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Abstract

Recently there has been an increased inter-
est in unsupervised learning of disentangled
representations using the Variational Autoen-
coder (VAE) framework. Most of the existing
work has focused largely on modifying the
variational cost function to achieve this goal.
We first show that these modifications, e.g.
β-VAE, simplify the tendency of variational
inference to underfit causing pathological over-
pruning and over-orthogonalization of learned
components. Second we propose a comple-
mentary approach: to modify the probabilis-
tic model with a structured latent prior. This
prior allows to discover latent variable repre-
sentations that are structured into a hierarchy
of independent vector spaces. The proposed
prior has three major advantages: First, in
contrast to the standard VAE normal prior the
proposed prior is not rotationally invariant.
This resolves the problem of unidentifiability
of the standard VAE normal prior. Second,
we demonstrate that the proposed prior en-
courages a disentangled latent representation
which facilitates learning of disentangled rep-
resentations. Third, extensive quantitative
experiments demonstrate that the prior signif-
icantly mitigates the trade-off between recon-
struction loss and disentanglement over the
state of the art.

1 Introduction

Recently there has been an increased interest in unsu-
pervised learning of disentangled representations. The
term disentangled usually describes two main objec-
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tives: First, to identify each true factor of variation with
a latent variable, and second, interpretability of these
latent factors (Schmidhuber, 1992; Ridgeway, 2016;
Achille and Soatto, 2017). Most of this recent work is
inspired by the β-VAE concept introduced in Higgins
et al. (2016), which proposes to re-weight the terms in
the evidence lower bound (ELBO) objective. In Higgins
et al. (2016) a higher weight for the Kullback-Leibler
divergence (KL) between approximate posterior and
prior is proposed, and putative mechanistic explana-
tions for the effects of this modification are studied
in Burgess et al. (2017) and Chen et al. (2018). Two
recent approaches, Kim and Mnih (2018) and Chen
et al. (2018), propose to penalize the total correlation
between the dimensions of the latent representation,
therefore encouraging a factorized distribution.

These modifications of the evidence lower bound how-
ever lead to a trade-off between disentanglement and
reconstruction loss and therefore the quality of the
learned model. This trade-off is directly encoded in the
modified objective: by increasing the β-weight of the
KL-term, the relative weight of the reconstruction loss
term is more and more decreased. Therefore, optimiza-
tion of the modified ELBO will lead to latent encodings
which have a lower KL-divergence from the prior, but
at the same time lead to a higher reconstruction loss.
Furthermore, we discuss in section 2.4 that using a
higher weight for the KL-term amplifies existing biases
of variational inference, potentially to a catastrophic
extent.

There is a foundational contradiction in many ap-
proaches to disentangling deep generative models
(DGMs): the standard model employed is not iden-
tifiable as it employs a standard normal prior which
then undergoes a linear transformation. Any rotation
of the latent space can be absorbed into the linear trans-
form and is therefore statistically indistinguishable. If
interpretability is desired, the modelling choices are
setting us up to fail.

1 Work done while at Microsoft Research.
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We make the following contributions:

• We show that current state of the art approaches
based on modified cost functions employ a trade-off
between reconstruction loss and disentanglement
of the latent representation.

• In section 2.3 we show that variational inference
techniques are biased: the estimated components
are biased towards having orthogonal effects on
the data and the number of components is under-
estimated.

• We provide a novel description of the origin of
disentanglement in β-VAE and demonstrate in
section 2.4 that increasing the weight of the KL
term increases the over-pruning bias of variational
inference.

• To mitigate these drawbacks of existing ap-
proaches, we propose a family of rotationally asym-
metric distributions for the latent prior, which
removes the rotational ambiguity from the model.

• The prior allows to decompose the latent space into
independent subspaces. Experiments demonstrate
that this prior facilitates disentangled representa-
tions even for the unmodified ELBO objective.

• Extensive quantitative experiments demonstrate
that the prior significantly mitigates the trade-
off between disentanglement and reconstruction
quality.

2 Background

We briefly discuss previous work on variational infer-
ence in deep generative models and two modifications
of the learning objective that have been proposed to
learn a disentangled representation. We discuss char-
acteristic biases of variational inference and how the
modifications of the learning objective actually accen-
tuate these biases.

2.1 Disentangled Representation Learning

Variational Autoencoder The variational autoen-
coder introduced in Kingma and Welling (2014) com-
bines a generative model, the decoder, with an inference
network, the encoder. Training is performed by op-
timizing the evidence lower bound (ELBO) averaged
over the empirical distribution:

LELBO = Eqφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x)‖p(z)) , (1)

where the decoder pθ(x|z) is a deep learning model
with parameters θ and z is sampled from the encoder
z ∼ qφ(z|x) with variational parameters φ. When

choosing appropriate families of distributions, gradients
through the samples z can be estimated using the
reparameterization trick. The approximate posterior
qφ(z|x) is usually modelled as a multivariate Gaussian
with diagonal covariance matrix and the prior p(z) is
typically the standard normal distribution.

β-VAE Higgins et al. (2016) propose to modify the
evidence lower bound objective and penalize the KL-
divergence of the ELBO:

Lβ-ELBO = Eqφ(z|x) [log pθ(x|z)]− βDKL(qφ(z|x)‖p(z)),

(2)

where β > 1 is a free parameter that should encourage
a disentangled representation. In Burgess et al. (2017)
the authors provide further thoughts on the mecha-
nism that leads to these disentangled representations.
However we will show in section 2.4 that this param-
eter amplifies biases of variational inference towards
orthogonalization and pruning.

β-TCVAE Chen et al. (2018) propose an alternative
decomposition of the ELBO, that leads to the recent
variant of β-VAE called β-TCVAE. They demonstrate
that β-TCVAE allows to learn representations with
higher MIG score than β-VAE (Higgins et al., 2016),
InfoGAN (Chen et al., 2016) and FactorVAE (Kim and
Mnih, 2018). The authors propose to decompose the
KL-term in the ELBO objective into three parts and
to weight them independently:

Epθ(x) [DKL(qφ(z|x)‖p(z))] =

= DKL(qφ(z|x)‖qφ(z)pθ(x))+

+DKL(qφ(z)‖
∏
j

qφ(zj))+

+
∑
j

DKL(qφ(zj)‖p(zj)) . (3)

The first term is the index-code mutual information,
the second term is the total correlation and the third
term the dimension-wise KL-divergence. Because the
index-code mutual information can be viewed as an
estimator for the mutual information between pθ(x)
and qφ(z), the authors propose to exclude this term
when reweighting the KL-term with the β weight. In
addition to the improved objective, the authors propose
a quantitative metric of disentanglement, the mutual
information gap (MIG). To compute this metric, first
the mutual information between every latent variable
and the underlying generative factors of the dataset are
evaluated. The mutual information gap is then defined
as the difference of the mutual information between
the latent variables with highest and second highest
correlation with an underlying factor.
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(a) Sparse student’s t-distribution
generated by three latent

components.

(b) Variational inference
with β = 1.0.

(c) Variational inference
with β = 5.0.

Figure 1: The modified ELBO of β-VAE emphasizes orthogonalization and pruning with increasing β-weight

2.2 Related Work

In addition to the work mentioned already, we briefly re-
view some of the influential papers: Chen et al. (2016)
present a variant of a GAN that encourages an in-
terpretable latent representation by maximizing the
mutual information between the observation and a
small subset of latent variables. The approach relies
on optimizing a lower bound of the intractable mu-
tual information. Kim and Mnih (2018) propose a
learning objective equivalent to β-TCVAE, and train
it with the density ratio trick (Sugiyama et al., 2012).
Kumar et al. (2017) introduce a regulariser of the KL-
divergence between the approximate posterior and the
prior distribution. A parallel line of research proposes
not to train a perfect generative model but instead to
find a simpler representation of the data (Vedantam
et al., 2017; Hinton et al., 2011a). A similar strategy
is followed in semi-supervised approaches that require
implicit or explicit knowledge about the true underly-
ing factors of the data (Kulkarni et al., 2015; Kingma
et al., 2014; Reed et al., 2014; Baydin et al., 2017;
Hinton et al., 2011b; Zhu et al., 2017; Goroshin et al.,
2015; Hsu et al., 2017; Denton et al., 2017). Existing
work on structured priors for VAEs, the VAMP prior
by Tomczak and Welling (2017) and the LORACs prior
by Vikram et al. (2018), are modelling a clustered la-
tent space. In our work however we introduce a prior
which is a latent subspace model. The recent work
of Locatello et al. (2019) challenges the whole field of
unsupervised representation learning and presents a
proof of unidentifiability of the latent representation.
We want to emphasize however, that the proof pre-
sented in Locatello et al. (2019) only holds for priors
that factorize over every latent dimension. A property
which does not hold for the prior proposed in this work.

2.3 Orthogonalization and Pruning in
Variational Inference

There have been several interpretations of the be-
haviour of the β-VAE (Chen et al., 2018; Burgess et al.,

2017; Rolinek et al., 2019). Here we provide a com-
plementary perspective: that it enhances well known
statistical biases in VI (Turner and Sahani, 2011) to
produce disentangled, but not necessarily useful, repre-
sentations. The form of these biases can be understood
by considering the variational objective when written
as an explicit lower-bound: the log-likelihood of the
parameters minus the KL divergence between the ap-
proximate posterior and the true posterior

LELBO = log pθ(x)−DKL(qφ(z|x)‖pθ(z|x)) . (4)

From this form it is clear that VI’s estimates of the
parameters θ will be biased away from the maximum
likelihood solution (the maximizer of the first term) in
a direction that reduces the KL between the approx-
imate and true posteriors. When factorized approx-
imating distributions are used, VI will therefore be
biased towards settings of the parameters that reduce
the statistical dependence between the latent variables
in the posterior. For example, this will bias learned
components towards orthogonal directions in the out-
put space as this reduces explaining away (e.g. in the
factor analysis model, VI breaks the degeneracy of the
maximum-likelihood solution finding the orthogonal
PCA directions, see appendix B.8). Moreover, these
biases often cause components to be pruned out (in the
sense that they have no effect on the observed variables)
since then their posterior sits at the prior, which is typi-
cally factorized (e.g. in an over-complete factor analysis
model VI prunes out components to return a complete
model, see appendix B.8). For simple linear models
these effects are not pathological: indeed VI is arguably
selecting from amongst the degenerate maximum like-
lihood solutions in a sensible way. However, for more
complex models the biases are more severe: often the
true posterior of the underlying model has significant
dependencies (e.g. due to explaining away) and the
biases can prevent the discovery of some components.
For example, VAEs are known to over-prune (Burda
et al., 2015; Cremer et al., 2018).
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Figure 2: Iso-contours of the Lp-nested function exam-
ple in equation 6 for combinations of p0, p1 ∈ {1, 2, 9}.

2.4 β-VAE Emphasizes Orthogonalization
and Pruning

What happens to these biases in the β-VAE general-
ization when β > 1? The short answer is that they
grow. This can be understood by considering coordi-
nate ascent of the modified objective. With θ fixed,
optimising q finds a solution that is closer to the prior
distribution than VI due to the upweighting of the KL
term in 2. With q fixed, optimization over θ returns the
same solution as VI (since the prior does not depend
on the parameters θ and so the value of β is irrelevant).
However, since q is now closer to the prior than before,
the KL bias in equation 2 will be greater. These effects
are shown in the ICA example in figure 1. Also refer
to appendix B.8 for further details. VI (β = 1) learns
components that are more orthogonal than the underly-
ing ones, but β = 5 prunes out one component entirely
and sets the other two to be orthogonal. This is disen-
tangled, but arguably leads to incorrect interpretation
of the data. This happens even though both methods
are initialised at the true model. Arguably, the β-VAE
is enhancing a statistical bug in VI and leveraging this
as a feature. We believe that this can be dangerous,
preventing the discovery of the underlying model.

3 Latent Prior Distributions for
Unsupervised Factorization

In this section we describe an approach for unsuper-
vised learning of disentangled representations. Instead
of modifying the ELBO-objective, we propose to use

certain families of prior distributions p(z), that lead
to identifiable and interpretable models. In contrast
to the standard normal distribution, the proposed pri-
ors are not rotationally invariant, and therefore allow
interpretability of the latent space.

3.1 Independent Component Analysis

Independent Component Analysis (ICA) seeks to
factorize a distribution into non-Gaussian factors. In
order to avoid the ambiguities of latent space rotations,
a non-Gaussian distribution (e.g. Laplace or Student-t
distribution) is used as prior for the latent variables.

Generalized Gaussian Distribution A general-
ized version of ICA (Lee and Lewicki, 2000; Zhang
et al., 2004; Lewicki, 2002; Sinz and Bethge, 2010) uses
a prior from the family of exponential power distribu-
tions of the form

pICA(z) ∝ exp
(
−τ ||z||pp

)
(5)

also called generalized Gaussian, generalized Lapla-
cian or p-generalized normal distribution. Using p =
2/(1+κ) the parameter κ is a measure of kurtosis (Box
and Tiao, 1973). This family of distributions gener-
alizes the normal (κ = 0) and the Laplacian (κ = 1)
distribution. In general we get for κ > 0 leptokurtic
and for κ < 0 platykurtic distributions. The choice of
a leptokurtic or platykurtic distribution has a strong
influence on how a generative factor of the data is
represented by a latent dimension. Fig. 3 depicts two
possible prior distributions over latents that represent
the (x,y) spatial location of a sprite in the dSprites
dataset (Matthey et al., 2017). The leptokurtic distri-
bution expects most of the probability mass around
0 and therefore favours a projection of the x and y
coordinates, which are distributed in a square, onto the
diagonal. The platykurtic prior is closer to a uniform
distribution and therefore encourages an axis-aligned
representation. This example shows how the choice
of the prior will effect the latent representation. Ob-
viously the normal distribution is a special instance
of the class of Lp-spherically symmetric distributions,
and the normal distribution is the only L2-spherically
symmetric distribution with independent marginals.
Equivalently (Sinz et al., 2009a) showed that this also
generalizes to arbitrary values of p. The marginals
of the p-generalized normal distribution are indepen-
dent, and it is the only factorial model in the class of
Lp-spherically symmetric distributions.

3.2 Independent Subspace Analysis

ICA can be further generalized to include independence
between subspaces, but dependencies within them, by
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(a) p = 1.0
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Figure 3: Leptokurtic and platykurtic priors encourage different orientations of the encoding of the (x,y) location of
a sprite in the dSprites dataset. A leptokurtic distribution (here the Laplace distribution) has, in two dimensions,
contour lines along diagonal directions and expects most of the probability mass around 0. Because the (x,y)
locations in dSprites are distributed in a square, the projection of the coordinates onto the diagonal fits better to
the Laplace prior. A platykurtic distribution however is more similar to a uniform distribution, with axis aligned
contour lines in two dimensions. This fits better to an orthogonal projection of the (x,y) location. The red and
blue colour coding denotes the value of the latent variable for the respective (x,y) location of a sprite.

using a more general prior, the family of Lp-nested
symmetric distributions (Hyvärinen and Hoyer, 2000;
Hyvärinen and Köster, 2007; Sinz et al., 2009b; Sinz
and Bethge, 2010).

Lp-nested Function To start, we take a look at a
simple example of an Lp-nested function:(

|z1|p0 + (|z2|p1 + |z3|p1)
p0
p1

) 1
p0
, (6)

with p0, p1 ∈ R. This function is a cascade of two
Lp-norms. To aid intuition we provide a visualization
of this distribution in figure 4a, which depicts (6) as a
tree that visualizes the nested structure of the norms.
figure 2 visualizes the iso-contours of this function for
different values of p0 and p1. We call the class of
functions which employ this structure Lp-nested.

Lp-nested Distribution Given an Lp-nested func-
tion f and a radial density ψ0 : R 7→ R+ we define the
Lp-nested symmetric distribution following Fernandez
et al. (1995) as

pISA(z) =
ψ0(f(z))

f(z)n−1Sf (1)
, (7)

where Sf (1) is the surface area of the Lp-nested unit-
sphere. This surface area can be obtained by using the
gamma function:

Sf (R) = Rn−12n
∏
i∈I

∏l1
k=1 Γ

[
ni,k
pi

]
pli−1i Γ

[
ni
pi

] , (8)

where li is the number of children of a node i, ni is
the number of leaves in a subtree under the node i,
and ni,k is the number of leaves in the subtree of the
k-th children of node i. For further details we refer the
reader to the excellent work of Sinz and Bethge (2010).

Independent Subspace Analysis The family of
Lp-nested distributions allows a generalization of ICA
called independent subspace analysis (ISA). ISA uses a
subclass of Lp-nested distributions, which are defined
by functions of the form

f(z) =

( n1∑
j=1

|zj |p1
) p0
p1

+ . . .

· · ·+

 n∑
j=n1+···+nl−1+1

|zj |pl

p0
pl


1
p0

, (9)

and correspond to trees of depth two. The tree struc-
ture of this subclass of functions is visualized in fig-
ure 4b where each vi, i = 1, . . . , l0 denotes the function
value of the Lp-norm evaluated over a node’s children.
The components zj of z that contribute to each vi form
a subspace

Vi =

{
zj

∣∣∣ j = a . . . b with a =

i−1∑
k=1

nk + 1, b = a+ ni

}
.

(10)

The subspaces V1, . . . ,Vl0 become independent when
using the radial distribution (Sinz and Bethge, 2010)

ψ0(v0) =
p0v

n−1
0

Γ
[
n
p0

]
s
n
p0

exp

(
−v

p0
0

s

)
. (11)

We can interpret this as a generalization of the Chi-
distribution: it is the radial distribution of an Lp-
nested distribution that becomes equivalent to the Chi-
distribution in the case of an L2-spherically symmetric
(Gaussian) distribution.

ISA-VAE We propose to choose the latent prior
pISA(z) (Eq. 7) with f(z) from the family of ISA
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(b) Tree visualization of Eq. 9, an Lp-nested ISA model.

Figure 4: Tree representation of Lp-nested distributions. a) Tree of the example provided in Eq. 6. b) Tree
corresponding to an Lp-nested ISA model.

models of the form of Eq. 9, which allows us to de-
fine independent subspaces in the latent space.2 The
Kulback-Leibler divergence of the ELBO-objective can
be estimated by Monte-Carlo sampling. This leads to
an ELBO-objective of the form

LISA-VAE =Ez∼qφ(z|x) [log pθ(x|z)−
−β (log qφ (z|x)− log pISA (z))] , (12)

which only requires to compute the log-density of the
prior that is readily accessible from the density de-
fined in Eq. 7. As discussed in Roeder et al. (2017)
this form of the ELBO even has potential advantages
(variance reduction) in comparison to a closed form
KL-divergence.

Sampling and the Reparameterization Trick If
we want to sample from the generative model we have
to be able to sample from the prior distribution. Sinz
and Bethge (2010) describe an exact sampling approach
to sample from an Lp-nested distribution, which we
reproduce as Algorithm 1 in the appendix. Note that
during training we only have to sample from the approx-
imate posterior qφ, which we do not have to modify and
which can remain a multivariate Gaussian distribution
following the original VAE approach. As a consequence,
the reparameterization trick can be applied (Kingma
and Welling, 2014).

Experiments in the following section demonstrate that
the proposed prior supports unsupervised learning of
disentangled representation even for the unmodified
ELBO objective (β = 1).

4 Experiments

In our experiments, we evaluate the influence of the
proposed prior distribution on disentanglement and
on the quality of the reconstruction on the dSprites
dataset (Matthey et al., 2017), which contains images
of three different shapes undergoing transformations of

2Independend of this work, Higgins et al. (2018) recently
proposed to use independent vector subspaces as latent
representations to define a new notion of disentanglement.

their position (32 different positions in x and 32 differ-
ent positions in y), scale (6) and rotation (40), and on
the dataset 3D Faces (Paysan et al., 2009) that was also
used for evaluation in Chen et al. (2016), which con-
sists of synthetic images of faces with the latent factors
azimut (21), elevation (11) and lighting (11). Further
we present results on the cars3d dataset (Reed et al.,
2015). We follow the same procedure as in Locatello
et al. (2019) and perform an extensive evaluation with
50 experiments for each parameter setting, resulting in
a total number of 1280 experiments.3

Disentanglement Metrics To provide a quantita-
tive evaluation of disentanglement we compute the dis-
entanglement metric Mutual Information Gap (MIG)
that was proposed in Chen et al. (2018). The MIG
score measures how much mutual information a latent
dimension shares with the underlying factor, and how
well this latent dimension is separated from the other
latent factors. Therefore the MIG measures the two
desired properties usually referred to with the term dis-
entanglement : a factorized latent representation, and
interpretability of the latent factors. Chen et al. (2018)
compare the MIG metric to existing disentanglement
metrics (Higgins et al., 2016; Kim and Mnih, 2018) and
demonstrate that the MIG is more effective and that
other metrics do not allow to capture both properties
in a desirable way.

Reconstruction Quality To quantify the recon-
struction quality, we report the expected log-likelihood
of the reconstructed data Eqφ(z|x) [log pθ(x|z)]. In our
opinion this measure is more informative than the
ELBO, frequently reported in existing work, e.g. Chen
et al. (2018), especially when varying the β parameter,
the weighting of the KL term, which is part of the
ELBO and therefore affects its value.

Comparison Baselines Chen et al. (2018) demon-
strate that β-TCVAE, a modification of the β-VAE,
enables learning of representations with higher disen-

3Source code to repoduce our experiments is available
at https://github.com/microsoft/isa-vae
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Figure 5: Comparison of the different approaches for different values of β. (a) The proposed prior facilitates
disentanglement, as demonstrated when comparing it to the standard normal prior when using the unmodified
ELBO (β = 1.0). (b), (c) Scatter plots of MIG-score (higher score is better) and reconstruction quality (larger
values to the right are better)/ Results for lower β and better reconstruction quality are on the right. Error bars
denote the standard error. The proposed approach ISA-VAE allows a better trade-off between disentanglement and
reconstruction quality, often outperforming β-VAE and β-TCVAE with respect to MIG score and reconstruction
loss on both datasets. (b) On dSprites the baselines reach better MIG scores only for models with poor
reconstruction quality. (c) Learning the exponents allows to improve the trade-off between disentanglement and
reconstruction loss even further, clearly outperforming the baselines for the unmodefied objective β = 1.0 and for
β = 0.5. Layout of the ISA model: l0 = 5, l1,...,5 = 4.

tanglement score than β-VAE (Higgins et al., 2016),
InfoGAN (Chen et al., 2016), and FactorVAE (Kim
and Mnih, 2018). Therefore we choose β-TCVAE as
a baseline for comparison and also compare against
β-VAE (Higgins et al., 2016) which for β = 1 includes
the standard VAE with normal prior. To allow a quan-
titiative comparison with exisiting work we evaluate
on the datasets dSprites Matthey et al. (2017) and
3D Faces (Paysan et al., 2009) that were already used
in Chen et al. (2016).

Architecture of the Encoder and Decoder To
allow a quantitative comparison with existing work and
reproducible results we use the same architecture for
the decoder and encoder as presented in Chen et al.
(2018). We reproduce the description of the encoder
and decoder in appendix A.4

Choosing the ISA-layout In our experience the
layout only needs to provide sufficiently many indepen-
dent vector spaces for learning the representations. If
more than the required latent dimensions are provided,
unused latent dimensions are usually pruned away.

Choosing the Exponents As we previously dis-
cussed in section 3.1 it is important if the prior is
leptokurtic or platykurtic. For p0 we chose the value
p0 = 2.1, which results in a platykurtic prior for the
distribution over the subspaces, which leads to a rota-
tionally invariant prior. For simplicity, we choose the

same exponent p1 for all the subspaces. For dSprites,
a platykurtic distribution fits best to the desired orien-
tation of the x- and y-coordinate (Compare to Fig. 3).
To allow a factorized distribution the exponent has to
be different to p0, thus we chose p1 = 2.2. On the 3D
faces dataset a leptokyrtic distribution with p1 = 1.9
provided better results than a platykurtic distribution.

Learning the Exponents Instead of choosing a
fixed set of exponents, the exponents can also be learned
during training. We use the modified ELBO as objec-
tive function and optimize encoder, decoder, and the
exponents of the prior at the same time. We keep
p0 = 2.1 fixed and, beginning from p1,...,k = 2.0 opti-
mize the exponent of each subspace individually. Inter-
estingly, optimizing the exponents during training al-
lows to improve the trade-off between disentanglement
and reconstruction loss even further. We report results
on learning the exponents on the 3D faces dataset in
Fig. 5c (15 experiments per beta value) and on the
cars3d dataset (Reed et al., 2015) in Fig. 6 (35 ex-
periments per beta value). Histograms of the learnt
exponents are shown in appendix A.2.

Hyperparameters To allow reproducibility and a
comparison of our results we chose the same hyperpa-
rameters as in Chen et al. (2018) and Locatello et al.
(2019). We present a table with the evaluated hyper-
parameters in appendix A.3.
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Figure 6: Comparison on the cars3d dataset. Scatter
plot of MIG-score (higher score is better) and recon-
struction quality (larger values to the right are better).
Error bars denote the standard error. For the unmodi-
fied ELBO (beta=1, rightmost data points), ISA-VAE
with learned exponents outperforms β-VAE with re-
spect to the MIG score. These results confirm that
the prior facilitates disentangled representations. This
advantage however decreases for larger beta values.

4.1 Support of the Prior to Learn
Disentangled Representations

First, we investigate the ability of the prior to support
unsupervised learning of disentangled representations
for the unmodified ELBO-objective (β = 1) and com-
pare the distribution of MIG scores that can be reached
with ISA-VAE and the standard VAE in Fig. 5a. We
perform n = 50 experiments each. We observe a higher
mean, median and maximum quantile of disentangle-
ment scores for ISA-VAE which indicates that the prior
facilitates to learn interpretable representations even
when using the unmodified ELBO objective with β = 1.

4.2 Trade-off between Disentanglement and
Reconstruction Loss

Since the proposed prior facilitates learning of disentan-
gled representations, not only a higher disentanglement
score can be reached, but also higher scores are reached
for smaller values of β, when compared to the original
approaches. This leads to a clear improvement of the
trade-off between disentanglement and reconstruction
loss. The improvement of this trade-off is demonstrated
in Fig. 5, where we plot both the disentanglement score
and the reconstruction loss for varying values of β.
ISA-β-VAE reaches high values of the disentanglement
score for smaller values of β which at the same time

preserves a higher quality of the reconstruction than
the respective original approaches.

The results on both datasets show that the increase
of the MIG score for the baseline method β-TCVAE
comes at the cost of a lower reconstruction quality.
This difference in the reconstruction quality becomes
visible in the quality of the reconstructed images, espe-
cially for the more complex heart shape. Please refer
to the appendix where we present latent traversals in
appendix A.5. With the proposed approach ISA-VAE
the reconstruction quality can be increased while at the
same time providing a higher disentanglement. This
trade-off can be even further improved when learning
the exponents p1,...,k of the prior during training. Re-
sults for ISA-VAE with learned exponents on the 3d
faces dataset are depicted in Fig. 5c and on the cars
3d dataset in Fig. 6.

When learning the exponents, we observe the high-
est difference of disentanglement scores on the cars 3d
dataset for low values of β. On the 3d faces cataset, the
highest MIG scores among all approaches are reached
with ISA-VAE with learned exponents for the unmod-
ified ELBO objective (β = 1.0), outperforming the
existing approaches by a large margin. Both results
strongly support our hypothesis, that the proposed
prior facilitates learning of disentangled representations
even for the unmodified ELBO objective.

5 Conclusion

We presented a structured prior for unsupervised learn-
ing of disentangled representations in deep generative
models. We choose the prior from the family of Lp-
nested symmetric distributions which enables the defi-
nition of a hierarchy of independent subspaces in the
latent space. In contrast to the standard normal prior
that is often used in training of deep generative models
the proposed prior is not rotationally invariant and
therefore enhances the interpretability of the latent
space. We demonstrate in our experiments, that a com-
bination of the proposed prior with existing approaches
for unsupervised learning of disentangled representa-
tions allows a significant improvement of the trade-off
between disentanglement and reconstruction loss. This
trade-off can be improved further by learning the pa-
rameters of the prior during training.
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