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1 VIDEO DEMONSTRATION

We submit a short video showing the robustness of our
approach. In the video we show robust live (real-time)
inference of depth, reflectance/albedo and illumination. We
demonstrate the effective separation between illumination
and reflectance by waving a powerful light projector and
noting that the albedo and depth map stay invariant to the
changing illumination conditions.

The video was captured using four exposures with the
exposure profiles corresponding to the far-range design in
Figure 9 in the main paper.

Please note that the RGB stream was shot by the person
holding the light projector - and is unrelated to the depth
camera stream (we added it for general impression of the
scene - it is slightly confusing).

The video is available from the authors’ homepages.

2 INFERENCE DETAILS

For this section we will use the compound parameter vector
~θ = [t, ρ, λ]T , or ~θ = [t, ρ, λ, t2, ρ2]

T for the single- and
two-paths model. This unifies the notation for all unknown
imaging conditions we would like to infer.

The response curve function ~C(t) appearing in the ex-
pression for the mean photon response ~µ (see equation (7) in
the main paper), is obtained from calibrated measurements
of the actual camera, and then approximated by Chebyshev
polynomials of degree sixteen [1]. Because the curves are
smooth the Chebyshev approximation is compact yet very
accurate and evaluation of ~C(t) also provides the deriva-
tives ∂

∂t
~C(t) and ∂

∂2t
~C(t) for no additional computational

cost.

• A. Adam, O. Yair, and S. Mazor were with Microsoft AIT, Haifa, Israel.
{email.amitadam, omeryair, smazor.shai}@gmail.com

• C. Dann is with the School of Computer Science, Carnegie Mellon
University, USA. cdann@cmu.edu

• S. Nowozin is with Microsoft Research, Cambridge, UK. Sebas-
tian.Nowozin@microsoft.com

2.1 Maximum Likelihood Estimation (MLE)
The standard maximum likelihood estimate are the imaging
conditions t, ρ, λ which maximize the likelihood or equiva-
lently minimize the negative log-likelihood

argmin
~θ

− logP (~R|~θ) (1)

= argmin
~θ

n∑
i=1

[
(Ri − µi(~θ))2

2(αµi(~θ) +K)
+
1

2
log(αµi(~θ) +K)

]
.

With this Chebyshev polynomial approximation we can
also compute derivatives with respect to ~θ of the log-
likelihood function, and the entire log-likelihood function
becomes smooth and twice differentiable.

Solving the three-dimensional minimization problem in
Equation (1) with standard Quasi-Newton methods such as
L-BFGS [2] is possible but often yields unreasonable result if
we do not constrain the parameters. For example, negative
values of ρ might have the lowest function value but are
physically impossible. Another issue is that the response
curves ~C are measured only within a reasonable range.
Outside of this range, the Chebyshev approximations have
arbitrary behavior which leads to implausible solutions.

We therefore constrain the range of parameters using
log-barrier terms

argmin
~θ

n∑
i=1

[
(Ri − µi(~θ))2

2(αµi(~θ) +K)
+

1

2
log(αµi(~θ) +K)

]
(2)

+
∑
j

b (log(θj − θj,min) + log(θj,max − θj)). (3)

The scalar b = 10−2 is a barrier coefficient and ~θmin, ~θmax
are the smallest and largest values of each parameter we
want to consider. The problem remains twice differentiable
and quasi-Newton methods can be applied for finding local
minima reliably because any local optima has to occur
within the relative interior of the rectangle described by
θj,min and θj,max.

To find the global optimum, we restart the quasi-Newton
method ten times with initialization sampled uniformly in
the parameter ranges. For producing labeled training data
this is more than sufficient. Even during exposure profile
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optimization, experiments on good and mediocre shutter
designs have shown that after 10 restarts in 97% of the cases
the same global solution was found as with 100 restarts.

2.2 Maximum A-Posteriori Estimation (MAP)
The maximum a-posteriori (MAP) estimate is similar to the
maximum likelihood estimate but also considers the prior
instead of only the likelihood distribution. We determine
the estimate by minimizing the negative log posterior

argmin
~θ

− logP (~θ|~R) (4)

= argmin
~θ

n∑
i=1

[
(Ri − µi(~θ))2

2(αµi(~θ) +K)
+

1

2
log(αµi(~θ) +K)

]
− log p(~θ).

Due to the particular choices of twice differentiable prior
distributions, we can solve this problem right away with
quasi-Newton methods. The log-barrier terms used for the
maximum likelihood estimate are now implicitly defined
in the prior. In fact, the constrained maximum likelihood
estimate in the previous subsection can be understood as
MAP estimate with an approximately uniform prior on the
ranges ~θmin to ~θmax.

The advantage of the MAP estimate is that when prior
knowledge exists - for example a strong belief on the
ambient light intensity - then we may incorporate it. In
contrast, the MLE does not encode any preference for certain
parameter values.

2.3 Bayesian Posterior Inference
The Bayesian point estimate is motivated by statistical de-
cision theory [3, 4]. The Bayes estimator yields the lowest
expected error. Assuming the squared loss function, the
estimator is characterized as

θ̂Bayes(~R) := argmin
~θ

Eθ̃∼P (θ̃|~R)[‖~θ − θ̃‖
2
2], (5)

where θ̃ are the true but uncertain parameters.
This decision problem has a closed form solution:

namely the mean parameters under the marginal posterior
distributions. Because the squared loss decomposes over
parameters, so does the decision problem.

For example, the Bayes estimator t̂Bayes for depth is given
by

t̂Bayes(~R) = E[t|~R] =
∫
t p(t|~R)dt. (6)

The marginal posterior distribution p(t|~R) can be written in
terms of the joint distribution as

p(t|~R) =

∫
p(~θ|~R)d~ρdλ

=

∫
p(~R|~θ)p(~θ)
p(~R)

dρdλ.

The Bayes estimator t̂Bayes is therefore equal to

E[t|~R] =
∫
t p(~θ)p(~R|~θ)d~θ∫
p(~θ)p(~R|~θ)d~θ

. (7)

One way of computing the Bayes estimator is solving
the integrals in the numerator and denominator for all

Fig. 1: Slice of the posterior distribution of the single-path model for fixed
values of reflectivity ρ. In this case the posterior distribution of the single-
path model is dominated by a single Gaussian-like mode.

parameters that we are interested in. We use a state-of-
the-art numerical quadrature method [5] for vector-valued
integrals over rectangular regions.

However, the numerical quadrature approach is very
slow and has numerical issues that yield sub-optimal solu-
tions. We therefore consider an alternative way to compute
the Bayes estimators: Monte Carlo using importance sam-
pling [6].

We observed that the posterior distributions of the
single-path model are mostly dominated by a few important
modes that often have symmetric shape, see Figure 1. The
posterior can therefore be approximated well by a mixture
of Gaussians. Using importance sampling with a mixture of
Gaussians proposal distribution should therefore yield fast
convergence to the true Bayes estimator.

The proposal distribution is a mixture of k Gaussians
placed at the outputs of k local optima of the MAP problem
obtained as described in Section (2.2). The proposal distri-
bution is

q(~θ) ∝
k∑
i=1

p(~θ(i)) p(~R|~θ(i))N (~θ|~θ(i), H(i)), (8)

where k is the number of mixture components used and
~θ(k) are the locations of these mixtures. For the covariance
matrices H(k) we use the inverse Hessian of the negative
log-posterior (as in a Laplace approximation). Due to the
particular choice of twice differentiable priors, the Hessian
of the log-posterior are always positive definite in local
optima.

We generate samples ~η1 . . . ~ηm from q and re-weight
each sample by wi = p(~ηi)

q(~ηi)
to account for the errors in

the approximation of the posterior by q. These samples are
then used to obtain Monte-Carlo estimates of the integrals
in equation (7).

We determine the number of samples required to ap-
proximate the integrals by the effective sample size (ESS) [7, 8],

(
∑m
i=1 wi)

2∑m
i=1 w

2
i

. (9)
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We stop sampling as soon as the ESS exceeds a threshold
(usually in the order of 50 − 200). In most cases this
threshold is reached with a small number of actual samples.
Empirically we observe the importance sampling approach
to be much faster and robust in practice than the numerical
quadrature approach.

3 TEST-TIME REGRESSION TREE INFERENCE DE-
TAILS

The regression trees approach we described in the main
paper has an advantage in terms of flexibility. We used
this flexibility to solve several issues that we encountered
during development of the prototype camera. While a full
description of the issues and their seamless solution within
this framework is beyond the scope of this paper, we want
to provide one important example.

One notes that all inference is based on the response
curve ~C(·) which characterizes the pixel’s response to depth.
In the physical camera, due to various optical and semi-
conductor effects, this response curve varies between sensor
elements, and this variation is smooth with the position of
the pixel on the image sensor. As a result, instead of having
a single curve ~C(·) as we described so far, we actually
have a set of response curves ~Cx,y(·), one for each pixel
in the image. Using the regression tree framework, we had
a simple seamless solution for this issue as follows:

• During training, instead of sampling responses from
a single curve ~C(·), we sample responses from multi-
ple response curves corresponding to different parts
of the image. To obtain the label t̂(~Ri), use slow
inference with the actual (position dependent) curve
from which ~Ri was sampled.

• We augment the feature vector to include pixel posi-
tion in addition to the response ~R.

• We extend the leaf model and add linear terms in
pixel coordinates x and y.

• Train the regression tree as usual.
• During runtime: just add pixel position to the feature

vector used to traverse the tree

This example serves to show the added benefit of a
flexible regression mechanism in extending the model to
solve new and unexpected problems.

4 MODEL CHECKING AND P-VALUES

This discussion provides additional background for our
choice of the posterior predictive p-value used in the main
paper. P-values are highly controversial in the field of statis-
tics, in particular for formal hypothesis testing. For example,
in [9] Xiaoli Meng writes about the p-value,

“There is perhaps no single notion in statistics,
other than the p-value, that has been so widely
used and yet so seriously criticized for so long.”

Many works have discussed this controversy and
Berger [10] provides a nice formal summary of the issues
of disagreement.

For models that are fully observed the choice of a test
statistic unambiguously defines the p-value. However, our

model involves unobserved quantities, the imaging condi-
tions t, ρ, and λ, as well as t2 and ρ2 for the two-path
model. In this case, there is no single p-value to be used
and this case is known as “composite null hypothesis”
or models with “nuisance parameters”. Also, in this case
the test statistic in the classical p-value generally does not
depend on the nuisance parameter, which is a drawback as
it limits the choice of useful test statistics.

The posterior predictive p-value [9, 11] addresses both
problems by integrating the test statistic over the Bayesian
posterior of the unknown variables. As test statistic we
choose the likelihood of the observation given the unknown
parameters, yielding equation (16) in the main paper.

It is easier to understand the usefulness of the likelihood
as a test statistic on a model that is fully observed. We
visualize such an example with a simple Gaussian mixture
model in Figure 2. For the case with unobserved variables
the situation is similar except that the distribution changes
as a function of the observation ~R.
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Fig. 2: Invalidation score ex-
ample. For a Gaussian mixture
model level sets at significance
levels γ ∈ {0.01, 0.05} separate
the total probability mass such
that outside the level set the in-
tegrated probability is γ. Sam-
ples outside these sets are re-
jected.

The posterior predictive
p-value has known draw-
backs, analyzed in [11, 12].
In particular it is known that
it can be too conservative in
rejecting the null hypothesis.
In our application this im-
plies that we may not de-
tect all detectable deviation
from the assumed model. In-
tuitively the reason for this
lack of power is that the p-
value is not Bayesian and
actually does use the obser-
vation twice, once to define
the posterior, and once in the
computation that defines the
p-value, leading to overly op-
timistic agreement with the model. The so called partial
posterior predictive p-value [11] does successfully address
this issue but it is much more difficult to compute; in fact,
although desirable, we have not found a practical method
to compute it in our application.

5 EXPOSURE PROFILES DESIGN DETAILS

To optimize the design objective (19) in the main paper,
we use a simulated annealing approach as follows. Let us
abbreviate the objective function (19) as

f(Z) = Et,ρ,λ E~R∼P (~R|t,ρ,λ,Z)

[
`(t̂(~R), t)

]
. (10)

We introduce an auxiliary Gibbs distribution, parametrized
by a temperature T > 0,

r(Z, T ) ∝ exp

(
− 1

T
f(Z)

)
. (11)

We use a sequence of temperature parameters that is slowly
decreased for a finite number of steps, that is, T0 > T1 >
· · · > TK , starting from an initial temperature T0 = Tstart
down to a final temperature TK = Tfinal. The smaller T gets,
the more peaked the distribution r(·, T ) becomes around
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the minimum of f . Given a Markov chain sampler on r, this
approach converges to the global minimum of f .

We first discuss the Markov chain that we use, then give
details about the temperature schedule.

5.1 Markov Chain

To account for the sparsity constraints on Z, our Markov
chain uses an augmented state space [13] to avoid measure-
theoretic difficulties of asserting reversibility in the context
of changing dimensionality [14].

We decompose Z into a binary matrix B ∈ {0, 1}m×n
and a value matrix V ∈ Rm×n with Zji = BjiVji. This
allows us to easily set weights to zero by setting Bji = 0
and have the reversible proposal readily available by setting
Bji = 1. Our MCMC sampler is a reversible Metropolis-
Hastings sampler and consists of the following transition
kernels (moves):

1) Move mass: Choose two matrix entries Vji, Vkl ran-
domly (uniform) and move a uniformly sampled
value from one entry to another such that their total
value stays the same and both are still positive. This
kernel is reversible with itself.

2) Swap values: Choose two matrix entries Wji, Wji

randomly (uniform) and swap their values V and
binary indicator value B. This kernel is reversible
with itself.

3) Set a weight to zero: Choose a matrix entry withBji =
1 randomly (uniform) and set it to zero. This kernel
is reversible with the following kernel.

4) Set a weight to nonzero: Choose a matrix entry with
Bji = 0 randomly (uniform) and set its binary
indicator value to one. This kernel is reversible with
the previous set-to-zero kernel.

5) Perturb weight value: Choose a matrix entry Vji = 0
randomly (uniform) and rescale its value with a log-
normal sampled factor. This kernel is reversible with
itself.

6) Scale all weight values: Rescale all values V with a
log-normal sampled scalar. This kernel is reversible
with itself.

The above kernels are combined with the following
probabilities: 20% for the move mass kernel; 20% for the
swap values kernel; 10% for the set-to-zero and set-to-nonzero
kernels, each; 30% for the perturb weight kernel; 10% for the
global scaling kernel.

5.2 Temperature Schedule

For simulated annealing we use a geometric temperature
schedule [15], with the temperature at iteration k being

Tk = Tstart β
k,

where we use the initial temperature Tstart = 20 and a target
temperature of Tfinal = 0.01, so that

β = exp

(
1

K
[log Tfinal − log Tfinal]

)
.

This leads to the schedule as shown in Figure 3. We typically
use a K = 20, 000 or K = 100, 000 iterations.
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Fig. 3: Simulated annealing schedule used during shutter profile design
optimization, here with K = 20, 000 iterations.

6 TIME OF FLIGHT SIMULATION DETAILS

We now discuss details of the physically accurate light
simulation that we use to simulate multipath phenomena.
First we recap the basis of both the bidirectional path
tracer (BDPT) and the Metropolis light transport (MLT)
algorithms [16, 17] and then provide information about the
variance reduction techniques we use.

6.1 Light Transport Formulation
Assuming a geometric light model where light travels in
staight lines and only interacts with surfaces, the measured
light intensity at a pixel in a static scene without active illu-
mination can be formulated as a path integral. This integral
accumulates the intensity from light paths x0, x1 . . . xk+1

that start in a point x0 on an emitting surface and end in a
point xk+1 on the pixel’s sensor surface. The intermediate
nodes of this path x1 . . . xk are surfaces in the scene. The
integral can be formulated (see [17] for details) as

∞∑
k=0

∫
Mk+1

Le(x0 → x1)G(X0 ↔ x1)

k∏
i=1

(f(xi−1 → xi → xi+1)G(xi ↔ xi+1))

Ls(xk → xk+1)dA(x0) . . .dA(xk+1). (12)

In this equation,

• M is the set of all surfaces in the scene including
emitters and the camera sensor and A is the area
measure onM;

• Le(x0 → x1) is a function representing emitters. It is
proportional to the light that is emitted from point x0
in the direction of x1. It takes only non-zero values if
x0 is on emitter surfaces;

• Ls(xk → xk+1) is the equivalent of Le for the sensor.
Ls specifies how sensitive the sensor is for photons
arriving at xk+1 from the direction of xk.

• f(xi−1 → xi → xi+1) is the bidirectional scattering
distribution function (BSDF) describing how much
light is scattered at surface point xi in direction xi+1

of an incoming ray from the direction of xi−1;
• G(xi ↔ xi+1) = V (xi ↔ xi+1)

| cosφi cosφi+1|
‖xi+1−xi‖2 is the

throughput of a differential beam between dA(xi)
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and dA(xi+1). V (xi ↔ xi+1) is an indicator function
for mutual visibility of xi and xi+1, which means V
is zero if the direct path between the two inputs is
blocked, otherwise 1; The variables φi, φi+1 denote
the angle between the beam and the surface normals
at xi and xi+1.

The observed response in a specific pixel of our time-of-
flight camera from the emitted light pulse can be modelled
by extending the path integral formulation above to

Ractive =

∫ ∞∑
k=0

∫
Mk+1

P (u)Le(x0 → x1)G(X0 ↔ x1)

k∏
i=1

(f(xi−1 → xi → xi+1)G(xi ↔ xi+1))

Ls(xk → xk+1)Sj(u+ tl)

dA(x0) . . .dA(xk+1)du. (13)

We additionally integrate over time u and include the
intensity of the emitted pulse P (t) as well as the shutter
function Sj(t + tl). The time delay tl = c l of emitted light
arriving at the sensor is the total path length,

l =
∑
i

‖xi+1 − xi‖,

times the speed of light c. All terms involving time can be
group together into the expression∫

P (u)Sj(u+ tl)du =
Cj(tl)

d(tl)

that only depends on the time delay tl corresponding to
total path length. It corresponds to the curve Cj without the
decay of light d(tl) due to distance l (The decay of light is
already accounted for in the G terms of the integral). The
measured response is then

Ractive =

∞∑
k=0

∫
Mk+1

Cj(tl)

d(tl)
Le(x0 → x1)G(X0 ↔ x1)

k∏
i=1

(f(xi−1 → xi → xi+1)G(xi ↔ xi+1))

Ls(xk → xk+1)

dA(x0) . . .dA(xk+1). (14)

This formulation is identical to the path integral Equa-
tion (12) but with the additional Cj(tl)/d(tl) term.

We modified the bidirectional path tracer (BDPT) al-
gorithm [16] and the Metropolis light transport (MLT) al-
gorithm [17] in the Mitsuba renderer [18] to produce a
weighted set of samples {(wi, Li, ti)}i=1,...,N of the path in-
tegral in Equation (12). The weight of the path sample is wi,
Li is the number of edges and ti is the time corresponding
to the total path distance. We can generate samples of Ractive
by

N∑
i=1

wi
d(ti)

Cj(ti).

Considering all shutters C1, C2, . . . and adding constant
ambient light τ to account for Rambient, we may obtain
realistic estimates of the mean response vector

~µ = τ ~A+
N∑
i=1

wi
d(ti)

~C(ti). (15)

6.2 Variance Reduction

The BDPT and MLT rendering techniques are Monte Carlo
methods and therefore estimates obtained from them will
have a Monte Carlo variance. This variance does not orig-
inate with the underlying mechanism that is being sim-
ulated, but is due to the finite number of samples that
are used for estimation. Whereas normal light transport
rendering in computer graphics applications is targeted at
estimating mean intensities in three spectral bands (RGB),
we are instead interested in the time-of-flight density. Be-
cause it is a function instead of a small number of values, it
is more difficult to obtain reliable estimates of this function.

To improve the accuracy of our estimate with the given
time and memory constraints, we use two variance reduc-
tion techniques: stratification and priority sampling.

The starting point for both methods is a stream of
weighted samples (wi, Li, ti) being generated for each pixel.

6.2.1 Stratification

Stratification is a classic variance reduction technique based
on prior knowledge of subpopulations which have lower
within-population variation. It works by breaking up the
estimation problem into one estimation problem per sub-
population and combining the individual estimates into one
joint estimate. This reduces the variance of the joint estimate
compared to lumping all subpopulations together in only
one population and sampling and estimating from only this
one population [6, Section 5.5].

We stratify the incoming stream of samples into two sets.
The first stratum is the set of samples Li = 2 and the
second stratum is the set of samples for which Li > 2. For
both sets we keep an equal number of samples, typically
a few thousand. The following priority sampling is then
performed on each of these two sets separately.

6.2.2 Priority Sampling

The output of the simulation is a set of path samples
(wi, Li, ti) for each pixel. For large image sizes this can re-
quire tens of gigabytes of storage. In particular for the MLT
sampler many of these samples contain partially redun-
dant information due to correlated sampling via runnign a
Markov chain, and storing all of them is wasteful in terms of
storage. Because for MLT the samples are correlated in time,
one really does need to generate a large number of samples
to get good estimates; it is only the storage that is wasteful.
For BDPT the samples are uncorrelated but we can still
improve estimates by replacing low-weight samples with
more important ones due to the inefficiencies of importance
sampling.

Typically, in general Markov chain Monte Carlo simu-
lations the samples are unweighted and one can simply
thin the samples by taking, for example, every 10th sample
only, or by using reservoir sampling to keep a random
subset. Here, however, the samples from both BDPT (impor-
tance sampling) and MLT (Markov chain simulations) are
weighted, and this naive strategy—while still valid in terms
of providing an unbiased estimate—yields a high variance
estimate because it discards important samples with high
weights.
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Fig. 4: Validation of the noise model (8). The variance of the response
is approximately a linear function of the mean response [20]. We show
samples from four responses in different colors and superimpose the
least squares fit.

To obtain low-variance estimates from few samples we
use priority sampling [19], a close to optimal method ad-
dressing the above subsampling problem. Intuitively, pri-
ority sampling generalizes reservoir sampling to the case of
weighted samples. It processes the input sample stream one
sample at a time and keeps a fixed number of samples with
adjusted weights. The weights are adjusted such that the
estimate of any subset sum is unbiased, and the variance
of weight subset sums is almost optimal uniformly over all
possible subsets.

We use priority sampling to thin the two sample streams
for each stratum and after rendering is finished we simply
output the kept samples and adjusted weights.

Overall we found that the bidirectional path tracer
(BDPT) often produces better results with lower variance
and all simulation results in the main paper are obtained by
running BDPT with 8192 samples per pixel.

7 NOISE MODEL VALIDATION

To verify the noise model we assumed in Section 3 (equa-
tion 8) of the main paper, we used the experimental setup as
described in Section 9.2 of the main paper: we sample 500
random pixels and capture 200 frames from a static scene.
We then measure the variance of each pixel’s response, as
well as estimate the mean response; this provides empirical
data about the actual noise present in the input signal.

Figure 4 shows the noise model results in the form of a
scatter plot of the variance of responses versus their mean.
The data clearly validates the assumed noise model (8)
from the main paper, and shows that the signal-dependent
Poissonian shot noise component dominates except for very
small intensities.

8 ACCURACY OF ALBEDO AND AMBIENT LIGHT
LEVEL ESTIMATES

In order to get a sense of the accuracy with which we are
able to recover albedo and ambient light level, we present
another experiment as follows. We sampled responses ob-
tained under the following imaging conditions: depth is
uniform between 70cm and 370cm, ambient light level is
uniform between λ = 0 and λ = 20000, and reflectivity is
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Fig. 5: Accuracy of albedo and ambient light level recovery

uniform between 0% and 100%. The responses are sampled
from the response curve shown in part (a) of Figure 5.

We then ran our MAP inference procedure, and com-
pared the point estimates of albedo and ambient light level,
with the actual values. Parts (b) and (c) of Figure 5 show
the cumulative distribution of errors. For albedo we show
the absolute error, and for ambient light level we show the
relative error.

We note that the median albedo error is less than 3%,
and that the median relative error in recovering ambient
light level is around 7%. For the applications we considered
this accuracy level is higher than actually required.

9 NO-MULTIPATH SIMULATION EXPERIMENT

In the main paper we discussed inference under two imag-
ing models - namely the single-path and the two-path
models. In real world scenes multipath is a common phe-
nomenon. Neither of these two models accurately describes
what happens under realistic multipath conditions. Never-
theless, as we saw in Section 9.7 and in Table 1 in the main
paper, the (inappropriate) two-path model on the average
reduces the median error by 40% with respect to the (even
more inappropriate) single-path model.

An interesting experiment1 would be to evaluate these
two models under scene conditions where no multipath
exists. We took the five scenes used in Section 9.7 of the
main paper, and removed any multipath light paths from
the simulator output. In this manner we obtained responses
that correspond to direct paths only. We then ran the same
SP-Bayes and TP-Bayes inference procedures and obtained
the results shown in Table 1.

What do we expect to see in comparison to what we got
in Table 1 of the main paper?

1) The single-path errors should decrease significantly.
A single-path imaging model is completely wrong
in the presence of multipath - this is the reason the
errors of SP-Bayes were large in the main paper. In
contrast, in the current experiment the single-path
imaging model is a perfect description of the way
responses are generated and therefore the errors are
much lower (resulting from shot-noise only).
Indeed, the average decrease in median error of the
SP-Bayes model is 68% (e.g. 13.46cm going down to
2.49cm for the first Sitting Room scene).

2) Likewise, single-path invalidation score should not
have any reason to detect model misfit in the new

1. We thank an anonymous reviewer for suggesting this experiment
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Absolute error quantile (cm)
Scene Model 25% 50% 75%
Sitting Room SP-Bayes 1.09 2.49 5.25

TP-Bayes 1.47 3.22 6.48
Breakfast Room SP-Bayes 1.15 2.63 5.67

TP-Bayes 2.13 4.45 8.66
Kitchen Nr 2 SP-Bayes 1.22 2.85 6.56

TP-Bayes 2.10 4.52 9.09
Country Kitchen SP-Bayes 1.66 3.97 9.01

TP-Bayes 2.84 5.89 11.48
Wooden Staircase SP-Bayes 1.18 2.62 5.07

TP-Bayes 1.70 3.64 6.79

TABLE 1: Predictive performance of the Bayesian single-path (SP) and
two-path (TP) models on rendered simulation data in which only the first-
bounce response is used and all multipath effects are removed from the
scene.

experiment. When multipath is present we have
indication of responses being invalid under the as-
sumed model when we get a low γ invalidation
score. When the responses fit the model, the γ score
should be uniform.
Figure 6 demonstrates this on the staircase scene
shown in Figure 12. In part (a) of Figure 6 we
show the invalidation score under the presence of
multipath. The structure of the scene is evident with
large areas of low γ values - indicating misfit to
single-path model. In part (b) we show the inval-
idation score under the current experiment where
no multipath is present: indeed γ is uniform. (The
center spot in the scene is due to specular pixel
saturation).

3) How should the two-path error behave now ? In
comparison to the experiment in the main paper,
not much can be said: the two-path model is not
a correct description of the responses under multi-
path, but it is also not a correct description of the
responses under the current experiment which has
zero multipath. In a sense it overfits the imaging
model under the current experiment.
Because the two-path model is wrong when no
multipath exists, and in contrast the single-path
model if perfectly correct, the two-path error in the
current experiment should be greater than the single
path error. Indeed, looking at Table 1 in the current
experiment, the average increase in median error
(with respect to running a single-path model) is 49%
(e.g 2.49cm going up to 3.22cm in the first Sitting
Room scene).
We note that an environment with absolutely no
multipath as in this interesting experiment, does
not exist. A possible approach to dealing with real
environments would be to use a mixture model
between the single and two-path imaging models.
The prior on which model holds would have to
be somehow chosen based on knowledge of the
environment.
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Fig. 6: Effect of removing multipath from simulation on the γ invalidation
score. Without multipath the SP-Bayes model is an accurate model
of the world and the invalidation score becomes close to uniformly
distributed.

Fig. 7: The scene used for designing a multipath-resistant exposure
profile.

10 THE SCENE USED AS AN EXTENDED GENERA-
TIVE MODEL

As described in Section 8.3 in the main paper, we may use
a realistic light transport simulation as a more complex
generative model Q in order to generate responses con-
taining also multipath components. We used this method
to design a multipath-resistant exposure profile. The scene
we used is depicted in Figure 7. The camera is pointed
towards a reflective wall, and the responses sampled from
the cylinder and the floor contain both a direct component
and multipath components. We used two copies of this
scene at two different scales. The exposure profile designed
using this scene was tested on a very different test scene as
described in Section 9.5.

11 ROBUST MODEL INVALIDATION

To demonstrate the performance of the proposed invalida-
tion mechanism we use the same real experimental data as
in Section 9.6 in the main paper. We compute the γ score for
both scenes and for the SP-Bayes and TP-Bayes models.

The results are shown in Figure 8 and show that robust
invalidation is possible for this scene. In the next section we
also report γ score images for simulation data.
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Fig. 8: Robust invalidation of measurements that violate our model
assumptions, as explained in Section 6 of the main paper. In the top
row we show the single path model SP-Bayes depth inference errors
on real data as with the previous experiment in Section 9.6, whereas
the bottom row shows the TP-Bayes model. The γ invalidation score
robustly highlights pixels affected by multipath in (d) (values close to
zero in dark blue) leading to large depth errors in (c). By thresholding
the γ score at a suitably chosen threshold these measurements can be
excluded from further processing. Note that the two-path (TP) model
handles multipath and the γ score in (h) does not invalidate affected
pixels.

12 ADDITIONAL RENDERED RESULTS

In Section 9.7 of the main paper we omitted four scenes
for space reasons; the results are provided here in Figure 9,
Figure 10, Figure 11 and Figure 12 and qualitatively agree
with the results shown in the main paper.

12.1 Example Problem with γ

We now give an example where we suffer high depth
errors but have no operational method to recognize this:
the estimated uncertainty σ̂ is not overly large, and the
invalidation score γ does not indicate deviation from the
model.

The situation occurs in the scene shown in Figure 10, and
we highlight the area in Figure 13. In essence the problem
is due to complex multipath phenomena involving diffuse
multipath and multiple bounces as can be seen from Fig-
ure 13(b), which leads to an observed response that is well
within a high-probability region of the assumed two-path
model (no invalidation) and has a strong direct response
component (leading to low σ̂).

In order to improve depth accuracy in regions such
as the highlighted one, several approaches are relevant.
We are currently considering temporal integration of the
observed response and an imaging model that does not
assume conditional independence among different sensor
elements. For example, many surfaces are planar and recog-
nizing deviations from planarity over multiple pixels could
potentially provide a strong cue to recognize and correct for
multipath interference.

13 INTRINSIC IMAGING

In this section we provide further examples showing that in
addition to depth we also obtain a high-quality reconstruc-
tion of effective albedo and ambient light.

In Figure 14 and 15 we show for two scenes our posterior
mean estimates of all three unknowns for the single-path
(SP-Bayes) and two-path (TP-Bayes) models.

For effective albedo ρ the ground truth is shown in
the first row (third column, Figures 14(c) and 15(c)). Our
estimates have overall excellent agreement with this ground
truth as shown in Figures 14(g) and 15(g) for the single
path model and in Figures 14(k) and 15(k) for the two path
model. Minor overestimation is visible in regions affected
by multipath, for example on the table and in the corner of
the room in Figure 14(g). The TP-Bayes model improves this
estimate as shown in Figure 14(k), however some multipath
artifacts remain.

For ambient λ the ground truth is shown in the first row,
fourth column - Figures 14(d) and 15(d). Again our estimates
are accurate as shown in Figures 14(h) and 15(h) for the
single-path model, and Figures 14(l) and 15(l) for the two-
path model. Minor artifacts are in very dark regions where
little light is reflected (e.g. within the picture on the wall
in Figure 14(a)) and regions affected by multipath (e.g. the
nearby floor in Figure 15(l)).
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Fig. 9: Rendered simulation (scene adapted from “The Breakfast Room” by Wig42, licensed CC-BY from blendswap.com). Significant multipath
error reductions due to the two-path model are visible (wall, table, floor, chairs). Specular surfaces (lamp shade) remain problematic.
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Fig. 10: Rendered simulation (scene adapted from “Kitchen Nr 2” by oldtime, licensed CC-BY from blendswap.com).
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Fig. 11: Rendered simulation (scene adapted from “Country-Kitchen Cycles” by Jay-Artist, licensed CC-BY from blendswap.com). Overall strong
multipath error reduction across the scene but higher overall single-frame jitter due to the strong ambient lighting.
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Fig. 12: Rendered simulation (scene adapted from “The Wooden Staircase” by Wig42, licensed CC-BY from blendswap.com).
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Fig. 13: Explaining a failure of σ̂ and γ to recognize areas of large depth
errors.
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Fig. 14: Intrinsic image decomposition, rendered simulation (scene adapted from “The Breakfast Room” by Wig42, licensed CC-BY from
blendswap.com).
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Fig. 15: Intrinsic image decomposition, rendered simulation (scene adapted from “Country-Kitchen Cycles” by Jay-Artist, licensed CC-BY from
blendswap.com).


