Part 2: Introduction to Graphical Models

Sebastian Nowozin and Christoph H. Lampert

Colorado Springs, 25th June 2011

o & - = = 9Dac
Sebastian Nowozin and Christoph H. Lampert
Part 2: Introduction to Graphical Models




Graphical Models
®000000

Graphical Models

Introduction

» Model: relating observations x to
quantities of interest y f
» Example 1: given RGB image x, infer A
depth y for each pixel

» Example 2: given RGB image x, infer X N%
presence and positions y of all objects f X =)
shown
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Introduction

» Model: relating observations x to
quantities of interest y

» Example 1: given RGB image x, infer A
depth y for each pixel

» Example 2: given RGB image x, infer X N%
presence and positions y of all objects f B
shown

X': image, ): object annotations
o = S = = 9ac
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Graphical Models

Introduction

» General case: mappingx € X toy € Y
» Graphical models are a concise
language to define this mapping

f:X =Y
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Graphical Models

Introduction

» General case: mappingx € X toy € Y

» Graphical models are a concise
language to define this mapping

» Mapping can be ambiguous:
measurement noise, lack of
well-posedness (e.g. occlusions)

» Probabilistic graphical models: define
form p(y|x) or p(x,y) forall y € Y
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Graphical Models

A graphical model defines
» a family of probability distributions over a set of random variables,
» by means of a graph,

» so that the random variables satisfy conditional independence
assumptions encoded in the graph.

Sebastian Nowozin and Christoph H. Lampert

Part 2: Introduction to Graphical Models



Graphical Models
00@0000
Graphical Models

Graphical Models

A graphical model defines
» a family of probability distributions over a set of random variables,
» by means of a graph,
» so that the random variables satisfy conditional independence
assumptions encoded in the graph.
Popular classes of graphical models,

» Undirected graphical models (Markov
random fields),

» Directed graphical models (Bayesian
networks),

» Factor graphs,

» Others: chain graphs, influence
diagrams, etc.

Sebastian Nowozin and Christoph H. Lampert
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Graphical Models

Bayesian Networks

» Graph: G =(V,€),ECVxV @ @
» directed

» acyclic

» Variable domains )

» Factorization

p(Y =y) =[] pilypac(iy)

iev @

over distributions, by conditioning on parent A simple Bayes net
nodes.
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Bayesian Networks

» Graph: G =(V,€),ECVxV @ @

» directed
» acyclic

» Variable domains ) @

» Factorization

p(Y =y) =[] p(ilypac() @

iev
over distributions, by conditioning on parent A simple Bayes net
nodes.
» Example

p(Y =y)=p(Yi =yYc = yi)p(Ye = yc|Yi = yi, Yi = ¥))
p(Yi = yi)p(Y; = y). o
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Undirected Graphical Models

» = Markov random field (MRF) = Markov . . .

network A simple MRF
Graph: G=(V,&), ECV xV

» undirected, no self-edges

v

v

Variable domains );

v

Factorization over potentials v at cliques,

H Ye(ye)

ch (G)

Constant Z =3 oy, [[cec(q) ¥clyc)

v

o = = = z wac
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Undirected Graphical Models

» = Markov random field (MRF) = Markov . . .

network A simple MRF
Graph: G=(V,&), ECV xV

» undirected, no self-edges

v

v

Variable domains );

v

Factorization over potentials v at cliques,

H Ye(ye)

ch (G)

Constant Z =3 oy, [[cec(q) ¥clyc)
Example

v

v

PO = ZUOBa sy
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Graphical Models

Example 1

» Cliques C(G): set of vertex sets V' with V/ C V,
ENV' x V)=V xV

> Here C(G) = {{i}, {i,j}, {j}, U, k}, {k}}

>

ply) = %l/fi(yl')%/)j()’1)1/)/()’/)1/):',1'(%7)’j)

] = =
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Graphical Models

Example 2

» Here C(G) = 2V: all subsets of V are cliques
>

P(Y)Zf H Va(ya)-

Ac2{isikl}
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Factor Graphs

» Graph: G =(V,F, &), ECV X F @ @

> variable nodes V,

» factor nodes F,

> edges £ between variable and factor nodes.
» scope of a factor,

N(F)={i€eV:(i,F)e&} @ @
» Variable domains )

Factor graph

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

>

>
>
>

» Graph: G =(V,F, &), ECV X F @ @
variable nodes V/,
factor nodes F,

edges £ between variable and factor nodes.
scope of a factor,
NF)={ieV:(iF)e&} @ @

» Variable domains ;

» Factorization over potentials ¢ at factors, Factor graph

p(y) = % H VeE(yneF))

FeF

» Constant Z = Zyey HFG}' 1/1F()’N(F))

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Why factor graphs?

@v@ @vﬁ OO
@AG @Aﬁ OO

» Factor graphs are explicit about the factorization
» Hence, easier to work with

» Universal (just like MRFs and Bayesian networks)

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Capacity

O

» Factor graph defines family of distributions

» Some families are larger than others

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Four remaining pieces

1. Conditional distributions (CRFs)
2. Parameterization

Sebastian Nowozi
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Factor Graphs

Four remaining pieces

1. Conditional distributions (CRFs)

2. Parameterization

3. Test-time inference

4. Learning the model from training data

Sebastian Nowozin and Christoph H. Lampert

Part 2: Introduction to Graphical Models



Factor Graphs
0O000@000000

Factor Graphs

Conditional Distributions

» We have discussed p(y), @ @

» How do we define p(y|x)?

conditional
distribution

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Conditional Distributions

We have discussed p(y), @ @

How do we define p(y|x)?

Potentials become a function of xyr)

Partition function depends on x @ @

conditional
distribution

vV v v Y

ply) = 7 H ?/JF(YN(F))

1
p(ylx) = 709 H YE(YN(F) XN(F))
FeF
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Factor Graphs

Conditional Distributions

We have discussed p(y), @ @

>
» How do we define p(y|x)?
» Potentials become a function of xyr)
» Partition function depends on x
» Conditional random fields (CRFs) @ @
» x is not part of the probability model, i.e. not conditional
treated as random variable distribution
1
== 1T ©rmer)
FeF
p(y|x) H )
Fe]—'
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Factor Graphs

0O0000e00000

Potentials and Energy Functions

» For each factor F € F, Yr =

Xy,

iEN(F)

Er: Yni) — R,
» Potentials and energies (assume g (yr) > 0)

Ve(yF) = exp(—Er(yF)),

and  Er(yr) = —log(vr(yF))-

[m} = = = = Q>
Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Potentials and Energy Functions

» For each factor Fe F, Yr = X Y,
ieN(F)

Er: Yni) — R,
» Potentials and energies (assume g(ye) > 0)
Vr(yr) = exp(—Er(yr)), and Er(yr) = — log(vr(yF)).

» Then p(y) can be written as

(Y =y) = 3 T vrire)

FeF

= —eXP > Ee(yr)),

FeF

o = = = z wac
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Factor Graphs

Potentials and Energy Functions

» For each factor Fe F, Yr = X Y,
ieN(F)

Er: Yni) — R,
» Potentials and energies (assume g(ye) > 0)
Vr(yr) = exp(—Er(yr)), and Er(yr) = — log(vr(yF)).

» Then p(y) can be written as

(Y =y) = 3 T vrire)

FeF

= —eXP ZEF(YF

FeF

» Hence, p(y) is completely determined by E(y) = > . EF(YF)
[m] = = =

aQ >
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Factor Graphs

Energy Minimization

1
argmax p(Y =y) = argmax > exp(— Z Ee(ye))
yey yey FeF
= argmax exp(— Z Er(yr))
yey FeF
= argmax — Z Er(yre)
Y&V Fer
= argmin Z Er(yr)
Y&V Fer
= argmin E(y).

yey

» Energy minimization can be interpreted as solving for the most likely

state of some factor graph model L. B L

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Parameterization

» Factor graphs define a family of distributions

» Parameterization: identifying individual members by parameters w

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Parameterization

» Factor graphs define a family of distributions

distributions
indexed
by w

distributions
in family
o &5 = = =z < ~
Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs
Factor Graphs

00000000800

Example: Parameterization

» Image segmentation model

» Pairwise "Potts” energy function
Er(yi, yji w),

Er:{0,1} x {0,1} x R = R,
> EF(0,0;wy) = EF(1,1;w1) =0
> EF(0,1;wy) = EF(1,0;wq) = wy

image segmentation model

[m} = = = = Q>
Sebastian Nowozin and Christoph H. Lampert
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Example: Parameterization (cont)

» Image segmentation model
» Unary energy function Eg(y;; x, w),
Er:{0,1} x X x ROOL*D L R
> EF(0;x, w) = (w(0),¥r(x))
> Er(Lx,w) = (w(1),¥r(x)) image segmentation model
» Features 1r : X — RP, e.g. image
filters

o <& = =, = 9ac
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Factor Graphs

Example: Parameterization (cont)

Sebastian Nowozin and Christoph H. Lampert

duction to Graphical Models



Factor Graphs

Factor Graphs
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Example: Parameterization (cont)

- o

» Total number of parameters: D+ D +1

» Parameters are shared, but energies differ because of different 1 (x)
» General form, linear in w,

Er(yr: xe, w) = (w(yF), Yr(xF))
o (=) = E = DAy
Sebastian Nowozin and Christoph H. Lampert
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Making Predictions

» Making predictions: given x € X, predict y € )
» How to measure quality of prediction? (or function f: X — )

Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Loss function

» Define a loss function
A:YxY—R,

so that A(y, y*) measures the loss incurred by predicting y when y*
is true.

» The loss function is application dependent
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Test-time Inference

Test-time Inference

» Loss function A(y, f(x)): correct label y, predict f(x)

A:YxY—-R

Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Test-time Inference
[e]e] le]ele]e]e]e]

> Loss function A(y, f(x)): correct label y, predict f(x)

A:YxY—-R
» True joint distribution d(X, Y) and true conditional d(y|x)
» Model distribution p(y/|x)
» Expected loss: quality of prediction
RfA(X) IEywd(y\x) A(y7 f(X))

> dlyx) Aly, f(x))

yey

[m} = = = = Q>
Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Test-time Inference

v

Loss function A(y, f(x)): correct label y, predict f(x)

A:YxY—-R

v

True joint distribution d(X, Y) and true conditional d(y|x)
Model distribution p(y/|x)

v

v

Expected loss: quality of prediction

RE(X) = Eyuayin Aly, F(x))
Y dyb) Al FX))

yeY
~ Eywp(y|x;w) A(ya f(X))
» Assuming that p(y|x; w) = d(y|x)

o = = = z wac

Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Example 1: 0/1 loss

Loss 0 iff perfectly predicted, 1 otherwise:

§ . 0 ify=y"
Dos(y,y") =1y #y ):{ 1 otierw)i/se

Plugging it in,
y* = argminE 10 [Ao/l(%}/)]
y'ey
= argmax p(y'|x)
y'ey

= argmin E(y/, x).
y'ey

» Minimizing the expected 0/1-loss — MAP prediction (energy
minimization)

=} (=) = = = A

Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Example 1: 0/1 loss

Loss 0 iff perfectly predicted, 1 otherwise:

§ . 0 ify=y"
Dos(y,y") =1y #y ):{ 1 otierw)i/se

Plugging it in,
y* = argminE 10 [Ao/l(%}/)]
y'ey
= argmax p(y'|x)
y'ey

= argmin E(y/, x).
y'ey

» Minimizing the expected 0/1-loss — MAP prediction (energy
minimization)

=} (=) = = = A
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Example 2: Hamming loss

Count the number of mislabeled variables:

A ( Y,y |V|Zl(y’7éy'

iev

Plugging it in,

y* o= argminE),NpMX)[AH(%}’/)]
y'ey

= | argmax p(y/[x)
yl €Y icev

» Minimizing the expected Hamming loss — maximum posterior
marginal (MPM, Max-Marg) prediction

Sebastian Nowozin and Christoph H. Lampert
Pari troduction to Graphical Models
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Example 2: Hamming loss

Count the number of mislabeled variables:

A ( Y,y |V|Zl(y’7éy'

iev

Plugging it in,

y* o= argminE),NpMX)[AH(%}’/)]
y'ey

= | argmax p(y/[x)
yl €Y icev

» Minimizing the expected Hamming loss — maximum posterior
marginal (MPM, Max-Marg) prediction
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Example 3: Squared error

Assume a vector space on Y; (pixel intensities
optical flow vectors, etc.)
Sum of squared errors

2
Aqly,y |V|Z||y, yi Il

iev
Plugging it in

yro=

argmin By p(y 1) [Bo(y, )]

> plyi1x)yi

Y/ €Yi

icv
» Minimizing the expected squared error — minimum mean squared
error (MMSE) prediction O e - == aa
Sebastian Nowozin and Christoph H. Lampert
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Example 3: Squared error

Assume a vector space on Y; (pixel intensities
optical flow vectors, etc.)
Sum of squared errors

2
Aqly,y |V|Z||y, yi Il

iev
Plugging it in

yro=

argmin By p(y 1) [Bo(y, )]

> plyl1x)yi

Y/ €Yi

icv
» Minimizing the expected squared error — minimum mean squared
error (MMSE) prediction O e - == aa
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Inference Task: Maximum A Posteriori (MAP) Inference

Given a factor graph, parameterization, and weight vector w, and given
the observation x, find

Definition (Maximum A Posteriori (MAP) Inference)

y* =argmax p(Y = y|x,w) = argmin E(y; x, w).
yey yey

[m} = = = = Q>
Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Inference Task: Probabilistic Inference

Definition (Probabilistic Inference)

Given a factor graph, parameterization, and weight vector w, and given
the observation x, find

log Z(x, w)

log Y exp(—E(y; x, w)),

yey
pe(yr) = p(YF = yrlx, w),

VF € F,Vyr € VF.
» This typically includes variable marginals

wi(yi) = plyilx, w)

[m} = = = = Q>
Sebastian Nowozin and Christoph H. Lampert
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Example: Man-made structure detection

iy -y

v

Left: input image x,
Middle: ground truth labeling on 16-by-16 pixel blocks,
Right: factor graph model

v

v

v

Features: gradient and color histograms

v

Estimate model parameters from = 60 training images

o F = = =

Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Example: Man-made structure detection

» Left: input image x,

» Middle (probabilistic inference): visualization of the variable
marginals p(y; = “manmade”|x, w),

» Right (MAP inference): joint MAP labeling
y* = argmax,cy p(y|x, w).

o = = = = 9ac

Sebastian Nowozin and Christoph H. Lampert
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Training

Training the Model

What can be learned?
» Model structure: factors

» Model variables: observed variables fixed, but we can add
unobserved variables

» Factor energies: parameters

Sebastian Nowozin and Christoph H. Lampert
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Training

Training the Model

What can be learned?
» Model structure: factors

» Model variables: observed variables fixed, but we can add
unobserved variables

» Factor energies: parameters

Sebastian Nowozin and Christoph H. Lampert
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Training: Overview

Training
0e00

(iid) sample set

{(Xna yn)}nzl,...,N7

» Assume a fully observed, independent and identically distributed
» Goal: predict well,

(x",y") ~d(X,Y)
» Alternative goal: first model d(y|x) well by p(y|x, w), then predict
by minimizing the expected loss

CIRY- = =, =
Sebastian Nowozin and Christoph H. Lampert
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Probabilistic Learning

Problem (Probabilistic Parameter Learning)

Let d(y|x) be the (unknown) conditional distribution of labels for a
problem to be solved. For a parameterized conditional distribution
p(y|x, w) with parameters w € RP, probabilistic parameter learning is
the task of finding a point estimate of the parameter w* that makes
p(y|x, w*) closest to d(y|x).

Sebastian Nowozin and Christoph H. Lampert
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Training

Probabilistic Learning

Problem (Probabilistic Parameter Learning)

Let d(y|x) be the (unknown) conditional distribution of labels for a
problem to be solved. For a parameterized conditional distribution
p(y|x, w) with parameters w € RP, probabilistic parameter learning is
the task of finding a point estimate of the parameter w* that makes
p(y|x, w*) closest to d(y|x).

» We will discuss probabilistic parameter learning in detail.

Sebastian Nowozin and Christoph H. Lampert
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Loss-Minimizing Parameter Learning

Problem (Loss-Minimizing Parameter Learning)

Let d(x,y) be the unknown distribution of data in labels, and let

A:Y xY — R be a loss function. Loss minimizing parameter learning is
the task of finding a parameter value w* such that the expected
prediction risk

E(x,y)md(xp) [A(Y £o(X))]

is as small as possible, where f,(x) = argmax,cy, p(y|x, w*).

o> «F = =, = 9ax

Sebastian Nowozin and Christoph H. Lampert
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Training

Loss-Minimizing Parameter Learning

Problem (Loss-Minimizing Parameter Learning)

Let d(x,y) be the unknown distribution of data in labels, and let
A:Y xY — R be a loss function. Loss minimizing parameter learning is

the task of finding a parameter value w* such that the expected
prediction risk

E(x,y)md(xp) [A(Y £o(X))]

is as small as possible, where f,(x) = argmax,cy, p(y|x, w*).
» Requires loss function at training time

» Directly learns a prediction function f,(x)

[m] = = =

A
Sebastian Nowozin and Christoph H. Lampert
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