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Abstract

We introduce Regression Tree Fields (RTFs), a fully con-
ditional random field model for image labeling problems.
RTFs gain their expressive power from the use of non-
parametric regression trees that specify a tractable Gaus-
sian random field, thereby ensuring globally consistent pre-
dictions. Our approach improves on the recently introduced
decision tree field (DTF) model [14] in three key ways:
(i) RTFs have tractable test-time inference, making efficient
optimal predictions feasible and orders of magnitude faster
than for DTFs, (ii) RTFs can be applied to both discrete and
continuous vector-valued labeling tasks, and (iii) the entire
model, including the structure of the regression trees and
energy function parameters, can be efficiently and jointly
learned from training data. We demonstrate the expressive
power and flexibility of the RTF model on a wide variety
of tasks, including inpainting, colorization, denoising, and
joint detection and registration. We achieve excellent pre-
dictive performance which is on par with, or even surpass-
ing, DTFs on all tasks where a comparison is possible.

1. Introduction

Probabilistic graphical models have emerged as a stan-
dard tool for building computer vision models [4, 12]. They
allow us to make predictions given noisy image observa-
tions by relating the observed image to the variables of in-
terest in a coherent way. In many applications—e.g. stereo
reconstruction, denoising, and registration—the variables
we would like to infer are vector-valued, one for each pixel.

There are three key challenges that need to be overcome
in order to use graphical models to solve computer vision
tasks: parameterization, inference, and learning. Parame-
terization is the specification of the model structure and its
parameters that need to be estimated from training data. In-
ference refers to the test-time task of reasoning about the
state of the variables that interest us, given the observation.
Learningmeans to estimate model parameters from training
data so as to make good predictions at test-time. All these
tasks are related to each other and even for simple models
turn out to be intractable, necessitating approximations in
model specification, inference, and estimation [12].

Our work addresses all three challenges. We propose
Regression Tree Fields (RTF), which are non-parametric
Gaussian conditional random fields. RTFs are parameter-
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Figure 1. Expressiveness of the RTF model. (a) Via conditioning,
multi-modal empirical distributions can be split into distributions
that are closer to being Gaussian. (b) High-dimensional encoding
of discrete labels allows for richer interaction terms.

ized by non-parametric regression trees, allowing univer-
sal specification of interactions between image observations
and variables. Being a Gaussian model, RTFs allow exact
and efficient inference at test-time. The structure and pa-
rameters of the RTF model can be efficiently learned from
training data; learning is scalable and fully parallelizable.

Is a Gaussian model expressive enough? A Gaussian
model is tractable but restrictive, e.g. it is always uni-modal
and symmetric. The RTF model gains its expressive power
in two ways (see Figure 1): First, by conditioning via non-
parametric regression trees, it can draw on different Gaus-
sian models in different image-dependent contexts. This
mitigates the uni-modality restriction and extends earlier
parametric Gaussian CRF models [21]. Second, in discrete
tasks, the ability to learn all coefficients of the underlying
quadratic energies—together with high-dimensional encod-
ing of the labels—lifts the common restriction to associative
interactions [22, 23]. We will demonstrate empirically that
the expressive power of the interaction terms in our model
is comparable to discrete random fields.

1.1. Related Work

In a sequence of papers, [21, 22, 16] Tappen and col-
leagues proposed a CRF model for continuous labels that
is closest to our work. In [21] a Gaussian CRF is used
where the energy function is defined by means of squared
difference between observed image and filter responses of
the labeling. The model is trained discriminatively because
likelihood maximization is deemed infeasible, yielding a
non-convex optimization problem. In an extension [22] the
model is made applicable to discrete labeling tasks using
a logistic function to map continuous outputs to per-class



probabilities. Finally, in [16] non-quadratic energies are
considered and a non-convex learning problem is solved to
optimize the empirical risk. Our proposed RTF model dif-
fers in three ways from this line of work; (i) our conditional
interactions are non-parametric and therefore less restric-
tive, (ii) we do not use a restricted quadratic form but allow
arbitrary positive-definite precision matrices to be learned,
and (iii) we use a convex likelihood-based learning objec-
tive such that the resulting model represents probabilities.

The Fields-of-Experts model (FoE) [15, 18] is a success-
ful natural image prior based on a non-convex energy func-
tion incorporating responses of filters evaluated on a large
number of random variables. Compared to FoE, we are lim-
ited to pairwise interactions, allowing us to predict very fast
at test-time. By evaluating filters on the input image, as
in [21], we achieve expressivity similar to the FoE model.

Variational minimization and convex relaxation ap-
proaches are also related to our work in that they solve
similar computer vision tasks and are very efficient at test-
time. For a recent overview, see [6]. Our work is restricted
to quadratic energies and addresses the parametrization and
learning problems, but it may be possible to extend our ap-
proach to more general convex energies such as [19].

2. Model

We use x ∈ X to refer to an observed image. Our goal
is to infer a joint continuous labeling y ∈ Y , one for each
pixel, yi ∈ Rm, with y = {yi}i∈V , where V denotes the set
of all pixels. We define the relationship between x and y by
a quadratic energy function E,1

E(y,x,W) = 1
2
⟪yyT ,Θ(x,W)⟫ − ⟨y,θ(x,W)⟩. (1)

We use W to denote our model parameters, which deter-
mine the vector θ(x,W) ∈ Rm�V� and the positive-definite

matrix Θ(x,W) ∈ S
m�V�
++ in a manner that will be made

precise shortly. These are the canonical parameters of the
correspondingm�V�-dimensional Gaussian density

p(y � x;W) ∝ exp{−E(y,x,W)} , (2)

in which Θ(x,W) plays the role of the inverse covariance
or precision matrix and is typically sparse. The energy (1)
can be decomposed into a sum over local energy terms, or
factors, over single pixels i and pairs of pixels (i, j).

2.1. Parameter Sharing

As proposed in [14], we also group the energy terms into
factors of common unary type u ∈ U or pairwise type p ∈ P
that share the same energy function Eu or Ep, but act on
different variables and image contents. Thus (1) becomes

E(y,x,W) = �
u,i∈Vu

Eu(yi,x,W)+ �
p,(i,j)∈Ep

Ep(yij ,x,W),

1Here, ⟪⋅⟫ denotes Frobenius inner product, i.e. ⟪yyT,Θ⟫ = yTΘy.
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Figure 2. Regression trees: (left) the prediction is determined by
the path to leaf l∗ storing sample mean µl∗ ; (right) instead of a
mean, a quadratic energy is stored, determining a local model.

where Vu and Ep denote the sets of pixels i and pairs of pix-
els (i, j) covered by a unary factor of type u or a pairwise
factor of type p, respectively. We instantiate the factors of a
type in a repetitive manner relative to each pixel, specified
in terms of offsets of the factor variables.

The local energy function Eu associated with a unary
factor type is of the form

Eu(yi,x,W) = 1
2
⟪yiy

T
i ,Θ

u
i (x,W)⟫ − ⟨yi,θ

u
i (x,W)⟩,

while a pairwise factor type p assigns yij ∈ R2m a similar
energy Ep defined in terms of θp

ij(x,W) andΘp
ij(x,W).

The local coefficients {θu
i ,Θ

u
i } and {θp

ij ,Θ
p
ij} can de-

pend on x in an almost arbitrary manner: the observed
data determines the local Gaussian model that is in effect.
The only requirement is that the global matrix Θ(x,W)
stays positive-definite so (2) remains a valid distribution.
This is trivially achieved by setting θu

i (x,W) = wu ∈ Rm

and Θu
i (x,W) = W u ∈ Sm++ (and likewise for the pair-

wise terms), resulting in a set of model parameters W =
{wu,W u,wp,W p}u∈U,p∈P . But such simple parametriza-
tion fails to exploit the full power of a conditional model.

2.2. Parametrization via Regression Trees

We now discuss how a valid non-parametric map from x
to valid local models can be realized using regression trees.
Regression trees are commonly employed as follows (see
Figure 2): when inferring a prediction about label yi ∈ Rm

of pixel i from observations x, one follows a path from the
root of the tree to a leaf l∗. This path is determined by the
branching decisions made at each node, typically by com-
puting a feature score from the input image relative to the
position of i and comparing it to a threshold. The label yi is
then chosen as the mean vector µl∗ ∈ Rd of those training
examples that previously ended up at the selected leaf l∗.

In our model, we use a similar approach to determine
the parameterization of the unary local energy terms in a
context-dependent manner. Instead of mean vectors, we as-
sociate with each leaf l the parameters of a quadratic energy
Eul(yi) = 1

2
⟪yiy

T
i ,W

ul⟫−⟨yi,w
ul⟩, withW ul ∈ Sm++. In

a standalone regression tree approach, the label could then
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Figure 3. Example of a regression tree field: regression trees (left)
determine effective interactions u, u′, and p, based on the image
X , by selecting learned weights stored at their leaf nodes. The
model structure on the right is replicated once for each pixel i ∈ V .

be predicted as the minimizer of this local energy, which
can be found in closed-form and is just the mean of the
corresponding Gaussian. Instead, our goal here is for the
selected leaf node to determine the parameterization of the
local energy terms of our conditional random field, viz.:

θu
i (⋅) = wul∗ andΘu

i (⋅) = W ul∗, l∗= Leaf(u, i,x).

Consequently, we associate with each unary factor type u a
regression tree that determines the parameterization of the
unary energy terms in the way outlined above.

The parameterization of the pairwise energy terms is de-
termined in the same manner, i.e. we associate with each
pairwise factor type p a regression tree defined over pairs
of pixels (i, j) whose leaves store 2m-dimensional models
Epl(yij) = 1

2
⟪yijy

T
ij ,W

pl⟫ − ⟨yij ,w
pl⟩ and proceed by

defining θp
ij(x,W) and Θp

ij(x,W) to return the parame-
ters of the selected leaf l∗. The full collection of model
parameters is thus given by all parameters residing at the
leaves of the regression trees,W = {wul ,W ul ,wpl ,W pl}.

Summary. As illustrated in Figure 3, our model consists
of several factor types, each of which is associated with a
regression tree that stores at its leaves the parameters of a
local quadratic energy. A factor type specifies how factors
are instantiated relative to a given pixel. Factors of a com-
mon type share a local energy function that is parametrized
via the quadratic models at the leaves of the associated tree.
The image contents relative to the position of a factor de-
termines the path from the root of the tree to the selected
leaf, and hence selects the local Gaussian model that is in
effect. The sum of local energy functions over the entire
image determines the overall energy function.

2.3. Incorporating Linear Basis Functions

In principle, the non-parametric nature of regression
trees allows us to learn arbitrary maps from input images
x ∈ X to labelings y ∈ Y . However, in many cases the

mapping to the output is locally well approximated as a lin-
ear function of some derived image features. In this case
using regression trees to represent this linear mapping is in-
efficient and requires a large number of nodes. Instead, we
propose to use an arbitrary linear model in each leaf node
using a set of application-dependent basis functions.

Such basis functions {φb}b∈B can be readily employed
in our model, and can depend on x and the position within
the image in an arbitrary manner. For instance, in the en-
ergy term Eu of a unary factor at pixel i, the linear term
⟨yi,w

ul∗ ⟩ can be replaced by ∑b φ
b(i,x)⟨yi,w

ul∗;b⟩. As
a consequence, each leaf l of the regression tree stores not
only a single parameter vector wul ∈ Rm, but a collection
of vectors {wul;b}b∈B, where again wul;b ∈ Rm.

2.4. Efficient Inference

Because our global energy function is a quadratic form,
the minimizing labeling can be found in closed form, i.e.
y∗ = [Θ(x,W)]−1θ(x,W). This is also the mean of the
associated Gaussian density and solves the linear system
Θ(x,W)y = θ(x,W). The use of direct methods is pro-
hibitive due to the large number of m�V� variables, hence
we resort to iterative methods. We use the conjugate gra-
dient (CG) method to obtain a solution to a residual norm
of 10−4. As we will discuss shortly, we can directly control
the convergence behavior of CG by bounding the eigenval-
ues of the learned inverse covariance matrices.

3. Learning of Regression Tree Fields

We now discuss how to learn a model from given i.i.d.
training data D = {(x(p),y(p))}Pp=1. For simplicity, we
treat the set of training examples as a single collection of
labelled pixels (x,y), as in [20].

3.1. Estimating the Parameters

Assume for now that the structure of the regression trees
and hence the collection of parameters W is fixed. We then
wish to estimate these parameters from our training data D.
Ideally, we would be able to use the maximum likelihood
estimate (MLE) of the parameters, because it is asymptoti-
cally consistent and has low asymptotic variance [10]:

ŴMLE = argminW∈Ω − log p(y � x;W), (5)

where constraint set Ω enforces positive-definiteness of the
parameters {W ul ,W pl}, the inverse covariance matrices
of the local models. Unfortunately, to optimize (5), one re-
quires the so-called mean parameters,

µ
def
= Ey∼p(y�x;W)[y] and Σ

def
= Ey∼p(y�x;W)[yy

T ], (6)

which are given in closed form as µ = [Θ(⋅)]−1θ(⋅) and
Σ = [Θ(⋅)]−1 + µµT . While polynomial-time, the com-
plexity of this computation is O(m3�V�3) and hence pro-
hibitive even for instances of modest size.



− log p(yi � yV∖i,x;W) = E(yi,yV∖i,x,W)+ log�
Rm

exp(−E(ŷi,yV∖i,x,W))dŷi, (3)

∇W[− log p(yi � yV∖i,x;W)] = ∇WE(yi,yV∖i,x,W)−Eŷi∼p(ŷi�yV∖i,x,W)�∇WE(ŷi,yV∖i,x,W)�. (4)

Figure 4. General form of the negative log-pseudolikelihood and the gradient with respect toW around a single conditioned subgraph.

3.2. Maximum Pseudolikelihood Estimation

We now show how the computational limitations of
MLE can be overcome by maximizing the pseudolikelihood
(MPLE) [2], defined as

ŴMPLE = argminW∈Ω −∑i∈V log p(yi � yV∖i,x;W). (7)

Notably, the objective decomposes into likelihoods of single
pixels conditioned on the observed labels of the other pixels,

p(yi � yV∖i,x,W) =
exp(−E(yi,yV∖i,x,W))

∫Rm exp(−E(ŷi,yV∖i,x,W))dŷi
.

In our model, these conditioned subgraphs are just m-
dimensional Gaussians, so we can again write the energy
of a label yi of a conditioned subgraph in canonical form,

E(⋅) = 1
2
⟪yiy

T
i ,Θi(x,W)⟫ − ⟨yi,θi(yV∖i,x,W)⟩.

The canonical parameters θi(⋅) ∈ Rm now depend on the
labels yV∖i of the pixels on which the subgraph conditions.
Unlike MLE, the inverse covariance matrices Θi(⋅) ∈ Sm++
are low-dimensional, which renders the approach efficient.
The corresponding mean parameters µi and Σi are com-
puted analogously to (6). Akin to MLE, they are needed
to obtain the gradient with respect to θi(⋅) and Θi(⋅), from
which we can derive the gradient with respect to the actual
model parameters via the chain rule. We outline the general
form of this gradient in Figure 4 and refer to the supplemen-
tary material for detailed analytically computable expres-
sions. Note that (7) is convex and can be solved efficiently
using projected gradient methods [3, 17], at a complexity
of O(m3�V�) per computation of the gradient, which can be
trivially parallelized over the set of pixels V .

Furthermore, as first proposed in [14], pseudolikelihood
estimation allows us to use a subsample of the training set.
We resample a fraction of all the pixels in the training set,
uniformly with replacement, to obtain an unbiased estimate
of the pseudolikelihood objective (7).

3.3. Efficient Regularization

The RTF model is expressive but can overfit easily when
deep regression trees are used. To counter this, we use
a novel form of regularization for the matrix parameters
to prevent overconfident predictions. We achieve this by
lower- and upper-bounding all eigenvalues of {W ul ,W pl}
to be no smaller than a tiny positive number ε, and no
larger than a large positive number ε. The set of matrices
that fulfil these constraints is again convex (see Figure 5).
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Figure 5. Convex set of 2 × 2
matrices [a c; c b] whose
eigenvalues are restricted to
lie within (ε = 0.1, ε = 10).

Through this restriction, we
can enforce a favourable con-
dition number of Θ(x,W),
leading to fast convergence
of the conjugate gradient
method at test-time. More-
over, by adjusting ε, we can
push local models to be less
certain of their mean, effec-
tively regularizing the model.
This can be understood as a
flat prior over bounded-eigenvalue matrices, and because
this set is bounded the prior is proper [10].

To ensure the matrices remain in this constrained set,
we use a projection operator that builds on earlier results
by Higham [9] and finds for any given matrix the closest
matrix in Frobenius sense that satisfies our eigenvalue con-
straints. This is computationally efficient and requires one
eigenvalue decomposition per matrixW ul orW pl .

3.4. Growing Regression Trees

An important aspect that has been disregarded so far is
how the structure of the regression trees can be learned. We
propose two methods; the first approach trains regression
trees separately, akin to [14], while the second approach
learns model structure and parameters jointly.

Separate training is straightforward: For each factor
type, we train a regression tree using the classic reduction of
variance criterion [5]. Next, we associate a quadratic model
with each leaf (c.f . Figure 2) and learn the parameters by
means of the pseudolikelihood objective. This works for
both unary and pairwise factors by regressing for the con-
catenated vectors in the pairwise case. While generally ef-
fective at learning the desired tree structure, one shortcom-
ing is the disconnect between learning of the tree structure
and subsequent estimation of the model parameters.

3.5. Learning Parameters and Trees Jointly

We next discuss how to choose the trees such as to opti-
mize our learning objective. The idea is to choose splits that
lead to the largest increase in the projected gradient norm
�PΩ(∇W ′)�, where W ′ = (W ∖Wtp) ∪ (Wtl ∪Wtr) de-
notes the model parameters after the split, with the parame-
ters Wtl and Wtr of the newly introduced children l and r
initialized to the previous parameters Wtp of the leaf p that
was split. Here, t refers to either a unary or a pairwise type.

The gradient norm with respect to model parameters
Wtl = {wtl ,W tl} of a given leaf l can be thought of



Start with trees consisting solely of root nodes;
repeat

(Re-)optimize parameters of current leaf nodes ;
foreach conditioned subgraph i do

Pre-compute mean parameters µi,Σi ;

foreach factor type t and its tree do
foreach conditioned subgraph i do

foreach factor of matching type do
Compute gradient contribution via µi,Σi ;
Sort contribution into target leaf ;

foreach leaf p do
Find split (f, ε) maximizing ∥PΩ(∇W

′)∥ ;
Split node p into new child leaves (l, r) ;
SetWtl ←Wtp andWtr ←Wtp ;

until maximum depth reached;
Optimize parameters of leaf nodes to final accuracy ;

Algorithm 1. Joint training of trees and parameters: See text.

as a measure of disagreement between the mean parame-
ters {µi(x,W),Σi(x,W)} and the empirical distribution
of {yi,yiy

T
i } in the conditioned subgraphs affected by the

leaf. Consequently, our criterion prefers splits introducing
new parameters relevant to those subgraphs where the dis-
agreement is largest, as these are most likely to achieve sig-
nificant gains in terms of the pseudolikelihood.

Algorithm 1 gives an outline of how this works. The
key to tractability is that the increase in gradient norm is
computed for the parameters of the candidate child nodes
set to those of their parent node. This way, the increase
in overall gradient norm can be computed efficiently and
purely locally in terms of the norms �PΩ(∇Wtl)� and
�PΩ(∇Wtr)� resulting from the gradient contributions of
the factors that are relevant to the respective candidate child.

By initializing the parameters of the new leaf nodes to
those of their parent, the algorithm achieves monotonic de-
scent in the negative log-pseudolikelihood. This holds even
if re-optimization of the parameters at each round is ap-
proximate, which is often preferable from an efficiency per-
spective. While Algorithm 1 outlines joint training for the
pseudolikelihood objective, we emphasize that this idea is
in principle applicable to most tractable objective functions.

Preliminary Assessment. We next provide preliminary
confirmation of the usefulness of joint training. Figure 6
shows the performance of the same RTF denoising model
with σ = 10 (Section 4.2) for separate and joint training.
Joint training optimizes the learning objective more effec-
tively as a function of the tree depth, producing in this case
more accurate predictions in terms of the error measure
(PSNR).2 Since joint training is slower by a factor of 3–5,
we use separate training for the remaining experiments.

2For other noise levels, joint training always optimized the learning
objective better, which, however, did not always improve PSNR.
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Figure 6. Joint training reduces the objective faster than separate
training (left), which translates into improved PSNR (right). We
report training set and test set performances for both approaches.

4. Experiments

4.1. Discrete Learning Tasks

In order to demonstrate that our model is conveniently
applicable to discrete labeling tasks, we first consider two
tasks that were previously tackled using DTFs [14].

Chinese Characters. The goal is to in-paint the occluded
parts of handwritten Chinese characters from the KAIST
Hanja2 database (Figure 7). Each character is occluded by
a centred grey box of varying size. Following [14], we mea-
sure prediction accuracy on a dataset with small occlusions,
and visualize the predictions on images with larger occlu-
sions. We replicate the DTF model as closely as possible
(same features and neighborhood). For RTF training, we
consider 2D orthonormal basis encoding {[1 0]T , [0 1]T },
as well as plain 1D encoding of the binary labels. We
consider a Gaussian MRF where the pairwise trees are re-
stricted to a single leaf (GMRF) and systems with deep pair-
wise trees (RTF), analogous to MRF and DTF in [14].

Input Truth RF MRF GMRF DTF RTF

Figure 7. Chinese characters with large occlusions—test set pre-
dictions. Characters of the last 2 lines also shown in [14, Fig. 7].

The results are shown in Table 1. We include the Ran-
dom Forest (RF) result of [14] as a baseline. Our 2D-
encoded systems are very competitive, with a particular
RTF system achieving the best result on this task so far.
Moreover, the best RTF system requires typically 0.2s per
prediction, which is two orders of magnitude faster than
the current DTF implementation [14, private communica-
tion with authors]. The DTF predictions were obtained us-
ing simulated annealing and therefore may not be optimal,



Depthu Depthp Test Train

RF [14] 15 ∼ 67.74% ∼

MRF [14] 15 1 75.18%/≈20s ∼
GMRF 1D 15 1 70.14%/0.19s 73.11%
GMRF 2D 15 1 74.19%/0.32s 80.97%

DTF [14] 15 6 76.01%/≈20s ∼
RTF 1D 15 6 75.37%/0.27s 79.38%
RTF 2D 15 6 75.02%/0.49s 81.73%

RTF 1D* 20 20 76.39%/0.23s 94.56%
RTF 2D* 20 20 77.55%/0.24s 94.91%

Table 1. Chinese characters—accuracy on small occlusions.

Depthu Depthp Accuracy RMSE

RF [14] 25 ∼ 90.30% ∼

MRF [14] 25 1 91.90% ∼
GMRF 1D 36 1 82.52% 0.0999
GMRF 11D 36 1 84.22% 0.1352

DTF [14] 25 15 99.40% ∼
RTF 1D 0 10 91.14% 0.0512
RTF 11D 0 7 98.77% 0.0268

Table 2. Results on the “Snakes” test data, 4-connected model.

whereas inference in the RTF model is always exact. Note
that 2D encoding is particularly important for GMRF, where
the restricted pairwise terms in 1D encoding cannot be com-
pensated for by conditioning. If deeper pairwise trees are
allowed, as in RTF, this difference mostly vanishes. For
further details and results, we refer to the sup. material.

Snakes. This is a multi-label discrete learning task with
weak local evidence for any particular label; the ability of
the pairwise terms to capture the relevant interactions is cru-
cial. Each “snake” (Figure 8) consists of a sequence of ad-
jacent pixels whose color in the input encodes the direction
of the next pixel: go north (red), go south (green), as well as
go east (yellow) and go west (blue). Each snake is 10 pixels
long, and in output space exposes a grey-scale gradient that
starts at its head in black and ends at its head in white.

Input Truth GMRF1D GMRF11D RTF1D RTF11D

Figure 8. “Snakes” task—1D encoding seeks to minimize RMSE;
11D encoding injects a loss that is closer to multi-label error.

Again, we use the systems from the DTF paper [14] as
our baseline. For RTF-training, we compare 1D encoding,
which directly models the grey-scale pixel intensity, to 11D
encoding that assigns an orthonormal basis label to each
of the 11 different grey-scale values. The latter “injects”
a particular loss function during training: Since all labels
are equally close in Euclidean space, we attain invariance
with respect to label permutations, and MPLE minimizes
a quadratic approximation of the discrete multi-label error.
In contrast, in 1D grey-scale encoding, MPLE minimizes
a quadratic loss that is closely correlated with RMSE. The

Method σ = 20 σ = 30 σ = 40

FoE MAP 3x3 [15] 25.83/41s 22.66/42s 20.10/42s
FoE MAP 5x5 [15] 27.59/170s 25.13/150s 23.59/149s
FoE MMSE 3x3 [18] 28.20/239s 26.01/230s 24.48/321s
FoE MMSE PW [18] 27.69/49s 25.71/67s 24.29/74s
BM3D [7] 28.37/0.07s 26.31/0.07s 24.90/0.07s

RTF 3x3 27.73/0.3s 25.67/0.3s 24.30/0.3s
Table 3. Natural image denoising results in PSNR (peak signal-to-
noise ratio) with test-time running time per image. The FoE results
were obtained using the models of [15, 18].

regressed label of a pixel is decoded as follows: For 1D en-
coding, RMSE can be computed directly from the predic-
tion, while multi-label error is computed by rounding to the
nearest discrete label. With 11D, we find the basis vector
closest to the prediction and use the corresponding grey-
scale value (RMSE) or discrete label (multi-label error).

The numeric results are given in Table 2, and example
predictions are shown in Figure 8. Tree depths were op-
timized for each system. RTF using 11D encoding and
DTF essentially solve the task, while all other systems fail.
Consider the error rates achieved by GMRF: 11D encod-
ing leads to smaller multi-label error, while 1D encoding
favours RMSE. On the other hand, using the fully condi-
tional pairwise terms of the RTF, 11D encoding yields bet-
ter results in terms of both error metrics. This result sug-
gests that high-dimensional encodings yield additional ben-
efits even beyond the above loss function perspective.

4.2. Natural Image Denoising

Natural image denoising is a classic benchmark for con-
tinuous image labeling. Our model is not specifically con-
structed to be good at denoising, but we show that it indeed
performs well against reasonable baseline approaches. We
use the BSDS 500 dataset [1] and use 200 training and 200
test grayscale images scaled by a factor of 0.25. We use ad-
ditive, iid Gaussian noise with known standard deviation σ.
For our model we use the RFS filterbank3 to derive 38 filter
responses for each pixel in the input image which are used
for the regression tree splits as well as the basis functions of
the linear leaf models. We use a subsampling factor of 0.5.

3http://www.robots.ox.ac.uk/˜vgg/research/texclass/filters.html
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Figure 9. Conditional pairwise interactions increase denoising
PSNR (σ = 25): we vary the maximum depth of pairwise regres-
sion trees from one (MRF prior) to eight. This increases PSNR on
the test set from 25.62dB (depth one) to 26.63dB (depth seven).
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Figure 10. Training efficiency on a single computer (8 cores). We
learn a 3x3 denoising RTF model for a noise level of σ = 25 from
the MIRFLICKR dataset. We test on 5000 holdout images. Train-
ing time is linear in the number of images (note logarithmic axes).
Test PSNR continues to increase as more training data is used.

Quantitative results for three different noise levels4 are
shown in Table 3. We outperform the FoE MAP ap-
proaches, but FoE MMSE 3x3 and BM3D perform better
than our model. This may be due to the simple features
which we have used. The RTF model is efficient at test-
time, and achieves its predictive performance due to the
pairwise conditional interactions, as shown in Figure 9. The
model of pairwise tree depth one corresponds to a simple
parametric Gaussian CRF [21].

Large-scale Training. To evaluate the scalability of our
training procedure, we repeat the denoising experiment on
the MIRFLICKR-25000 dataset [11], consisting of 25,000
natural images. We use subsets of up to 5,000 images for
training. The results are shown in Figure 10. They demon-
strate that our approach scales to a large number of images.

Structured Noise Model. One advantage of using our
conditional model is that we can incorporate higher-order
interactions such as image filters between the observations
and dependent variables without incurring additional com-
putation costs during learning or inference. This allows us
to learn the noise model, instead of assuming pixelwise in-
dependent noise [15, 18]. To demonstrate that our model
can learn the noise model, we simulate images with dust on
the lens, as shown in Figure 11. The RTF denoising model
is as before and we learn to remove these artifacts.

4.3. Face Colorization

Colorization is the task of adding color to a gray-scale
image, e.g. an old photograph. In most works, e.g. [13],
this under-constrained task is solved with some user guid-
ance. Here we demonstrate a fully automatic system, which
exploits domain knowledge. Given a training set of 200
frontal faces and a test set of 200 different people5, where

4Note that for each image, the Gaussian noise was first added, and the
result was then saved as a PNG file again, possibly resulting in truncation.

5Available from http://fei.edu.br/˜cet/facedatabase.html

Figure 11. Representative test set results for image denoising with
structured noise. Top row: input images with simulated dust on
the camera lens. Bottom row: RTF denoising results with a 3x3
model and decision trees of depth ten (PSNR 27.85).

(a) (b) (c) (d)

Figure 13. Detection and registration—from left to right: input
image, ground truth (RGB), unary prediction, RTF 3x3 prediction.

the face images are roughly registered (see sup. material).
Given the gray-scale input, the goal is to predict the 3D
(RGB) output. As features we use Haar-wavelets of size 1 to
32 pixels and various relative offsets (Gaussian-distributed
with standard deviation of 10 pixels). Figure 12 shows that
our result (f) is visually superior to various competitors (c-
e). The improvement is also observed in the overall mean
squared error (multiplied by 103), where (f) achieves 0.47,
and the other methods obtain: (c) 0.73; (d) 0.78; (e) 0.82.

4.4. Detection and Registration

In this task we jointly detect and register deformable ob-
jects within an image. The input, Fig. 13(a), are two flags
with variable position and deformation.6 The background
is an arbitrary crop from a large mosaic of flags. The output
labeling, see Fig. 13(b) is a 3D (RGB) labeling where the
first channel defines fore- and background and the last two
represent the mapping of each pixel to a reference frame of
the flat flag. We use 400 generated training images and 100
test images, and a 3x3 RTFmodel with maximum tree depth
50 for all trees. Figure 13(c,d) shows that the field performs
much better than unaries. This reflects in the mean squared
error; 6.1 ⋅ 10−2 for unary, 1.0 ⋅ 10−2 for the RTF.

5. Conclusion

We presented regression tree fields, an efficient non-
parametric random field model. We have demonstrated the
flexibility of our model by applying it to a number of dis-
crete and continuous image labeling tasks, obtaining high-
quality results. This flexibility, together with our efficient
learning and inference procedures, make RTFs attractive for
a broad number of computer vision applications.

6We use the 60 deformations provided by [8]



(a) (b) (c) (d) (e) (f)
Figure 12. Face colorization (top row: full images, bottom row: zoom-in). Given a gray-scale test image (b), the goal is to recover its
color. (a) The ground truth. (c) A simple, “global-average” competitor. First, 10 nearest-neighbor images are retrieved from the training
set, in terms of pixel-wise gray-scale difference. Then these images are superimposed and the median color (hue, saturation) is computed
at every pixel location. Since the nearest-neighbor faces are not perfectly registered, color bleeding (e.g. around left ear) can be observed.
(d) A second competitor, which uses the same 10 nearest-neighbors as (b). For each luminance value, the median color (hue, saturation) is
derived. The result does not show color-bleeding, but suffers from the fact that the whole face and hair has virtually the same color. (e) Our
result with unaries only (one tree, depth ten). While the overall result is encouraging the details are unfortunately blurry (see zoom-in).
This is likely caused by the fact that neighboring pixels make independent decisions. (f) Our result with field (4-connectivity, one unary
tree, two pairwise trees, all depth 10, separately trained). The overall result, as well as the zoom-in, looks very convincing.
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