On Feature Combination for Multiclass Object Classification

Peter Gehler and Sebastian Nowozin

July 12, 2011
Introduction

- Images may be described using a multitude of image features,
 - shape, texture, color, ...
- Each single feature alone may not be discriminative enough to yield good performance.

- Goal: classification system
 - capable of combining different image features.
 - handles multiclass problems
Introduction

- Images may be described using a multitude of image features,
 - shape, texture, color, ...
- Each single feature alone may not be discriminative enough to yield good performance.

- Goal: classification system
 - capable of combining different image features.
 - handles multiclass problems
Feature Combinations as Kernel Combination

- Kernel learning algorithms show good performance in image classification tasks.
- Question: How to enable feature combination for kernel learning algorithms?
- Idea: Associate a separate kernel with each feature. \Rightarrow Feature combination problem becomes a kernel combination problem.
Kernel learning algorithms show good performance in image classification tasks.

Question: How to enable feature combination for kernel learning algorithms?

Idea: Associate a separate kernel with each feature.
⇒ Feature combination problem becomes a kernel combination problem.
Feature Combinations as Kernel Combination

- Kernel learning algorithms show good performance in image classification tasks.

- Question: How to enable feature combination for kernel learning algorithms?

- Idea: Associate a separate kernel with each feature. ⇒ Feature combination problem becomes a kernel combination problem.
Support Vector Machines may use a single kernel function ...

\[k(x, x'), \quad x, x' \in \mathcal{X}, \]

... a linear combination of different kernels ...

\[k(x, x') = \sum_{m=1}^{M} \beta_m k_m(x, x'), \quad \beta_m \in \mathbb{R}_+ \]

... or a product of kernels.

\[k(x, x') = \prod_{m=1}^{M} k_m(x, x') \]
Support Vector Machines may use a single kernel function \(k(x, x'), \quad x, x' \in \mathcal{X}, \)

... a linear combination of different kernels ...

\[
k(x, x') = \sum_{m=1}^{M} \beta_m k_m(x, x'), \quad \beta_m \in \mathbb{R}_+
\]

... or a product of kernels.

\[
k(x, x') = \prod_{m=1}^{M} k_m(x, x')
\]
Learning With Multiple Kernels

- Support Vector Machines may use a single kernel function...

\[k(x, x'), \quad x, x' \in \mathcal{X}, \]

- ... a linear combination of different kernels...

\[k(x, x') = \sum_{m=1}^{M} \beta_m k_m(x, x'), \quad \beta_m \in \mathbb{R}_+ \]

- ... or a product of kernels.

\[k(x, x') = \prod_{m=1}^{M} k_m(x, x') \]
SVM \rightarrow Multiple Kernel Learning (MKL)

- SVM: single kernel k
- MKL: set of kernels $\{k_1, \ldots, k_M\}$
 - learn classifier and combination weights β
 - can be cast as a convex optimization problem

\[
f(x) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(x, x_i), \quad \sum_{m=1}^{M} \beta_m = 1
\]
SVM → Multiple Kernel Learning (MKL)

- SVM: single kernel k
- MKL: set of kernels $\{k_1, \ldots, k_M\}$
 - learn classifier and combination weights β
 - can be cast as a convex optimization problem

$$f(x) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(x, x_i), \quad \sum_{m=1}^{M} \beta_m = 1$$
Remarks about MKL

- Special case: average ($\beta_m = \frac{1}{M}$) (no learning of β.)
- It is possible to use infinitely many kernels. Argyriou et.al. COLT05, Gehler&Nowozin, CVPR09

- Different MKL formulations have been proposed:
 1. Lankriet et.al. JMLR04
 2. Sonnenburg et.al JMLR06 (variant of regularization)
 3. Varma&Ray ICCV07 (extra regularization term $\sigma \|\beta\|$)
- All formulations are equivalent!
 - Zien&Ong ICML07, Kloft et.al. NIPS09
Remarks about MKL

- Special case: average ($\beta_m = \frac{1}{M}$) (no learning of β.)
- It is possible to use infinitely many kernels.
 Argyriou et.al. COLT05, Gehler&Nowozin, CVPR09

- Different MKL formulations have been proposed:
 1. Lankriet et.al. JMLR04
 2. Sonnenburg et.al JMLR06 (variant of regularization)
 3. Varma&Ray ICCV07 (extra regularization term $\sigma ||\beta||$)

- All formulations are equivalent!
 - Zien&Ong ICML07, Kloft et.al. NIPS09
Remarks about MKL

- Special case: average ($\beta_m = \frac{1}{M}$) (no learning of β.)
- It is possible to use infinitely many kernels.
 Argyriou et.al. COLT05, Gehler&Nowozin, CVPR09

- Different MKL formulations have been proposed:
 1. Lankriet et.al. JMLR04
 2. Sonnenburg et.al JMLR06 (variant of regularization)
 3. Varma&Ray ICCV07 (extra regularization term $\sigma||\beta||$)

- All formulations are equivalent!
 - Zien&Ong ICML07, Kloft et.al. NIPS09
MKL classification function

\[f(x) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(x, x_i), \quad \sum_{m=1}^{M} \beta_m = 1 \]

- Convex combination of SVMs all of which share the same parameters.
- A support vector \(x_i \) must be representative w.r.t. all kernels
- Idea: combine separate SVMs

\[f(x) = \sum_{m=1}^{M} \beta_m f_m(x), \quad \sum_{m=1}^{M} \beta_m = 1 \]
MKL classification function

\[f(x) = \sum_{m=1}^{M} \beta_m \sum_{i=1}^{N} \alpha_i k_m(x, x_i), \quad \sum_{m=1}^{M} \beta_m = 1 \]

- Convex combination of SVMs all of which share the same parameters.
- A support vector \(x_i \) must be representative w.r.t. all kernels
- Idea: combine separate SVMs

\[f(x) = \sum_{m=1}^{M} \beta_m f_m(x), \quad \sum_{m=1}^{M} \beta_m = 1 \]
Multiclass ν-LP-Boost: LP-β and LP-B

- **Multiclass extension of Linear-Program-Boosting**
 Demiriz et.al. ML02, Weston&Watkins,ESANN99
- **LP-β**: mixing weights for all classes *jointly* - $\beta \in [0, 1]^M$
- **LP-B**: mixing weights for each class *separately* - $B \in [0, 1]^{MC}$

\[
\begin{align*}
\min_{\beta, \xi, \rho} & \quad -\rho + \frac{1}{\nu n} \sum_{i=1}^{N} \xi_i \\
\text{sb.t.} & \quad \sum_{m=1}^{M} \beta_m f_{m,y_i}(x_i) - \max_{y_j \neq y_i} \sum_{m=1}^{M} \beta_m f_{m,y_j}(x_i) + \xi_i \geq \rho, \forall i \\
& \quad \sum_{m=1}^{M} \beta_m = 1, \quad \beta_m \geq 0, \forall m \\
& \quad \xi_i \geq 0, \quad \forall i.
\end{align*}
\]
Multiclass ν-LP-Boost: LP-β and LP-B

- Multiclass extension of Linear-Program-Boosting
 - Demiriz et.al. ML02, Weston&Watkins, ESANN99
- LP-β: mixing weights for all classes jointly - $\beta \in [0, 1]^M$
- LP-B: mixing weights for each class separately - $B \in [0, 1]^{MC}$

$$\begin{align*}
\min_{B,\xi,\rho} & \quad -\rho + \frac{1}{\nu n} \sum_{i=1}^{N} \xi_i \\
\text{sbt.} & \quad \sum_{m=1}^{M} B_{m}^{y_i} f_{m,y_i}(x_i) - \max_{y_j \neq y_i} \sum_{m=1}^{M} B_{m}^{y_j} f_{m,y_j}(x_i) + \xi_i \geq \rho, \forall i \\
& \quad \sum_{m=1}^{M} B_{m}^{c} = 1, \quad B_{m}^{c} \geq 0, \forall m, c \\
& \quad \xi_i \geq 0, \quad \forall i.
\end{align*}$$
Ideally: train jointly - but limited data available.

- 2-stage training procedure:
 1. Train each one-versus-rest SVM f_m separately.
 2. Obtain Cross-Validation scores for all SVMs f_1, \ldots, f_M.
 3. Train LP-β, LP-B on Cross-Validation scores.

- Less principled, but effective.
- Small number of parameters β allows for true multiclass learning.
LP-Boosting training

Ideally: train jointly - but limited data available.

- 2-stage training procedure:
 1. Train each one-versus-rest SVM f_m separately.
 2. Obtain Cross-Validation scores for all SVMs f_1, \ldots, f_M.
 3. Train LP-β, LP-B on Cross-Validation scores.

- Less principled, but effective.
- Small number of parameters β allows for true multiclass learning
Flower Classification: Dataset

- 17 types of flowers - 80 images per class
- 7 different precomputed kernels
- Data from Nilsback & Zissermann CVPR06
Flower Classification: Results

<table>
<thead>
<tr>
<th>Single feature</th>
<th>Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>Method</td>
</tr>
<tr>
<td>Colour</td>
<td>product</td>
</tr>
<tr>
<td>Shape</td>
<td>averaging</td>
</tr>
<tr>
<td>Texture</td>
<td>MKL</td>
</tr>
<tr>
<td>HOG</td>
<td>LP-β</td>
</tr>
<tr>
<td>HSV</td>
<td>LP-B</td>
</tr>
<tr>
<td>siftint</td>
<td></td>
</tr>
<tr>
<td>siftbdy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Accuracy</th>
<th>Time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colour product averaging MKL LP-β LP-B</td>
<td>85.5 ± 1.2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>84.9 ± 1.9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>85.2 ± 1.5</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>85.5 ± 3.0</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>85.4 ± 2.4</td>
<td>98</td>
</tr>
</tbody>
</table>

- Combination of features improves performance.
- All combination methods perform equally well.
- Time - combined time for model selection, training and testing
Flower Classification: Results

<table>
<thead>
<tr>
<th>Single feature</th>
<th>Combinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernel</td>
<td>Method</td>
</tr>
<tr>
<td>Colour</td>
<td>product</td>
</tr>
<tr>
<td>Shape</td>
<td>averaging</td>
</tr>
<tr>
<td>Texture</td>
<td>MKL</td>
</tr>
<tr>
<td>HOG</td>
<td>LP-β</td>
</tr>
<tr>
<td>HSV</td>
<td>LP-B</td>
</tr>
<tr>
<td>siftint</td>
<td></td>
</tr>
<tr>
<td>siftbdy</td>
<td></td>
</tr>
</tbody>
</table>

- Combination of features improves performance.
- All combination methods perform equally well.
- Time - combined time for model selection, training and testing
Flower Classification: Adding uninformative kernels

Adding more and more kernels computed on pure noise

In this scenario sparse kernel selection is useful.
Flower Classification: Adding uninformative kernels

Adding more and more kernels computed on pure noise

In this scenario sparse kernel selection is useful.
Visual Object Classification: Caltech 101/256

102/256 categories of visual object categories
Visual Object classification: Image Features

- Histogram of SIFTs
- PHOG Bosch et.al. CIVR07
- LBP Ojala et.al. PAMI02
- Region Covariance Tuzel et.al. CPVR07
- V1S Pinto et.al. PLOS08

- ... and spatial pyramid representation (4 levels)
Visual Object classification: Results on Caltech 101

Two scenarios:
1. Combining similar features
2. Combining diverse features

Performance with respect to best single feature

similar: almost no gain diverse: combination helps

Peter Gehler and Sebastian Nowozin
On Feature Combination for Multiclass Object Classification
Visual Object classification: Results on Caltech 101

Two scenarios:
1. Combining similar features
2. Combining diverse features

Performance with respect to best single feature

similar: almost no gain
diverse: combination helps
No significant improvement of MKL over baselines

LP−β yields sparse mixing weights for all classes (7 out of 39)
Caltech 101/256 comparison

- Over 10% improvement using LP-β
- Latest LP-β results \(\approx +5\% \) after adding more features

Vedaldi&Fulkerson www.vlfeat.org
Conclusion

- Kernel combinations can improve performance, thanks to strong features!
 - Expect performance gain if combining diverse features.
 - If in doubt: average strong features - simple and efficient.
 - In presence of uninformative kernels use selection techniques.
- MKL not as effective as may have been thought, ⇒ use proper model selection instead!
- For example LP-\(\beta\) : multiclass, sparse, easily expandable and simple.
- Code and Data available at www.ee.ethz.ch/~pgeehler
- Thanks to C. Lampert and N. Pinto
Conclusion

- Kernel combinations can improve performance, thanks to strong features!
 - Expect performance gain if combining diverse features.
 - If in doubt: average strong features - simple and efficient.
 - In presence of uninformative kernels use selection techniques.

- MKL not as effective as may have been thought,
 ⇒ use proper model selection instead!

- For example LP-β : multiclass, sparse, easily expandable and simple.

- Code and Data available at www.ee.ethz.ch/~pgehler
- Thanks to C. Lampert and N. Pinto
Conclusion

- Kernel combinations can improve performance, thanks to strong features!
 - Expect performance gain if combining diverse features.
 - If in doubt: average strong features - simple and efficient.
 - In presence of uninformative kernels use selection techniques.
- MKL not as effective as may have been thought, ⇒ use proper model selection instead!
- For example LP-β: multiclass, sparse, easily expandable and simple.
- Code and Data available at www.ee.ethz.ch/~pgehler
- Thanks to C. Lampert and N. Pinto