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Motivation

« Non-blind deblurring is an important component for removing
image blur (e.g. due to camera shake) after blur estimation.

= High-quality learning-based methods have been limited to the
generative case and are often computationally expensive.

« Hand-defined models with inferior quality are most widely used.

« How to devise a flexible discriminative approach with high
restoration quality and efficiency?

Three challenges:

o Lack of training data, in particular realistic blur kernels
® Work with arbitrary images and blurs

©® Appropriate feature functions given blurred image

1. Synthesize Training Data

« Realistic blur kernels are scarce, recording them is difficult

« BExisting blurs used for testing, shouldn’t be used for training

« Generate artificial blur kernels from random 3D trajectories,
obtained with simple motion model

« Blurred image synthesized from clean image and blur kernel

Figure 1: Examples of artificially generated blur kernels.

2. Gaussian CRF for Deblurring

Idea: Split parameters into learnable and blur-dependent
ones, akin to combining likelihood and prior in a generative approach:

p(xly, K) x N(y: Kx,I/a) - N(x;©7'6,07})
Likelihood Prior

x N(x; (@ + aK'K) 7' (6 + aK'y), (© + oK'K) ™

Now define Gaussian CRFE where model parameters are regressed from
blurred input image y, 7.e. @ = O(y) and 8 = 0(y). The CRF is
parametrized by and thus works with arbitrary blurs K and images y.

Deblurred image X obtained as MAP estimate of Gaussian CRF:
arg max p(x|y, K) = (O(y) + oK'K) H0(y) + aK'y)

X

Use regression tree fields (RTFs) (3, 4 ®
to learn model parameters (y) and 0(y).

« RT'Fs are flexible Gaussian CRFs
« Non-linear regression via regression trees

» Loss-based training (3| (for PSNR)

observed image

Extend previous RTFs by 1) incorporating

| D) e Figure 2: RTF example from [3].
blur parameters, and 2) using a cascade. BUTe example from 3]
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Our Approach

« First discriminative approach for non-blind deblurring
for arbitrary images and blurs.

= Efficient with state-of-the-art results on three benchmarks.
« Generalizes commonly-used half-quadratic deblurring.

« Cascade model with a Gaussian CRF at each stage,
based on recent regression tree fields (RTFs).

« Loss-based training with data from synthetic blur kernels.
« Cascade model not limited to image deblurring.
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Figure 3: RTF prediction cascade. Only three stages are shown.

3. Discriminative Prediction Cascade

Difficult to devise feature functions due to blurred image content y.
Fasier for denoising, where discriminative methods successful, e.q. |3, 11].

Motivation: Half-quadratic deblurring as commonly-used to ease
inference with sparse image priors p(x) 6, 7, 10]:

« Latent variables z introduced with
p(x) = max, p(X, z); augmented posterior:
p(x,zly, K) o p(y|x, K) - p(x, z)
« MAP estimation of deblurred image
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X = arg maxy p(x|y, K) via alternating
max. of p(x|y, z, K) and p(z|x,y, K). Figure 4: Half-quadratic

representation of a sparse

« [terative refinement ot inhomogeneous . |
image prior.

Gaussian MRF p(x|y,z,K) (through z).

Approach: Replace restricted half-quadratic inference with flexible dis-
criminative prediction cascade (trained Gaussian CRF at each stage).

Figure 5: Half-quadratic vs.
discriminative cascade.

In half-quadratic deblurring (top),
7 can only be updated based on

pixels in the local clique of the
MRF (small white circles).

In the proposed discriminative
cascade (bottom), arbitrary fea-
tures over larger areas (large
white circles) can be used to
regress parameters ®'Y and 0.
Expect better results in fewer iter-
ations due to increased flexibility.
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= Previous Gaussian CRFs |3, 11| — one stage of proposed cascade

= sufficient for simpler tasks (e.g. image denoising)
« would likely benefit from iterative refinement

Sebastian Nowozin

Stefan Roth!

° Microsoft Research Cambridge

Jeremy Jancsary?

TECHNISCHE
UNIVERSITAT
DARMSTADT

Q
Ah

G/

NS

Deblurring example at different model stages

Ground truth Blurred, 15.68dB

Experimental Results

State-of-the-art performance at faster runtime
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Levin et al. [7
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Figure 6: Average PSNR (dB) on 64 images from [10] (perfect blur kernels, o = 2.55).

Superior results with estimated kernels
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Figure 7: Average PSNR (dB) on 32 images from [8] (using estimated kernels).

Improvements for realistic higher-resolution images
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Figure 8: Performance gain (PSNR
in dB) over results of Xu and Jia
[12] in the benchmark of Kohler et
al. [5]. Using kernel estimates of
[12] with our non-blind approach,
we can improve performance in 43

of 48 test instances, on average
about 0.41dB.
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Detailed Results
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Kernels Kernels for testing

Method 2.55  7.65 Stage | 2.55 7.65 Method . .
oo Richard a8 IR e for training GT |Levin [8]| Cho [1] | Fergus [2]
Ku,cy}: ehat dS;n 9 | oogr ador e a1 or ey RTF; | Ground truth (GT) | 32.76 | 2941 | 2829 | 27.86
L“S: natn aln . ergus (0] e o S S RTF, | Ground truth (GT) | 33.81 | 2952 | 27.76 | 27.84
56‘””51; E?MAP ; it or e S ars s RTF; | Mix of GT & Xu [12]| 32.90 | 20.90 | 29.33 | 28.63

X 5 Fobs (MAP) [9 ' ' sl B ' RTFy | Mix of GT & Xu [12] 33.97 30.40  29.73  29.10
Pairw. MRF (MMSE) [10] | 2824 2563 RTFs | 2865 2687 o = AR ViR
3 x 3 FoE (MMSE) [10] | 28.66 25.68  RTFs  28.67 25.89 ' ' ' '

Ta b | e ]. . Training and testing with ground truth blur kernels. Average Ta ble 2: Adaptation to kernel estimation errors at test time. Average
PSNR (dB) on 64 images from [10] for two noise levels. Left half reproduced  PSNR (dB) on 32 images from [8]. The last row shows baseline performance

from [10]. using [7].

Qualitative Example

Figure 9: Example for realistic higher-resolution image from [5], showing the result of
our RTFy model (right) given blurred image (left) and kernel estimate by [12]| (top left).
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