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Problem (Probabilistic Learning)

Let d(y|x) be the (unknown) true conditional distribution.
Let D = {(x1, y1), . . . , (xN , yN )} be i.i.d. samples from d(x, y).

I Find a distribution p(y|x) that we can use as a proxy for d(y|x).

or

I Given a parametrized family of distributions, p(y|x,w), find the
parameter w∗ making p(y|x,w) closest to d(y|x).

Open questions:

I What do we mean by closest?

I What’s a good candidate for p(y|x,w)?
I How to actually find w∗?

I conceptually, and
I numerically
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Principle of Parsimony (Parsimoney, aka Occam’s razor)

“Pluralitas non est ponenda sine neccesitate.”
William of Ockham

“We are to admit no more causes of natural things than such as are both
true and sufficient to explain their appearances.”

Isaac Newton

“Make everything as simple as possible, but not simpler.”
Albert Einstein

“Use the simplest explanation that covers all the facts.”
what we’ll use
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I 1) Define what aspects we consider relevant facts about the data.
I 2) Pick the simplest distribution reflecting that.

Definition (Simplicity ≡ Entropy)

The simplicity of a distribution p is given by its entropy:

H(p) = −
∑
z∈Z

p(z) log p(z)

Definition (Relevant Facts ≡ Feature Functions)

By φi : Z → R for i = 1, . . . , D we denote a set of feature functions that
express everything we want to be able to model about our data.

For example: I the grayvalue of a pixel,

I a bag-of-words histogram of an image,

I the time of day an image was taken,

I a flag if a pixel is darker than half of its neighbors.
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Principle (Maximum Entropy Principle)

Let z1, . . . , zN be samples from a distribution d(z). Let φ1, . . . , φD be
feature functions, and denote by µi := 1

N

∑
n φi(z

n) their means over the
sample set.
The maximum entropy distribution, p, is the solution to

max
p is a prob.distr.

H(p)︸ ︷︷ ︸
be as simple as possible

subject to Ez∼p(z){φi(z)} = µi.︸ ︷︷ ︸
be faithful to what we know

Theorem (Exponential Family Distribution)

Under some very reasonable conditions, the maximum entropy distribution
has the form

p(z) =
1

Z
exp

(∑
i
wiφi(z)

)
for some parameter vector w = (w1, . . . , wD) and constant Z.
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Example:

I Let Z = R, φ1(z) = z, φ2(z) = z2.

I The exponential family distribution is

p(z) =
1

Z(w)
exp( w1z + w2z

2)

=
b2a

Z(a, b)
exp( a

(
z − b

)2
) for a = w2, b = −w1

w2
.

It’s a Gaussian!

I Given examples z1, . . . , zN , we can compute a and b, and derive w.
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Example:

I Let Z = {1, . . . ,K}, φk(z) = Jz = kK, for k = 1, . . . ,K.

I The exponential family distribution is

p(z) =
1

Z(w)
exp(

∑
k

wkφk(z) )

=


exp(w1)/Z for z = 1,

exp(w2)/Z for z = 2,

. . .

exp(wK)/Z for z = K.

with Z = exp(w1) + · · ·+ exp(wK).

It’s a Multinomial!
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Example:

I Let Z = {0, 1}N×M image grid,
φi(y) := yi for each pixel i,
φNM (y) =

∑
i∼jJyi 6= yjK (summing over all 4-neighbor pairs)

I The exponential family distribution is

p(z) =
1

Z(w)
exp( 〈w, φ(y)〉+ w̃

∑
i,j

Jyi 6= yjK )

It’s a (binary) Markov Random Field!
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Conditional Random Field Learning

Assume:

I a set of i.i.d. samples D = {(xn, yn)}n=1,...,N , (xn, yn) ∼ d(x, y)
I feature functions (φ1(x, y), . . . , φD(x, y) ) ≡: φ(x, y)
I parametrized family p(y|x,w) = 1

Z(x,w) exp( 〈w, φ(x, y)〉 )

Task:

I adjust w of p(y|x,w) based on D.

Many possible technique to do so:

I Expectation Matching
I Maximum Likelihood
I Best Approximation
I MAP estimation of w

Punchline: they all turn out to be (almost) the same!
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Maximum Likelihood Parameter Estimation

Idea: maximize conditional likelihood of observing outputs y1, . . . , yN for
inputs x1, . . . , xN

w∗ = argmax
w∈RD

p(y1, . . . , yN |x1, . . . , xN , w)

i.i.d.
= argmax

w∈RD

N∏
n=1

p(yn|xn, w)

− log(·)
= argmin

w∈RD
−

N∑
n=1

log p(yn|xn, w)︸ ︷︷ ︸
negative conditional log-likelihood (of D)
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Best Approximation

Idea: find p(y|x,w) that is closest to d(y|x)

Definition (Similarity between conditional distributions)

For fixed x ∈ X : KL-divergence measure similarity

KLcond(p||d)(x) :=
∑
y∈Y

d(y|x) log
d(y|x)

p(y|x,w)

For x ∼ d(x), compute expectation:

KLtot(p||d) : = Ex∼d(x)

{
KLcond(p||d)(x)

}
=
∑
x∈X

∑
y∈Y

d(x, y) log
d(y|x)

p(y|x,w)
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Best Approximation

Idea: find p(y|x,w) of minimal KLtot-distance to d(y|x)

w∗ = argmin
w∈RD

∑
x∈X

∑
y∈Y

d(x, y) log
d(y|x)

p(y|x,w)

drop const.
= argmin

w∈RD
−

∑
(x,y)∈X×Y

d(x, y) log p(y|x,w)

(xn,yn)∼d(x,y)
≈ argmin

w∈RD
−

N∑
n=1

log p(yn|xn, w)︸ ︷︷ ︸
negative conditional log-likelihood (of D)
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MAP Estimation of w

Idea: Treat w as random variable; maximize posterior probability p(w|D)

p(w|D)
Bayes
=

p(x1, y1, . . . , xn, yn|w)p(w)

p(D)

i.i.d.
= p(w)

N∏
n=1

p(yn|xn, w)

p(yn|xn)

p(w): prior belief on w (cannot be estimated from data).

w∗ = argmax
w∈RD

p(w|D) = argmin
w∈RD

[
− log p(w|D)

]
= argmin

w∈RD

[
− log p(w)−

N∑
n=1

log p(yn|xn, w) + log p(yn|xn)︸ ︷︷ ︸
indep. of w

]

= argmin
w∈RD

[
− log p(w)−

N∑
n=1

log p(yn|xn, w)
]
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w∗ = argmin
w∈RD

[
− log p(w)−

N∑
n=1

log p(yn|xn, w)
]

Choices for p(w):
I p(w) :≡ const. (uniform; in RD not really a distribution)

w∗ = argmin
w∈RD

[
−

N∑
n=1

log p(yn|xn, w)︸ ︷︷ ︸
negative conditional log-likelihood

+ const.
]

I p(w) := const. · e−
1

2σ2
‖w‖2 (Gaussian)

w∗ = argmin
w∈RD

[
− 1

2σ2
‖w‖2 +

N∑
n=1

log p(yn|xn, w)︸ ︷︷ ︸
regularized negative conditional log-likelihood

+ const.
]
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Probabilistic Models for Structured Prediction - Summary

Negative (Regularized) Conditional Log-Likelihood (of D)

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉 − log

∑
y∈Y

e〈w,φ(xn,y)〉]
(σ2 →∞ makes it unregularized)

Probabilistic parameter estimation or training means solving

w∗ = argmin
w∈RD

L(w).

Same optimization problem as for multi-class logistic regression.
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Negative Conditional Log-Likelihood (Toy Example)
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Steepest Descent Minimization – minimize L(w)

input tolerance ε > 0
1: wcur ← 0
2: repeat
3: v ← ∇wL(wcur)
4: η ← argminη∈R L(wcur − ηv)
5: wcur ← wcur − ηv
6: until ‖v‖ < ε

output wcur

Alternatives:

I L-BFGS (second-order descent without explicit Hessian)

I Conjugate Gradient

We always need (at least) the gradient of L.
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L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y e

〈w,φ(xn,y)〉φ(xn, y)∑
ȳ∈Y e

〈w,φ(xn,ȳ)〉

]
=

1

σ2
w −

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y

p(y|xn, w)φ(xn, y)
]

=
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]

∆L(w) =
1

σ2
IdD×D +

N∑
n=1

[Ey∼p(y|xn,w)φ(xn, y)][Ey∼p(y|xn,w)φ(xn, y)]>
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L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]

I C∞-differentiable on all RD.
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∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]

I For σ →∞:

Ey∼p(y|xn,w)φ(xn, y) = φ(xn, yn) ⇒ ∇wL(w) = 0,

criticial point of L (local minimum/maximum/saddle point).

Interpretation:

I We aim for expectation matching: Ey∼pφ(x, y) = φ(x, yobs)
but discriminatively: only for x ∈ {x1, . . . , xn}.
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∆L(w) =
1

σ2
IdD×D +

N∑
n=1

[Ey∼p(y|xn,w)φ(xn, y)][Ey∼p(y|xn,w)φ(xn, y)]>

I positive definite Hessian matrix → L(w) is convex
→ ∇wL(w) = 0 implies global minimum.
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Milestone I: Probabilistic Training (Conditional Random Fields)

I p(y|x,w) log-linear in w ∈ RD.

I Training: many probabilistic derivations lead to same optimization
problem → minimize negative conditional log-likelihood, L(w)

I L(w) is differentiable and convex,
→ gradient descent will find global optimum with ∇wL(w) = 0

I Same structure as multi-class logistic regression.

For logistic regression: this is where the textbook ends. we’re done.

For conditional random fields: we’re not in safe waters, yet!
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Task: Compute v = ∇wL(wcur), evaluate L(wcur + ηv):

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]
∇w L(w) =

1

σ2
w −

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y

p(y|xn, w)φ(xn, y)
]

Problem: Y typically is very (exponentially) large:

I binary image segmentation: |Y| = 2640×480 ≈ 1092475

I ranking N images: |Y| = N !, e.g. N = 1000: |Y| ≈ 102568.

We must use the structure in Y, or we’re lost.
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Solving the Training Optimization Problem Numerically

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]
Computing the Gradient (naive): O(KMND)

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ logZ(xn, w)

]
Line Search (naive): O(KMND) per evaluation of L

I N : number of samples
I D: dimension of feature space
I M : number of output nodes ≈ 100s to 1,000,000s
I K: number of possible labels of each output nodes ≈ 2 to 100s
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Probabilistic Inference to the Rescue

Remember: in a graphical model with factors F , the features decompose:

φ(x, y) =
(
φF (x, yF )

)
F∈F

Ey∼p(y|x,w)φ(x, y) =
(
Ey∼p(y|x,w)φF (x, yF )

)
F∈F

=
(
EyF∼p(yF |x,w)φF (x, yF )

)
F∈F

EyF∼p(yF |x,w)φF (x, yF ) =
∑

yF∈YF︸ ︷︷ ︸
K|F | terms

p(yF |x,w)︸ ︷︷ ︸
factor marginals

φF (x, yF )

Factor marginals µF = p(yF |x,w)
I are much smaller than complete joint distribution p(y|x,w),
I can be computed/approximated, e.g., with (loopy) belief propagation.
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Solving the Training Optimization Problem Numerically

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]
Computing the Gradient: ���

���XXXXXXO(KMnd), O(MK |Fmax |ND):

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]
Line Search: ���

���XXXXXXO(KMnd), O(MK |Fmax |ND) per evaluation of L

I N : number of samples ≈ 10s to 1,000,000s
I D: dimension of feature space
I M : number of output nodes
I K: number of possible labels of each output nodes
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What, if the training set D is too large (e.g. millions of examples)?

Simplify Model

I Train simpler model (smaller factors)

Less expressive power ⇒ results might get worse rather than better /

Subsampling

I Create random subset D′ ⊂ D. Train model using D′

Ignores all information in D \ D′ /

Parallelize

I Train multiple models in parallel. Merge the models.

Follows the multi-core/GPU trend ,
How to actually merge? / (or ,?)
Doesn’t really save computation. /
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What, if the training set D is too large (e.g. millions of examples)?

Stochastic Gradient Descent (SGD)

I Keep maximizing p(w|D). ,
I In each gradient descent step:

I Create random subset D′ ⊂ D, ← often just 1–3 elements!
I Follow approximate gradient

∇̃w L(w) =
1

σ2
w −

∑
(xn,yn)∈D′

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]

I Line search no longer possible. Extra parameter: stepsize η

I SGD converges to argminw L(w)! (if η chosen right)

I SGD needs more iterations, but each one is much faster

more: see L. Bottou, O. Bousquet: ”The Tradeoffs of Large Scale Learning”, NIPS 2008.
also: http://leon.bottou.org/research/largescale

28 / 39

http://leon.bottou.org/research/largescale


Sebastian Nowozin and Christoph Lampert – Structured Models in Computer Vision – Part 4. Conditional Random Fields

Solving the Training Optimization Problem Numerically

∇w L(w) =
1

σ2
w −

N∑
n=1

[
φ(xn, yn)− Ey∼p(y|xn,w)φ(xn, y)

]
Computing the Gradient: ���

���XXXXXXO(KMnd), O(MK2ND) (if BP is possible):

L(w) =
1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉+ log

∑
y∈Y

e〈w,φ(xn,y)〉]
Line Search: ���

���XXXXXXO(KMnd), O(MK2ND) per evaluation of L

I N : number of samples
I D: dimension of feature space: ≈ φi,j 1–10s, φi: 100s to 10000s
I M : number of output nodes
I K: number of possible labels of each output nodes
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Typical feature functions in image segmentation:

I φi(yi, x) ∈ R≈1000: local image features, e.g. bag-of-words
→ 〈wi, φi(yi, x)〉: local classifier (like logistic-regression)

I φi,j(yi, yj) = Jyi = yjK ∈ R1: test for same label
→ 〈wij , φij(yi, yj)〉: penalizer for label changes (if wij > 0)

I combined: argmaxy p(y|x) is smoothed version of local cues

original local classification local + smoothness
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Typical feature functions in handwriting recognition:

I φi(yi, x) ∈ R≈1000: image representation (pixels, gradients)
→ 〈wi, φi(yi, x)〉: local classifier if xi is letter yi

I φi,j(yi, yj) = eyi ⊗ eyj ∈ R26·26: letter/letter indicator
→ 〈wij , φij(yi, yj)〉: encourage/suppress letter combinations

I combined: argmaxy p(y|x) is ”corrected” version of local cues

local classification local + ”correction”
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Typical feature functions in pose estimation:

I φi(yi, x) ∈ R≈1000: local image representation, e.g. HoG
→ 〈wi, φi(yi, x)〉: local confidence map

I φi,j(yi, yj) = good fit(yi, yj) ∈ R1: test for geometric fit
→ 〈wij , φij(yi, yj)〉: penalizer for unrealistic poses

I together: argmaxy p(y|x) is sanitized version of local cues

original local classification local + geometry

[V. Ferrari, M. Marin-Jimenez, A. Zisserman: ”Progressive Search Space Reduction for Human Pose Estimation”, CVPR 2008.]
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Typical feature functions for CRFs in Computer Vision:

I φi(yi, x): local representation, high-dimensional
→ 〈wi, φi(yi, x)〉: local classifier

I φi,j(yi, yj): prior knowledge, low-dimensional
→ 〈wij , φij(yi, yj)〉: penalize outliers

I learning adjusts parameters:
I unary wi: learn local classifiers and their importance
I binary wij : learn importance of smoothing/penalization

I argmaxy p(y|x) is cleaned up version of local prediction
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Solving the Training Optimization Problem Numerically

Idea: split learning of unary potentials into two parts:
I local classifiers,
I their importance.

Two-Stage Training

I pre-train fyi (x) =̂ log p(yi|x)

I use φ̃i(yi, x) := fyi (x) ∈ RK (low-dimensional)

I keep φij(yi, yj) are before

I perform CRF learning with φ̃i and φij

Advantage:
I lower dimensional feature space during inference → faster
I fyi (x) can be stronger classifiers, e.g. non-linear SVMs

Disadvantage:
I if local classifiers are bad, CRF training cannot fix that.
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Solving the Training Optimization Problem Numerically

CRF training methods is based on gradient-descent optimization.
The faster we can do it, the better (more realistic) models we can use:

∇̃w L(w) =
w

σ2
−

N∑
n=1

[
φ(xn, yn)−

∑
y∈Y

p(y|xn, w) φ(xn, y)
]

∈ RD

A lot of research on accelerating CRF training:

problem ”solution” method(s)

|Y| too large exploit structure (loopy) belief propagation

smart sampling contrastive divergence
use approximate L e.g. pseudo-likelihood

N too large mini-batches stochastic gradient descent

D too large trained φunary two-stage training

35 / 39



Sebastian Nowozin and Christoph Lampert – Structured Models in Computer Vision – Part 4. Conditional Random Fields

Summary – CRF Learning

Given:

I training set {(x1, y1), . . . , (xn, yn)} ⊂ X × Y, (xn, yn)
i.i.d.∼ d(x, y)

I feature function φ : X × RD.

Task: find parameter vector w such that 1
Z exp(〈w, φ(x, y)〉 ) ≈ d(y|x).

CRF solution derived by minimizing negative conditional log-likelihood:

w∗ = argmin
w

1

2σ2
‖w‖2 −

N∑
n=1

[
〈w, φ(xn, yn)〉 − log

∑
y∈Y

e〈w,φ(xn,y)〉]

I convex optimization problem → gradient descent works

I training needs repeated runs of probabilistic inference
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Extra I: Beyond Fully Supervised Learning

So far, training was fully supervised, all variables were observed.
In real life, some variables can be unobserved even during training.

missing labels in training data latent variables, e.g. part location

latent variables, e.g. part occlusion latent variables, e.g. viewpoint
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Graphical model: three types of variables

I x ∈ X always observed,

I y ∈ Y observed only in training,

I z ∈ Z never observed (latent).

Marginalization over Latent Variables

Construct conditional likelihood as usual:

p(y, z|x,w) =
1

Z(x,w)
exp(〈w, φ(x, y, z)〉)

Derive p(y|x,w) by marginalizing over z:

p(y|x,w) =
1

Z(x,w)

∑
z∈Z

p(y, z|x,w)
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Negative regularized conditional log-likelihood:

L(w) = λ‖w‖2 −
N∑
n=1

log p(yn|xn, w)

= λ‖w‖2 −
N∑
n=1

log
∑
z∈Z

p(yn, z|xn, w)

= λ‖w‖2 −
N∑
n=1

log
∑
z∈Z

exp(〈w, φ(xn, yn, z)〉)

+

N∑
n=1

log
∑
z∈Z
y∈Y

exp(〈w, φ(xn, y, z)〉)

I L is not convex in w → can have local minima

I no agreed on best way for treating latent variables
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