Y. Weiss. Linear programming
relaxations and belief propagation – an empirical study.
J. Mach. Learn. Res., 7:1887–1907, 2006.

D. Zuckerman. Linear degree extractors and the inapprox-
imability of max clique and chromatic number. Theory
of Computing, 3(1):103–128, 2007.

