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Problem (Loss-Minimizing Parameter Learning)

Let d(x,y) be the (unknown) true data distribution.

Let D = {(z,y"),..., (xN,y™)} be iid. samples from d(z,v).
Let ¢ : X x Y — RP be a feature function.

Let A:Y xY — R be a loss function.

» Find a weight vector w* that leads to minimal expected loss

Il“--1:(m,y)wd(:v:,y) {A(y’ f(l‘))}

for f(z) = argmax,cy (w, p(x,y)).
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Problem (Loss-Minimizing Parameter Learning)

Let d(x,y) be the (unknown) true data distribution.

Let D = {(z,y"),..., (xN,y™)} be iid. samples from d(z,v).
Let ¢ : X x Y — RP be a feature function.

Let A:Y xY — R be a loss function.

> Find a weight vector w* that leads to minimal expected loss

Il“--1:(x,y)~d(a:,y) {A(y’ f(l’))}

for f(z) = argmax,cy (w, p(x,y)).

Pro:
» We directly optimize for the quantity of interest: expected loss.
» No expensive-to-compute partition function Z will show up.
Con:
» We need to know the loss function already at training time.
» We can't use probabilistic reasoning to find w*.
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Reminder: learning by regularized risk minimization

For compatibility function g(z, y; w) := (w, ¢(x,y)) find w* that minimizes

E(@y)~d(z,y) A( Y, argmax,, g(z,y;w) ).

Two major problems:
» d(x,y) is unknown

> argmax, g(z,y;w) maps into a discrete space
— A( y,argmax, g(x,y;w)) is discontinuous, piecewise constant
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Task:
nti)n E(x,y)Nd(:r,y) A( Y, argimax,, g(xa Y; w) )

Problem 1:

> d(x,y) is unknown

Solution:
> Replace E(, y)d(ay) (- ) with empirical estimate 573" n o) (+)

» To avoid overfitting: add a regularizer, e.g. \||wl|?.

New task:

N
1
. 2 n n .
mu%n AHU}H + N E 1A( Y 7a‘rgma‘xyg(‘r » Ys U}) )
n=
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Task:

N
1
. 2 .
min Al|wl] +—N E A( y", argmax, g(z",y;w) ).

n=1

Problem:

» A( y,argmax, g(v,y;w) ) discontinuous w.r.t. w.

Solution:
» Replace A(y,y’) with well behaved ¢(x,y,w)

» Typically: £ upper bound to A, continuous and convex w.r.t. w.

New task:

N
1
. 2 72 :
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Regularized Risk Minimization

N
1
min MulP + Sy w)
n=1

Regularization + Loss on training data
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Regularized Risk Minimization

N
1
~ 2
min Mw|*  + Ng 0x" Yy, w)

Regularization 4+ Loss on training data

Hinge loss: maximum margin training

g(a:n’yn’ w) ‘= Inax [ A(yn7y) + <wa ¢($n’y)> - <w> ¢($n7yn)> ]

yey
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Regularized Risk Minimization

~ 2
min Mw|*  + Z€ "y w)

Regularization 4+ Loss on training data

Hinge loss: maximum margin training

e(ajn’yn’ w) ‘= Inax [ A(yn,y) + <wa ¢($n’y)> - <w7 (’b(xn,yn)) ]

yey

» / is maximum over linear functions — continuous, convex.
» ¢ bounds A from above.
Proof: Let § = argmax, g(z", y,w)
A(yn’ g) S A(yna g) + g(‘rna ga w) - g(l‘nv yn7 U})
< I:I?Eaj}){ [A(yna y) + g(xn’ Y, ’LU) - g(xnv yn, w)]
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Regularized Risk Minimization

~ 2
min Mw|*  + Z€ "y w)

Regularization 4+ Loss on training data

Hinge loss: maximum margin training

e(wn’yn’ w) ‘= Inax [ A(yn,y) + <wa ¢(xn’y)> - <w7 (b(xn,yn)) ]

yey

Alternative:

Logistic loss: probabilistic training

",y w) =1log Y exp ((w, $(z",y)) — (w, $(z",y")))

yey

10 /56
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Structured Output Support Vector Machine

L, . O A( n 0o
IT%II 5“'11}” +N§[H1&X y y) <'LU,¢(.’IJ ,y))—(w,gb(:v Y )>:|

Conditional Random Field

min —Hw”2 +
w 202

WE

[108 ™ exp ((w, 6(a™, 1)) — (w, (", 5™))]

=1 yey

3

CRFs and SSVMs have more in common than usually assumed.
» both do regularized risk minimization
> log >, exp(-) can be interpreted as a soft-max

11 /56
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Sebastian Nowozin and Christoph Lampert -

Solving the Training Optimization Problem Numerically

Structured Output Support Vector Machine:

1 s O N n -
min +N§:;[max (",9) + (w, (", 9)) — (w, 62" y"))]

Unconstrained optimization, convex, ' non-differentiable objective.

12/56
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Structured Output SVM (equivalent formulation):

N
: 1 2 C n
min 5wl +Nn§_:1£
subject to, forn =1,..., N,

mase [5(4",9) + . 00", 0) — G, 900", y") | < €°

N [non-linear contraints, convex, differentiable objective.

13/56
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Structured Output SVM (also equivalent formulation):

)

A(yn7y) + <w7¢(xn’y)> - <wa ¢(:L,n’yn)> < é.n’ _

- linear constraints, convex, differentiable objective.

N
o1, o, oL
min 5wl +N;£

14 /56
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Example: Multiclass SVM

1 for ¢
> Y={1,2,....K}, Aly,y)= yry
0 otherwise

> o(z,y) = (Iy = 116(), [y =206(), ..., [y = K]o(x))
1 c
Solve: %1?5”1”"2 + an::lf

subject to, fori =1,...,n,

(w, (", y")) — (w, o2, y)) =1 —=&" forally € Y\ {y"}.

Classification:  f(z) = argmax,cy (w, ¢(z,y)).

Crammer-Singer Multiclass SVM

[K. Crammer, Y. Singer: " On the Algorithmic Implementation of Multiclass Kernel-based Vector Machines”, JMLR, 2001] 15 /56
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Example: Hierarchical SVM
Hierarchical Multiclass Loss:

1
Ay, y) == i(distance in tree)

A(cat,cat) =0, A(cat,dog) =1,
A(cat,bus) =2, etc.

|cat]||dog| [car] |bus]

1 &
. : 2 n
Solve: %I?QHMH + N E §
n=1
subject to, fori =1,...,n,

<,w7¢(xn7yn)> - <w7¢(xnay)> > A(ynay) - {-n for all Yy e y

[L. Cai, T. Hofmann: "Hierarchical Document Categorization with Support Vector Machines”, ACM CIKM, 2004]
[A. Binder, K.-R. Miiller, M. Kawanabe: " On taxonomies for multi-class image categorization”, 1JCV, 2011]
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Solving the Training Optimization Problem Numerically

We can solve SSVM training like CRF training:

: 1 2 c N A n n o ,n
min gl + 55 3 max A" 0)+ (w0 )) = (w.6(a" 47

» continuous ©
» unconstrained ©
» convex ©

» non-differentiable ®
— we can't use gradient descent directly.
— we'll have to use subgradients

17/56
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Definition
Let f: R” — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

f(wo)+({Vv,w-wo)

18/56
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Definition
Let f: R” — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

£ f(Wo) +(v, W-wo)

19/56
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Definition
Let f: R” — R be a convex, not necessarily differentiable, function.
A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.
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Definition
Let f: R” — R be a convex, not necessarily differentiable, function.

A vector v € RP is called a subgradient of f at wy, if

f(w) > f(wo) + (v,w —wp) for all w.

f(w) f(Wo) +{V, W-Wo)

Wo
21/56
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Subgradient descent works basically like gradient descent:

Subgradient Descent Minimization — minimize F'(w)

> require: tolerance € > 0, stepsizes 7
> Weyr <0
> repeat

. b€ VS, F(we)
> Weyr < Weyr — MtV

» until F' changed less than e

> return we,,

Converges to global minimum, but rather inefficient if F' non-differentiable.

[Shor, " Minimization methods for non-differentiable functions”, Springer, 1985.]

22 /56
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Computing a subgradient:
N
1 s C -
min ol + 5 350w
with ¢ (w) = max, £} (w), and

gZ(w) = A(yn7y) + <wa¢($n7y)> - <w’¢<xn7yn)>

23 /56
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Computing a subgradient:
N
1 s C -
min gl + 5 3w
with ¢ (w) = max, £} (w), and
€Z(w) = A(yn7y) + <wa ¢($n7y)> - (wv ‘b(xn?yn»

Z(w)A

Ys

For each y € ), ¢, (w) is a linear function.
24 /56
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Computing a subgradient:
N
1 s C -
min gl + 5 3w
with ¢ (w) = max, £} (w), and
€Z(w) = A(yn7y) + <wa ¢($n7y)> - (wv ‘b(xn?yn»

Z(w)A

For each y € ), ¢, (w) is a linear function.
25 /56



Sebastian Nowozin and Christoph Lampert - Structured Models in Computer Vision = Part 5. Structured SVMs

Computing a subgradient:
N
1 s C -
min gl + 5 3w
with ¢ (w) = max, £} (w), and
€Z(w) = A(yn7y) + <wa ¢($n7y)> - (wv ‘b(xn?yn»

Z(w)A

Ys

For each y € ), ¢, (w) is a linear function.
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Computing a subgradient:
N
1 s C -
min ol + 5 350w
with ¢ (w) = max, £} (w), and
€Z(w) = A(yn7y) + <wa ¢($n7y)> - (wv ‘b(xn?yn»

Z(w)A

Ys

¢(w) = maxy £, (w): maximum over all y € ).
27/56
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Computing a subgradient:
N
1 s C "
1in §”w|| +an::1£ (w)
with £"*(w) = max, £} (w), and

EZ(U)) = A(yn7y) + ('LU, ¢(xn’y)> - (wv ¢(xn’yn)>

Ys

Wo /
Subgradient of ¢ at wy:

28 /56
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Computing a subgradient:
N
1 s C
min gl + 5 2w
with £"(w) = max, £;;(w), and

Z(w)A

Ys

We f
Subgradient of ¢ at wy: find maximal (active) y.

29 /56
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Computing a subgradient:
N
1 s  C -
min gl + 5 > 0'w)
with £"(w) = max, £;;(w), and

Z(w)A

w

W /
Subgradient of (" at wp: find maximal (active) y, use v = V{3 (wy).

30/56
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Subgradient Descent S-SVM Training

input training pairs {(z!,y'),..., (2" y")} C X x ),
input feature map ¢(z,y), loss function A(y,v’), regularizer C,
input number of iterations 7', stepsizes n; fort =1,...,T

1. w4 6

2: for t=1,...,T do
3: fori=l,...,ndo
4 § + argmax,cy A(y", y) + (w, (z",y)) — (w, o(z", y"))
5 o e ¢an, ) — ola"y")

6: end for

7 wew-nw-§Y, ")

8: end for

output prediction function f(x) = argmax, ¢y (w, ¢(z,y)).

Observation: each update of w needs 1 argmax-prediction per example.

31/56
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We can use the same tricks as for CRFs, e.g. stochastic updates:

Stochastic Subgradient Descent S-SVM Training

input training pairs {(z%,y'),..., (2" y")} C & x ),
input feature map ¢(z,y), loss function A(y,y’), regularizer C,
input number of iterations 7', stepsizes n; fort =1,...,T

w0

. fort=1,...,T do
(2™, y™) <« randomly chosen training example pair
§  argmaxyey Ay, y) + (w, 6(a",y)) — (w.0(s",y")
w —w—m(w = FE"§) - ¢, y"))

end for

& o o W

output prediction function f(x) = argmax,cy(w, ¢(x,y)).

Observation: each update of w needs only 1 argmax-prediction
(but we'll need many iterations until convergence)

32 /56
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Solving the Training Optimization Problem Numerically

We can solve an S-SVM like a linear SVM:

One of the equivalent formulations was:

D
weR ,§€]R’_f_

C N

. 2 n

min _ |w|* + NZ§
n=1

subject to, fori =1,...n,

<w,¢(xn’yn)>_<w7¢(mn?y)> > A<yn7y) - Ena for all ye y‘-

Introduce feature vectors dop(x™,y™,y) := o(x™, y™) — ¢(z™, y).

33/56
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Solve

min ||w||2 +
weRD R

2l

N

> ¢
n=1
subject to, for i =1,...n, for all y € V,

This has the same structure as an ordinary SVM!
» quadratic objective ®

» linear constraints ®

34/56
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Solve

N
. C
min wl? + > ¢
weRD ¢eR] N=

subject to, for i =1,...n, for all y € V,

This has the same structure as an ordinary SVM!
» quadratic objective ©

» linear constraints ©®

Question: Can't we use a ordinary SVM/QP solver?

35/56
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Solve

N
. C
min wl? + > ¢
weRD ¢eR] N=

subject to, for i =1,...n, for all y € Y,

This has the same structure as an ordinary SVM!
» quadratic objective ©

» linear constraints ©®

Question: Can't we use a ordinary SVM/QP solver?

Answer: Almost! We could, if there weren't N|)| constraints.
» E.g. 100 binary 16 x 16 images: 107 constraints

36 /56
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Solution: working set training
» It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

37/56
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Solution: working set training
» It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Working Set Training

» Start with working set S =  (no contraints)

» Repeat until convergence:
» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

» if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to .S, iterate.

38 /56
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Solution: working set training
» It's enough if we enforce the active constraints.
The others will be fulfilled automatically.
» We don't know which ones are active for the optimal solution.
» But it's likely to be only a small number « can of course be formalized.

Keep a set of potentially active constraints and update it iteratively:

Working Set Training

» Start with working set S =  (no contraints)

» Repeat until convergence:
» Solve S-SVM training problem with constraints from S
» Check, if solution violates any of the full constraint set

> if no: we found the optimal solution, terminate.
> if yes: add most violated constraints to S, iterate.

Good practical performance and theoretic guarantees:
» polynomial time convergence e-close to the global optimum

[Tsochantaridis et al. " Large Margin Methods for Structured and Interdependent Output Variables”, JMLR, 2005.]
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Working Set S-SVM Training

input training pairs {(z%,y1),..., (2" y")} C X x ),
input feature map ¢(z,y), loss function A(y,y’), regularizer C

1: S« 0
2: repeat
30 (w,§) < solution to QP only with constraints from S
for i=1,...,n do

(R argmaxy cy A(yn’ y) + <w7 (b(mn? y)>

if § # y™ then

S« Su{(=",9)}

end if
9: end for
10: until S doesn’t change anymore.

@ N & &

output prediction function f(x) = argmax, ¢y (w, ¢(x,y)).

Observation: each update of w needs 1 argmax-prediction per example.

(but we solve globally for next w, not by local steps) oo
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One-Slack Formulation of S-SVM:
(equivalent to ordinary S-SVM formulation by £ = % Yoné™)

1
min —||w||2—|—C’§
weRD ¢eR, 2

subject to, for all (g,...,9V) €Y x---x D,

N
> [a +{w, ¢z, ")) — (w, d(a",y"))] < NE,

n=1

41/56
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One-Slack Formulation of S-SVM:
(equivalent to ordinary S-SVM formulation by £ = % >on &M

1
min f||w||2+C’§
weRD ¢eR, 2

subject to, for all (g',...,9V) €Y x---x D,

N
> A +{w, ¢z, ")) — (w, d(a",y"))] < NE,

n=1

|V|V linear constraints, convex, differentiable objective.

We blew up the constraint set even further:
» 100 binary 16 x 16 images: 10'77 constraints (instead of 107%).
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Working Set One-Slack S-SVM Training

input training pairs {(z!,y'),..., (2" y")} C X x ),
input feature map ¢(z,y), loss function A(y,y’), regularizer C

1. S« @

2: repeat

32 (w,§) < solution to QP only with constraints from S
4: fori=1,...,ndo

5: §" + argmax,cy A(y", y) + (w, p(2", y))
6: end for

7 S« Su{(='...,2"), @ ....9")}

8: until S doesn’'t change anymore.

output prediction function f(x) = argmax,cy (w, ¢(,y)).

Often faster convergence:

We add one strong constraint per iteration instead of n weak ones.
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We can solve an S-SVM like a non-linear SVM: compute Lagrangian dual
» min becomes max,

» original (primal) variables w, ¢ disappear,

» new (dual) variables a;,: one per constraint of the original problem.

Dual S-SVM problem

it Y,9€Y

1 = &
max Z anyA(ynay) - 5 Z anyaﬁgj<6¢(xnayn’y)a&b(‘rn’ynay)>
O‘ERHD}‘ n=1,....,n
yey n,n=1,....N

subject to, forn =1,..., N,

C
Zany S N

yey

N linear contraints, convex, differentiable objective, N|Y| variables.

44 /56
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We can kernelize:

» Define joint kernel function k: (X x )) x (¥ x)Y) = R
k((z,y), (2,9)) = (¢(z,y), 6(Z,7)).
» k measure similarity between two (input,output)-pairs.

» We can express the optimization in terms of k:

(0p(x",y",y) , 0p(x

45 /56
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Kernelized S-SVM problem:

1
max o Qi O Ky
yeY
yey i,i:l,...,n
subject to, fori =1,...,n,

C
Zaiygﬁ

yey

> too many variables: train with working set of ;.

Kernelized prediction function:

f( )_ argmaxzazy’k xuyz) (‘T y))

yey iy’

46 /56
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What do " joint kernel functions” look like?

k((z,y), (2,9)) = (o(z,9), ¢(Z,9)).
As in graphical model: easier if ¢ decomposes w.r.t. factors:
> ¢($, y) = (¢F(w7 yF))Fe]:

Then the kernel k& decomposes into sum over factors:

k( (IIZ,y), (jag)) = < (¢F(x7yF))F€]:7 (¢F($,,y%‘))FeF>
= Z<¢F($ayF)7¢F($/,y}7)>

FeF

— Z kr((z,yr), (2, yw))

FeF

We can define kernels for each factor (e.g. nonlinear).

47 / 56



Sebastian Nowozin and Christoph Lampert - Structured Models in Computer Vision - Part 5. Structured SVMs

Example: figure-ground segmentation with grid structure

/'/é ’é /(5

' /

O.\/\
0=l

[ horse
1 background

Typical kernels: arbirary in z, linear (or at least simple) w.r.t. y:

» Unary factors:
kp((2p, vp), (x;, y;/a) = k(zp, w;)ﬂyp = yglg]]
with k(zp, 2;,) local image kernel, e.g. x? or histogram intersection
» Pairwise factors:
Fpg (YY) (Ups ) = [ya = gl [yg = ]

More powerful than all-linear, and argmax-prediction still possible.
48 / 56
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left top

image

right bottom

Only one factor that includes all z and y:

k((z,y), (x/,y/)) = kimage(x|y7$/’y’)

with Kjmage image kernel and x|, is image region within box y.

argmax-prediction as difficult as object localization with Kjmage-SVM.
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Summary — S-SVM Learning

Given:
» training set {(z1,y!),..., (2", y")} C X x Y
» loss function A : Y x Y — R.

Task: learn parameter w for f(x) := argmax,(w, ¢(z,y)) that minimizes
expected loss on future data.
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Summary — S-SVM Learning

Given:
» training set {(z1,y!),..., (2", y")} C X x Y
» loss function A : Y x Y — R.

Task: learn parameter w for f(x) := argmax,(w, ¢(z,y)) that minimizes
expected loss on future data.

S-SVM solution derived by maximum margin framework:

> enforce [GOFFECEIOUEPUE| to be better than [others by a [margin :
(w, o™ y") > AW"y) + (w,6(a",y)) forallyey.

» convex optimization problem, but non-differentiable
» many equivalent formulations — different training algorithms

» training needs repeated argmax prediction, no probabilistic inference
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Extra I: Beyond Fully Supervised Learning

Part 5. Structured SVMs

So far, training was fully supervised, all variables were observed.
In real life, some variables are unobserved even during training.

missing labels in training data latent variables, e.g. part location

latent variables, e.g. part occlusion

latent variables, e.g. viewpoint
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Three types of variables:
» x € X always observed,
» y € ) observed only in training,
» z € Z never observed (latent).
Decision function: f(z) = argmax, cy max.ez (w, p(,y,2))
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Three types of variables:
» z € X always observed,
> y € )Y observed only in training,
» z € Z never observed (latent).
Decision function: f(z) = argmax, cy max.ez (w, p(,y,2))

Maximum Margin Training with Maximization over Latent Variables
N
1 C
Solve: in — I n
olve:  min plwl®+ T} ¢
n=1
subject to, form =1,...,N, forally € Y
A(y™ n o n o, n
(4", y) +max (w, 6(z", y, 2)) —max (w, $(z",y", 2))

Problem: not a convex problem — can have local minima

[C. Yu, T. Joachims, " Learning Structural SVMs with Latent Variables”, ICML, 2009]
similar idea: [Felzenszwalb, McAllester, Ramaman. A Discriminatively Trained, Multiscale, Deformable Part Model, CVPR'08]
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Structured Learning is full of Open Research Questions

» How to train faster?

» CRFs need many runs of probablistic inference,
» SSVMs need many runs of argmax-predictions.

v

How to reduce the necessary amount of training data?
» semi-supervised learning? transfer learning?

» How can we better understand different loss function?

» when to use probabilistic training, when maximum margin?
» CRFs are “consistent”, SSVMs are not. Is this relevant?

\4

Can we understand structured learning with approximate inference?

» often computing V.L(w) or argmax, (w, ¢(z,y)) exactly is infeasible.
» can we guarantee good results even with approximate inference?

\4

More and new applications!
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Lunch-Break
Continuing at 13:30
Slides available at

http://www.nowozin.net/sebastian/
cvpr201lltutorial/
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