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1. Introduction
The supplementary materials contain proofs and addi-

tional explanations omitted from the main paper.

2. Proofs
Proof to Lemma 1. Every single node k constitutes a con-
nected subgraph. By setting yk = 1, yh = 0 for h 6= k a
feasible solution is obtained. All these solutions are affinely
independent. Furthermore the empty graph is also a feasible
subgraph. It follows that dim(Z) = |V |, i.e. the connected
subgraph polytope has full dimension. �

Proof to Lemma 2. First, yi ≥ 0. For each i, we construct
|V | affinely independent points in C with yi = 0. Fix i, then
one solution is obviously x = 0, the empty subgraph. Next,
for all p 6= i, obtain one solution by setting only yp = 1,
and for all j 6= p set yj = 0. Clearly, yj = 0 and the
|V | − 1 solutions thus obtained are affinely independent. In
total we have |V | solutions with yi = 0, thus yi ≥ 0 is
facet-defining.

Second, yi ≤ 1. Again let i be arbitrary. We construct
|V | affinely independent points in C with yi = 1. For this,
set yi = 1 and yj = 0 for all j 6= i. This is obviously one
solution. Now root a spanning tree in i and set one node k
at a time to yk = 1, respecting the order of the spanning
tree, i.e. the subgraph selected all nodes j with yj = 1 al-
ways remains a connected subgraph of the spanning tree.
This constructs |V | − 1 solutions, all affinely independent.
Adding the first solution yields |V | solutions in total, com-
pleting the proof. �

Proof to Theorem 2. First, the direction “is feasible” im-
plying “is connected”. Assume any given feasible y given,

hence any yi ∈ {0, 1}. If
∑

i yi ≤ 1, the resulting sub-
graph is trivially connected, hence assume

∑
i yi ≥ 2. For

arbitrary yi = 1, yj = 1, i 6= j, assume i and j are not
connected, that is (i, j) /∈ E and moreover there exist no
path on G with all vertex variables being one. Trivially, we
construct a vertex-separator set S = {k ∈ V : yk = 0}
with S ∈ S(i, j). The removal of S from V must discon-
nect i and j, as (i, j) /∈ E. However, by (3) we must have
yi + yj −

∑
k∈S yk − 1 = 2 − 0 − 1 = 1 ≤ 0, which

is clearly violated. Thus, feasibility implies connectedness.
Second, the direction “is connected” implying “is feasible”.
Take any yi = 1, yj = 1, i 6= j, and i, j connected in G by
a path starting at i and ending at j such that all intermediate
nodes k satisfy yk = 1. For all separators S ∈ S(i, j), at
least one node t of this path must satisfy t ∈ S. Therefore
yi + yj −

∑
k∈S yk − 1 ≤ yi + yj − yt − 1 = 0 ≤ 0 is

satisfied. Thus any connected subgraph is feasible. �

Proof to Theorem 3. We will prove this for any i,j ∈ V
by constructing |V | affinely independent points in C which
satisfy the inequality as equality. By [4, section 9.2.3] this
shows that the inequality is facet-defining.

For i, j ∈ V arbitrarily chosen, for any S ∈ S̄(i, j),
let S = {s1, . . . , s|S|} be the set of nodes in the essen-
tial vertex-separator set. Further let S induce a partitioning
of the graph into the set S, the connected subgraphs Pi,
Pj , containing i and j, respectively, and the connected sub-
graphs Ps connected to exactly one s ∈ S (if it is connected
to more than one s ∈ S, remove all but one edge arbitrarily).
This is shown in Figure 1.
First, we construct |Pi|+|Pj | affinely independent solutions
in C which satisfy the equality.

1. For the connected subgraph Pi, root a spanning tree in
i. Set yi = 1, yk = 0, ∀k ∈ Pi, k 6= i. For each such
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Figure 1. The separator set S induces a graph partitioning.

k ∈ Pi, enlarge the subgraph incrementally by one
node in an arbitrary ordering respecting the spanning
tree, i.e. set yk = 1. Each enlarged solution is a con-
nected subgraph of Pi and G, and affinely independent
to all previous ones and satisfied the equality.

2. Likewise, do this for Pj , starting with just yj = 1.

Next, for each s ∈ S, we construct |Ps| + 1 affinely inde-
pendent solutions satisfying the equality as follows.

1. Set yk = 1, ∀k ∈ Pi ∪ Pj , and ys = 1. This solution
is in C because S is essential and thus s connects Pi

and Pj . Construct |Ps| more solutions by building a
spanning tree for Ps, rooted in the node connected to s.
By incrementally setting yk = 1 in an order respecting
the spanning tree, |Ps| affinely independent solutions
in C are obtained.

We now consider the total number of solutions constructed.

|Pi|+ |Pj |+
∑
s∈S

(|Ps|+ 1) = |V |.

We have constructed |V | affinely independent solutions in
C satisfying the equality. Therefore, by [4, section 9.2.3],
the inequality defines a facet of conv(C). �

3. Solution Integrality
In Section 4.1 we have evaluated the solution quality of

the MRF with hard connectivity potential. Because we use
relaxations for both the marginal polytope (the LP relax-
ation), and the connected subgraph polytope (the relaxation
described by (5)), it is not a-priori clear that the solution ob-
tained will be integral. Only if it is, we have a solution to
the true, unrelaxed problem. If it is fractional, the solution
is still optimal in the relaxation, but outside the true feasible
set.

In Figure 2 we show the integrality, i.e. the fraction of
variables which are integral. The reported numbers are the
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Figure 2. Mean solution integrality of the MRF with hard connec-
tivity potential over 30 runs for varying problem parameters.

averages of 30 runs and the experimental setup is the same
as in Section 4.1.

We see that our approach is very effective: for medium
noise and edge interactions, the solution is always integral,
whereas even when there is more noise and edge interaction,
very few variables – less than 0.5% for most configurations
– become fractional.

The problems defined by the marginal polytope and the
connected subgraph polytope are both NP-hard. Hence, it
is likely that no polynomial-time approach can provide the
guaranteed optimum. In theory, a logical step within our ap-
proach would be to prove properties about the fractional so-
lutions, for example that they satisfy half-integrality or can
be rounded with optimality guarantees in order to obtain a
polynomial-time approximation algorithm. In practise, the
approach work already very well.

4. Implementation details

Separation routine. Our separation routine to find vio-
lated inequalities (5) is written in C++ and uses the boost
1.36 push-relabel maxflow solver.

MAP MRF linear program. We solve (2) using the
open-source COIN-OR Clp 1.8 solver by using the COIN-
OR Osi 0.98.2 interface.1 Instead of generating a single
constraint at a time, we use multiple pricing and add as
many violated constraints as we can find in each iteration,
usually a few thousand. The cost of re-solving the LP relax-
ation is small compared to generating constraints. Finding

1Clp is available at https://projects.coin-or.org/Clp/,
Osi at https://projects.coin-or.org/Osi/, respectively.



additional violated constraints beside the most violating one
incurs almost no additional cost.

Structured SVM. We solve (9) using the QP reformula-
tion [3] in the dual by coordinate descent, similar to [2].
Unlike there, we need to ensure differentiability of the dual
problem. Therefore, we add a small strictly convex proxi-
mal term in the primal, making it strictly convex in all vari-
ables. Strict convexity in the primal asserts dual differen-
tiability everywhere [1], allowing our simple coordinate de-
scent method to work. The advantage of the dual approach
is the ability to rapidly warm-start once violating constraints
have been found.

5. Experiments: Additional Results
Figure 3 confirms that if an object is present on an image,

in 70% of the cases there is no other object of the same
class on the image. For some classes, like aeroplane,
cat, and diningtable this is more often the case than
for classes like bottle, chair, person and sheep.
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PASCAL VOC2008 trainval, objects per image
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Figure 3. Number of objects of individual classes per image in the PASCAL VOC 2008 trainval data set.


