Part 2: Introduction to Graphical Models

Sebastian Nowozin and Christoph H. Lampert

Colorado Springs, 25th June 2011
"nesearch

Introduction

- Model: relating observations x to quantities of interest y
- Example 1: given RGB image x, infer depth y for each pixel
- Example 2: given RGB image x, infer presence and positions y of all objects

$f: \mathcal{X} \rightarrow \mathcal{Y}$ shown

Introduction

- Model: relating observations x to quantities of interest y
- Example 1: given RGB image x, infer depth y for each pixel
- Example 2: given RGB image x, infer presence and positions y of all objects

$f: \mathcal{X} \rightarrow \mathcal{Y}$ shown

\mathcal{X} : image, \mathcal{Y} : object annotations

Introduction

－General case：mapping $x \in \mathcal{X}$ to $y \in \mathcal{Y}$
－Graphical models are a concise language to define this mapping
－Mapping can be ambiguous： measurement noise，lack of well－posedness（e．g．occlusions）

$f: \mathcal{X} \rightarrow \mathcal{Y}$
－Probabilistic graphical models：define form $p(y \mid x)$ or $p(x, y)$ for all $y \in \mathcal{Y}$

Introduction

- General case: mapping $x \in \mathcal{X}$ to $y \in \mathcal{Y}$
- Graphical models are a concise language to define this mapping
- Mapping can be ambiguous: measurement noise, lack of well-posedness (e.g. occlusions)

- Probabilistic graphical models: define form $p(y \mid x)$ or $p(x, y)$ for all $y \in \mathcal{Y}$

Graphical Models

A graphical model defines

- a family of probability distributions over a set of random variables,
- by means of a graph,
- so that the random variables satisfy conditional independence assumptions encoded in the graph.

Graphical Models

A graphical model defines

- a family of probability distributions over a set of random variables,
- by means of a graph,
- so that the random variables satisfy conditional independence assumptions encoded in the graph.
Popular classes of graphical models,
- Undirected graphical models (Markov random fields),
- Directed graphical models (Bayesian networks),
- Factor graphs,
- Others: chain graphs, influence diagrams, etc.

Bayesian Networks

- Graph: $G=(V, \mathcal{E}), \mathcal{E} \subset V \times V$
- directed
- acyclic
- Variable domains \mathcal{Y}_{i}
- Factorization

$$
p(Y=y)=\prod_{i \in V} p\left(y_{i} \mid y_{\mathrm{pa}_{G}(i)}\right)
$$

over distributions, by conditioning on parent nodes.

- Example
$p(Y=y)=p\left(Y_{l}=y_{l} \mid Y_{k}=y_{k}\right) p\left(Y_{k}=y_{k} \mid Y_{i}=y_{i}, Y_{j}=y_{j}\right)$

A simple Bayes net

Bayesian Networks

－Graph：$G=(V, \mathcal{E}), \mathcal{E} \subset V \times V$
－directed
－acyclic
－Variable domains \mathcal{Y}_{i}
－Factorization

$$
p(Y=y)=\prod_{i \in V} p\left(y_{i} \mid y_{\mathrm{pa}_{G}(i)}\right)
$$

over distributions，by conditioning on parent
A simple Bayes net nodes．
－Example

$$
\begin{aligned}
p(Y=y)= & p\left(Y_{l}=y_{l} \mid Y_{k}=y_{k}\right) p\left(Y_{k}=y_{k} \mid Y_{i}=y_{i}, Y_{j}=y_{j}\right) \\
& p\left(Y_{i}=y_{i}\right) p\left(Y_{j}=y_{j}\right) .
\end{aligned}
$$

Undirected Graphical Models

- = Markov random field (MRF) = Markov network
- Graph: $G=(V, \mathcal{E}), \mathcal{E} \subset V \times V$
- undirected, no self-edges
- Variable domains \mathcal{Y}_{i}
- Factorization over potentials ψ at cliques,

$$
p(y)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \psi_{C}\left(y_{C}\right)
$$

- Constant $Z=\sum_{y \in \mathcal{Y}} \prod_{C \in \mathcal{C}(G)} \psi_{C}\left(y_{C}\right)$
- Example

A simple MRF

Undirected Graphical Models

- = Markov random field (MRF) = Markov network

A simple MRF

- Graph: $G=(V, \mathcal{E}), \mathcal{E} \subset V \times V$
- undirected, no self-edges
- Variable domains \mathcal{Y}_{i}
- Factorization over potentials ψ at cliques,

$$
p(y)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \psi_{c}\left(y_{C}\right)
$$

- Constant $Z=\sum_{y \in \mathcal{Y}} \prod_{C \in \mathcal{C}(G)} \psi_{C}\left(y_{C}\right)$
- Example

$$
p(y)=\frac{1}{Z} \psi_{i}\left(y_{i}\right) \psi_{j}\left(y_{j}\right) \psi_{l}\left(y_{l}\right) \psi_{i, j}\left(y_{i}, y_{j}\right)
$$

Example 1

- Cliques $\mathcal{C}(G)$: set of vertex sets V^{\prime} with $V^{\prime} \subseteq V$,

$$
\mathcal{E} \cap\left(V^{\prime} \times V^{\prime}\right)=V^{\prime} \times V^{\prime}
$$

- Here $\mathcal{C}(G)=\{\{i\},\{i, j\},\{j\},\{j, k\},\{k\}\}$

$$
p(y)=\frac{1}{Z} \psi_{i}\left(y_{i}\right) \psi_{j}\left(y_{j}\right) \psi_{l}\left(y_{l}\right) \psi_{i, j}\left(y_{i}, y_{j}\right)
$$

Example 2

- Here $\mathcal{C}(G)=2^{V}$: all subsets of V are cliques

$$
p(y)=\frac{1}{Z} \prod_{A \in 2^{\{i, j, k, k,\}}} \psi_{A}\left(y_{A}\right) .
$$

Factor Graphs

- Graph: $G=(V, \mathcal{F}, \mathcal{E}), \mathcal{E} \subseteq V \times \mathcal{F}$
- variable nodes V,
- factor nodes \mathcal{F},
- edges \mathcal{E} between variable and factor nodes.
- scope of a factor,

$$
N(F)=\{i \in V:(i, F) \in \mathcal{E}\}
$$

- Variable domains \mathcal{Y}_{i}
- Factorization over potentials ψ at factors,
- Constant $Z=\sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{N(F)}\right)$

Factor graph

$$
p(y)=\frac{1}{Z} \prod_{F \in \mathcal{J}} \psi_{F}\left(y_{N(F)}\right)
$$

Factor Graphs

- Graph: $G=(V, \mathcal{F}, \mathcal{E}), \mathcal{E} \subseteq V \times \mathcal{F}$
- variable nodes V,
- factor nodes \mathcal{F},
- edges \mathcal{E} between variable and factor nodes.
- scope of a factor,

$$
N(F)=\{i \in V:(i, F) \in \mathcal{E}\}
$$

- Variable domains \mathcal{Y}_{i}
- Factorization over potentials ψ at factors,

Factor graph

$$
p(y)=\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{N(F)}\right)
$$

- Constant $Z=\sum_{y \in \mathcal{Y}} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{N(F)}\right)$

Why factor graphs?

- Factor graphs are explicit about the factorization
- Hence, easier to work with
- Universal (just like MRFs and Bayesian networks)

Capacity

－Factor graph defines family of distributions
－Some families are larger than others

Four remaining pieces

1. Conditional distributions (CRFs)
2. Parameterization
3. Test-time inference
4. Learning the model from training data

Four remaining pieces

1. Conditional distributions (CRFs)
2. Parameterization
3. Test-time inference
4. Learning the model from training data

Conditional Distributions

- We have discussed $p(y)$,
- How do we define $p(y \mid x)$?
- Potentials become a function of $x_{N(F)}$
- Partition function depends on x
- Conditional random fields (CRFs)
x is not part of the probability model, i.e. not treated as random variable

Conditional Distributions

- We have discussed $p(y)$,
- How do we define $p(y \mid x)$?
- Potentials become a function of $x_{N(F)}$
- Partition function depends on x
- Conditional random fields (CRFs)
- x is not part of the probability model, i.e. not treated as random variable

conditional distribution

$$
\begin{gathered}
p(y)=\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{N(F)}\right) \\
p(y \mid x)=\frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{N(F)} ; x_{N(F)}\right)
\end{gathered}
$$

Conditional Distributions

- We have discussed $p(y)$,
- How do we define $p(y \mid x)$?
- Potentials become a function of $x_{N(F)}$
- Partition function depends on x
- Conditional random fields (CRFs)
- x is not part of the probability model, i.e. not treated as random variable

conditional distribution

$$
\begin{gathered}
p(y)=\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{N(F)}\right) \\
p(y \mid x)=\frac{1}{Z(x)} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{N(F)} ; x_{N(F)}\right)
\end{gathered}
$$

Potentials and Energy Functions

－For each factor $F \in \mathcal{F}, \mathcal{Y}_{F}=\underset{i \in N(F)}{\times} \mathcal{Y}_{i}$ ，

$$
E_{F}: \mathcal{Y}_{N(F)} \rightarrow \mathbb{R},
$$

－Potentials and energies（assume $\psi_{F}\left(y_{F}\right)>0$ ）

$$
\psi_{F}\left(y_{F}\right)=\exp \left(-E_{F}\left(y_{F}\right)\right), \quad \text { and } \quad E_{F}\left(y_{F}\right)=-\log \left(\psi_{F}\left(y_{F}\right)\right) .
$$

－Then $p(y)$ can be written as

\rightarrow Hence，$p(y)$ is completely determined by $E(y)=$

Potentials and Energy Functions

- For each factor $F \in \mathcal{F}, \mathcal{Y}_{F}=\underset{i \in N(F)}{\times} \mathcal{Y}_{i}$,

$$
E_{F}: \mathcal{Y}_{N(F)} \rightarrow \mathbb{R},
$$

- Potentials and energies (assume $\psi_{F}\left(y_{F}\right)>0$)

$$
\psi_{F}\left(y_{F}\right)=\exp \left(-E_{F}\left(y_{F}\right)\right), \quad \text { and } \quad E_{F}\left(y_{F}\right)=-\log \left(\psi_{F}\left(y_{F}\right)\right) .
$$

- Then $p(y)$ can be written as

$$
\begin{aligned}
p(Y=y) & =\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{F}\right) \\
& =\frac{1}{Z} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right)\right),
\end{aligned}
$$

Potentials and Energy Functions

- For each factor $F \in \mathcal{F}, \mathcal{Y}_{F}=\underset{i \in N(F)}{\times} \mathcal{Y}_{i}$,

$$
E_{F}: \mathcal{Y}_{N(F)} \rightarrow \mathbb{R},
$$

- Potentials and energies (assume $\psi_{F}\left(y_{F}\right)>0$)

$$
\psi_{F}\left(y_{F}\right)=\exp \left(-E_{F}\left(y_{F}\right)\right), \quad \text { and } \quad E_{F}\left(y_{F}\right)=-\log \left(\psi_{F}\left(y_{F}\right)\right) .
$$

- Then $p(y)$ can be written as

$$
\begin{aligned}
p(Y=y) & =\frac{1}{Z} \prod_{F \in \mathcal{F}} \psi_{F}\left(y_{F}\right) \\
& =\frac{1}{Z} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right)\right),
\end{aligned}
$$

- Hence, $p(y)$ is completely determined by $E(y)=\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right)$

Energy Minimization

$$
\begin{aligned}
\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(Y=y) & =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{1}{Z} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right)\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}} \exp \left(-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right)\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmax}}-\sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmin}} \sum_{F \in \mathcal{F}} E_{F}\left(y_{F}\right) \\
& =\underset{y \in \mathcal{Y}}{\operatorname{argmin}} E(y) .
\end{aligned}
$$

- Energy minimization can be interpreted as solving for the most likely state of some factor graph model

Parameterization

- Factor graphs define a family of distributions
- Parameterization: identifying individual members by parameters w

Parameterization

- Factor graphs define a family of distributions
- Parameterization: identifying individual members by parameters w

Example: Parameterization

- Image segmentation model
- Pairwise "Potts" energy function $E_{F}\left(y_{i}, y_{j} ; w_{1}\right)$,

$$
E_{F}:\{0,1\} \times\{0,1\} \times \mathbb{R} \rightarrow \mathbb{R}
$$

- $E_{F}\left(0,0 ; w_{1}\right)=E_{F}\left(1,1 ; w_{1}\right)=0$
- $E_{F}\left(0,1 ; w_{1}\right)=E_{F}\left(1,0 ; w_{1}\right)=w_{1}$

image segmentation model

Example: Parameterization (cont)

- Image segmentation model
- Unary energy function $E_{F}\left(y_{i} ; x, w\right)$,

$$
E_{F}:\{0,1\} \times \mathcal{X} \times \mathbb{R}^{\{0,1\} \times D} \rightarrow \mathbb{R}
$$

- $E_{F}(0 ; x, w)=\left\langle w(0), \psi_{F}(x)\right\rangle$
- $E_{F}(1 ; x, w)=\left\langle w(1), \psi_{F}(x)\right\rangle$
- Features $\psi_{F}: \mathcal{X} \rightarrow \mathbb{R}^{D}$, e.g. image filters

image segmentation model

Example: Parameterization (cont)

Example: Parameterization (cont)

$\left\langle w(0), \psi_{F}(x)\right\rangle$
$\left\langle w(1), \psi_{F}(x)\right\rangle$

- Total number of parameters: $D+D+1$
- Parameters are shared, but energies differ because of different $\psi_{F}(x)$
- General form, linear in w,

$$
E_{F}\left(y_{F} ; x_{F}, w\right)=\left\langle w\left(y_{F}\right), \psi_{F}\left(x_{F}\right)\right\rangle
$$

Making Predictions

- Making predictions: given $x \in \mathcal{X}$, predict $y \in \mathcal{Y}$
- How to measure quality of prediction? (or function $f: \mathcal{X} \rightarrow \mathcal{Y}$)

Loss function

- Define a loss function

$$
\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}
$$

so that $\Delta\left(y, y^{*}\right)$ measures the loss incurred by predicting y when y^{*} is true.

- The loss function is application dependent

Test－time Inference

－Loss function $\Delta(y, f(x))$ ：correct label y ，predict $f(x)$

$$
\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}
$$

－True joint distribution $d(X, Y)$ and true conditional $d(y \mid x)$
－Model distribution $p(y \mid x)$
－Expected loss：quality of prediction

－Assuming that $p(y \mid x ; w) \approx d(y \mid x)$

Test-time Inference

- Loss function $\Delta(y, f(x))$: correct label y, predict $f(x)$

$$
\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}
$$

- True joint distribution $d(X, Y)$ and true conditional $d(y \mid x)$
- Model distribution $p(y \mid x)$
- Expected loss: quality of prediction

$$
\begin{aligned}
\mathcal{R}_{f}^{\Delta}(x) & =\mathbb{E}_{y \sim d(y \mid x)} \Delta(y, f(x)) \\
& =\sum_{y \in \mathcal{Y}} d(y \mid x) \Delta(y, f(x)) .
\end{aligned}
$$

- Assuming that $p(y \mid x ; w) \approx d(y \mid x)$

Test-time Inference

- Loss function $\Delta(y, f(x))$: correct label y, predict $f(x)$

$$
\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}
$$

- True joint distribution $d(X, Y)$ and true conditional $d(y \mid x)$
- Model distribution $p(y \mid x)$
- Expected loss: quality of prediction

$$
\begin{aligned}
\mathcal{R}_{f}^{\Delta}(x) & =\mathbb{E}_{y \sim d(y \mid x)} \Delta(y, f(x)) \\
& =\sum_{y \in \mathcal{Y}} d(y \mid x) \Delta(y, f(x)) . \\
& \approx \mathbb{E}_{y \sim p(y \mid x ; w)} \Delta(y, f(x))
\end{aligned}
$$

- Assuming that $p(y \mid x ; w) \approx d(y \mid x)$

Example 1: 0/1 loss

Loss 0 iff perfectly predicted, 1 otherwise:

$$
\Delta_{0 / 1}\left(y, y^{*}\right)=I\left(y \neq y^{*}\right)= \begin{cases}0 & \text { if } y=y^{*} \\ 1 & \text { otherwise }\end{cases}
$$

Plugging it in,

$$
\begin{aligned}
y^{*} & :=\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}_{y \sim p(y \mid x)}\left[\Delta_{0 / 1}\left(y, y^{\prime}\right)\right] \\
& =\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmax}} p\left(y^{\prime} \mid x\right) \\
& =\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmin}} E\left(y^{\prime}, x\right) .
\end{aligned}
$$

- Minimizing the expected 0/1-loss \rightarrow MAP prediction (energy minimization)

Example 1: 0/1 loss

Loss 0 iff perfectly predicted, 1 otherwise:

$$
\Delta_{0 / 1}\left(y, y^{*}\right)=I\left(y \neq y^{*}\right)= \begin{cases}0 & \text { if } y=y^{*} \\ 1 & \text { otherwise }\end{cases}
$$

Plugging it in,

$$
\begin{aligned}
y^{*} & :=\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}_{y \sim p(y \mid x)}\left[\Delta_{0 / 1}\left(y, y^{\prime}\right)\right] \\
& =\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmax}} p\left(y^{\prime} \mid x\right) \\
& =\underset{\operatorname{argmin}^{\prime} \in \mathcal{Y}}{ } E\left(y^{\prime}, x\right) .
\end{aligned}
$$

- Minimizing the expected 0/1-loss \rightarrow MAP prediction (energy minimization)

Example 2: Hamming loss

Count the number of mislabeled variables:

$$
\Delta_{H}\left(y, y^{*}\right)=\frac{1}{|V|} \sum_{i \in V} I\left(y_{i} \neq y_{i}^{*}\right)
$$

Plugging it in,

$$
\begin{aligned}
y^{*} & :=\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}_{y \sim p(y \mid x)}\left[\Delta_{H}\left(y, y^{\prime}\right)\right] \\
& =\left(\underset{y_{i}^{\prime} \in \mathcal{Y}_{i}}{\operatorname{argmax}} p\left(y_{i}^{\prime} \mid x\right)\right)_{i \in V}
\end{aligned}
$$

- Minimizing the expected Hamming loss \rightarrow maximum posterior marginal (MPM, Max-Marg) prediction

Example 2: Hamming loss

Count the number of mislabeled variables:

$$
\Delta_{H}\left(y, y^{*}\right)=\frac{1}{|V|} \sum_{i \in V} I\left(y_{i} \neq y_{i}^{*}\right)
$$

Plugging it in,

$$
\begin{aligned}
y^{*} & :=\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}_{y \sim p(y \mid x)}\left[\Delta_{H}\left(y, y^{\prime}\right)\right] \\
& =\left(\underset{y_{i}^{\prime} \in \mathcal{Y}_{i}}{\operatorname{argmax}} p\left(y_{i}^{\prime} \mid x\right)\right)_{i \in V}
\end{aligned}
$$

- Minimizing the expected Hamming loss \rightarrow maximum posterior marginal (MPM, Max-Marg) prediction

Example 3：Squared error

Assume a vector space on \mathcal{Y}_{i}（pixel intensities， optical flow vectors，etc．）．
Sum of squared errors

$$
\Delta_{Q}\left(y, y^{*}\right)=\frac{1}{|V|} \sum_{i \in V}\left\|y_{i}-y_{i}^{*}\right\|^{2} .
$$

Plugging it in，

$$
\begin{aligned}
y^{*} & :=\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}_{y \sim p(y \mid x)}\left[\Delta_{Q}\left(y, y^{\prime}\right)\right] \\
& =\left(\sum_{y_{i}^{\prime} \in \mathcal{Y}_{i}} p\left(y_{i}^{\prime} \mid x\right) y_{i}^{\prime}\right)_{i \in V}
\end{aligned}
$$

－Minimizing the expected squared error \rightarrow minimum mean squared error（MMSE）prediction

Example 3：Squared error

Assume a vector space on \mathcal{Y}_{i}（pixel intensities， optical flow vectors，etc．）．
Sum of squared errors

$$
\Delta_{Q}\left(y, y^{*}\right)=\frac{1}{|V|} \sum_{i \in V}\left\|y_{i}-y_{i}^{*}\right\|^{2} .
$$

Plugging it in，

$$
\begin{aligned}
y^{*} & :=\underset{y^{\prime} \in \mathcal{Y}}{\operatorname{argmin}} \mathbb{E}_{y \sim p(y \mid x)}\left[\Delta_{Q}\left(y, y^{\prime}\right)\right] \\
& =\left(\sum_{y_{i}^{\prime} \in \mathcal{Y}_{i}} p\left(y_{i}^{\prime} \mid x\right) y_{i}^{\prime}\right)_{i \in V}
\end{aligned}
$$

－Minimizing the expected squared error \rightarrow minimum mean squared error（MMSE）prediction

Inference Task: Maximum A Posteriori (MAP) Inference

Definition (Maximum A Posteriori (MAP) Inference)

Given a factor graph, parameterization, and weight vector w, and given the observation x, find

$$
y^{*}=\underset{y \in \mathcal{Y}}{\operatorname{argmax}} p(Y=y \mid x, w)=\underset{y \in \mathcal{Y}}{\operatorname{argmin}} E(y ; x, w) .
$$

Inference Task: Probabilistic Inference

Definition (Probabilistic Inference)

Given a factor graph, parameterization, and weight vector w, and given the observation x, find

$$
\begin{aligned}
\log Z(x, w) & =\log \sum_{y \in \mathcal{Y}} \exp (-E(y ; x, w)) \\
\mu_{F}\left(y_{F}\right) & =p\left(Y_{F}=y_{f} \mid x, w\right), \quad \forall F \in \mathcal{F}, \forall y_{F} \in \mathcal{Y}_{F} .
\end{aligned}
$$

- This typically includes variable marginals

$$
\mu_{i}\left(y_{i}\right)=p\left(y_{i} \mid x, w\right)
$$

Example: Man-made structure detection

- Left: input image x,
- Middle: ground truth labeling on 16-by-16 pixel blocks,
- Right: factor graph model
- Features: gradient and color histograms
- Estimate model parameters from ≈ 60 training images

Example: Man-made structure detection

- Left: input image x,
- Middle (probabilistic inference): visualization of the variable marginals $p\left(y_{i}=\right.$ "manmade" $\left.\mid x, w\right)$,
- Right (MAP inference): joint MAP labeling

$$
y^{*}=\operatorname{argmax}_{y \in \mathcal{Y}} p(y \mid x, w) .
$$

Training the Model

What can be learned?

- Model structure: factors
- Model variables: observed variables fixed, but we can add unobserved variables
- Factor energies: parameters

Training the Model

What can be learned?

- Model structure: factors
- Model variables: observed variables fixed, but we can add unobserved variables
- Factor energies: parameters

Training: Overview

- Assume a fully observed, independent and identically distributed (iid) sample set

$$
\left\{\left(x^{n}, y^{n}\right)\right\}_{n=1, \ldots, N}, \quad\left(x^{n}, y^{n}\right) \sim d(X, Y)
$$

- Goal: predict well,
- Alternative goal: first model $d(y \mid x)$ well by $p(y \mid x, w)$, then predict by minimizing the expected loss

Probabilistic Learning

Problem (Probabilistic Parameter Learning)

Let $d(y \mid x)$ be the (unknown) conditional distribution of labels for a problem to be solved. For a parameterized conditional distribution $p(y \mid x, w)$ with parameters $w \in \mathbb{R}^{D}$, probabilistic parameter learning is the task of finding a point estimate of the parameter w^{*} that makes $p\left(y \mid x, w^{*}\right)$ closest to $d(y \mid x)$.

- We will discuss probabilistic parameter learning in detail

Probabilistic Learning

Problem (Probabilistic Parameter Learning)

Let $d(y \mid x)$ be the (unknown) conditional distribution of labels for a problem to be solved. For a parameterized conditional distribution $p(y \mid x, w)$ with parameters $w \in \mathbb{R}^{D}$, probabilistic parameter learning is the task of finding a point estimate of the parameter w^{*} that makes $p\left(y \mid x, w^{*}\right)$ closest to $d(y \mid x)$.

- We will discuss probabilistic parameter learning in detail.

Loss-Minimizing Parameter Learning

Problem (Loss-Minimizing Parameter Learning)

Let $d(x, y)$ be the unknown distribution of data in labels, and let $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a loss function. Loss minimizing parameter learning is the task of finding a parameter value w^{*} such that the expected prediction risk

$$
\mathbb{E}_{(x, y) \sim d(x, y)}\left[\Delta\left(y, f_{p}(x)\right)\right]
$$

is as small as possible, where $f_{p}(x)=\operatorname{argmax}_{y \in \mathcal{Y}} p\left(y \mid x, w^{*}\right)$.

- Requires loss function at training time
- Directly learns a prediction function $f_{p}(x)$

Loss-Minimizing Parameter Learning

Problem (Loss-Minimizing Parameter Learning)

Let $d(x, y)$ be the unknown distribution of data in labels, and let $\Delta: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ be a loss function. Loss minimizing parameter learning is the task of finding a parameter value w^{*} such that the expected prediction risk

$$
\mathbb{E}_{(x, y) \sim d(x, y)}\left[\Delta\left(y, f_{p}(x)\right)\right]
$$

is as small as possible, where $f_{p}(x)=\operatorname{argmax}_{y \in \mathcal{Y}} p\left(y \mid x, w^{*}\right)$.

- Requires loss function at training time
- Directly learns a prediction function $f_{p}(x)$

