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Introduction

» Model: relating observations x to
quantities of interest y

» Example 1: given RGB image x, infer /fA
depth y for each pixel
» Example 2: given RGB image x, infer X N%
presence and positions y of all objects f:X—=Yy
shown
[m] = = = =

Sebastian Nowozin and Christoph H. Lampert

Part 2: Introduction to Graphical Models



Graphical Models
®000000
Graphical Models

Introduction

» Model: relating observations x to
quantities of interest y

» Example 1: given RGB image x, infer /fA
depth y for each pixel

» Example 2: given RGB image x, infer X N%
presence and positions y of all objects f:X—=Yy
shown

X: image, J: object annotations
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Graphical Models

Introduction

» General case: mappingx € X toy € )
» Graphical models are a concise
language to define this mapping

f:xXx =Y
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Graphical Models

Introduction

» General case: mappingx € X toy € )

» Graphical models are a concise
language to define this mapping

» Mapping can be ambiguous:
measurement noise, lack of
well-posedness (e.g. occlusions)

» Probabilistic graphical models: define
form p(y|x) or p(x,y) forally € Y
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Graphical Models

Graphical Models

A graphical model defines

» a family of probability distributions over a set of random variables,
» by means of a graph,

» so that the random variables satisfy conditional independence
assumptions encoded in the graph.

[m] = =
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Graphical Models

Graphical Models

A graphical model defines
» a family of probability distributions over a set of random variables,
» by means of a graph,
» so that the random variables satisfy conditional independence
assumptions encoded in the graph.
Popular classes of graphical models,

» Undirected graphical models (Markov
random fields),

» Directed graphical models (Bayesian
networks),

» Factor graphs,

» Others: chain graphs, influence
diagrams, etc.
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Graphical Models

Bayesian Networks

» Graph: G =(V,&),ECVxV e @
> directed

» acyclic

» Variable domains )

» Factorization

p(Y =y) =[] pWilypac()

()

over distributions, by conditioning on parent A simple Bayes net
nodes.
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Graphical Models

Bayesian Networks

» Graph: G =(V,&),ECVxV e @

> directed
» acyclic

» Variable domains ) @

» Factorization

p(Y =y) =[] pWilypac() @

iev
over distributions, by conditioning on parent A simple Bayes net
nodes.
» Example

p(Y =y) =p(Yi = yil Yk = yi)p(Ye = y|Yi = yi, Y; = yj)
p(Yi = yi)p(Y; = y)).

[m] = = =
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Graphical Models

Undirected Graphical Models

» = Markov random field (MRF) = Markov . . .

network A simple MRF
» Graph: G=(V,£),£ECV XV

> undirected, no self-edges

» Variable domains ;

» Factorization over potentials ¢ at cliques,

H Ye(ye)

cec (G)

» Constant Z = Zyey HCeC(G) Ye(ye)

[m] = = =
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Graphical Models

Undirected Graphical Models
» = Markov random field (MRF) = Markov . . .

network A simple MRF
» Graph: G=(V,£),£ECV XV

> undirected, no self-edges
» Variable domains ;

» Factorization over potentials ¢ at cliques,

H Ye(ye)

cec (G)

» Constant Z = Zyey HCeC(G) Ye(ye)
» Example

1
Ply) = Svily) s )i (i, i)
CIRY- = Do
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Graphical Models

Example 1

> Cliques C(G): set of vertex sets V/ with V' C V,
EN(V x V)=V x V'

» Here C(G) = {{i}, {i,j}, {}, U, k},{k}}

>

() = SR 0R) )00 9)

=] 5
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Graphical Models

Example 2

» Here C(G) = 2": all subsets of V are cliques
>

=5 T vala)

Ae2{ii b}

Sebastian Nowozin and Christoph H. Lampert

Part 2: Introduction to Graphical Models



Factor Graphs
00000000000

Factor Graphs

Factor Graphs

» Graph: G =(V, F, &), ECVXF e e

>

>
>
>

variable nodes V/,

factor nodes F,

edges £ between variable and factor nodes.
scope of a factor,

N(F)={i€V:(i,F)ecé&} @ @
» Variable domains )

Factor graph
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Factor Graphs

>
>
>
>
>

>

>

>

Graph: G =(V, F,£),ECV xF e e
variable nodes V/,
factor nodes F,

edges £ between variable and factor nodes.
scope of a factor,
NF)={ieV:(iF)e&} @ @

Variable domains );

Factorization over potentials % at factors, Factor graph

o) = 2 TT vrlomee)

FeF

Constant Z = Zyey [rervr(ynery)
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Factor Graphs

Why factor graphs?

@vﬁ @vﬁ OO
@Aﬁ @Aﬁ OO

» Factor graphs are explicit about the factorization
» Hence, easier to work with

» Universal (just like MRFs and Bayesian networks)

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Factor Graphs

Capacity

@ e
» Factor graph defines family of distributions

» Some families are larger than others

Part
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Factor Graphs

Four remaining pieces

1. Conditional distributions (CRFs)
2. Parameterization

Sebastian Nowozin and Christoph H. Lampert

Part 2: Introduction to Graphical Models



Factor Graphs
000®0000000

Factor Graphs

Four remaining pieces

1. Conditional distributions (CRFs)

2. Parameterization

3. Test-time inference

4. Learning the model from training data
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Factor Graphs

Conditional Distributions

» We have discussed p(y), @ @

» How do we define p(y|x)?

conditional
distribution
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Factor Graphs

Conditional Distributions

» We have discussed p(y), @ @

» How do we define p(y|x)?
» Potentials become a function of xy(r)

» Partition function depends on x

conditional
) distribution
y)= Z H Ve(yner))
FEF
p(y[x) H VE(YNF) XN(F))
) rex
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Conditional Distributions

We have discussed p(y), @ @

>
» How do we define p(y|x)?
» Potentials become a function of xy(r)
» Partition function depends on x
» Conditional random fields (CRFs) @ @
> x is not part of the probability model, i.e. not conditional
treated as random variable distribution
1
y)= Z H Ve(yner))
FeF
p(y[x) H VE(YNF) XN(F))
Fe]-'
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Factor Graphs

Potentials and Energy Functions

» For each factor F € F, YVr =

Xy,

iEN(F)

EF : Inir) — R,
» Potentials and energies (assume ¢r(yr) > 0)
Vr(yr) = exp(—EF(yF)),

and  Ep(yr) = — log(vr(yr)).

[m] = = = = Q>
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Factor Graphs

Potentials and Energy Functions

» For each factor F € F, Vr =

X i,
iEN(F)

Er: Yn) — R,

» Potentials and energies (assume ¢r(yr) > 0)

Vr(yr) = exp(—EF(yr))
» Then p(y) can be written

and  Er(yF) log(Ve(yF))-
p(Y=y) = % H Ye(yF)
Fe}'

= eXP E Er(yr)),
FeF
(=] = = = = Da
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Factor Graphs

Factor Graphs

Potentials and Energy Functions

» For each factor F € F, Vr =

X

ieN(F)
Er: YN — R
» Potentials and energies (assume ¢r(yr) > 0)

Vr(yF) = exp(—Er(yF))

» Then p(y) can be written

and  Er(yF) log(vF(yF))
p(Y=y) = % H Ye(yF)
Fe}'

= eXP E Er(yr)),
FeF
> Hence, p(y) is completely determined by E(y) = > _rc » EF(yF)
=] = - = A
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Factor Graphs

00000080000

Energy Minimization

argmax p(Y =y)
yey

argmax — exp
yey

Z Er(yr))
FeF
argmax exp(— Z Er(ye))
yey FeF
= argmax — Z Er(yF)
yey FeF
= argmin Z Er(yr)
YeY  Fer

argmin E(y)
yeY

» Energy minimization can be interpreted as solving for the most likely
state of some factor graph model
- -
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Factor Graphs

Parameterization

» Factor graphs define a family of distributions

» Parameterization: identifying individual members by parameters w

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Parameterization

» Factor graphs define a family of distributions
» Parameterization: identifying individual members by parameters w

distributions
indexed
by w

distributions
in family

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

00000000800

Example: Parameterization

> Image segmentation model

» Pairwise "Potts” energy function
Er(yi, yji w),

Er:{0,1} x {0,1} x R — R,
> EF(0,0; W1) = EF(]., 1; Wl) =0
> EF(O, 1; W1) = EF(]., 0; Wl) = w1

image segmentation model
=] = - = A
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Factor Graphs

Example: Parameterization (cont)

> Image segmentation model

» Unary energy function Eg(y;; x, w),
Er:{0,1} x X x RIOUXD L, R

> EF(0; x,w) = (w(0),¥r(x))
> EF(1;x,w) = (w(1),¢Fr(x))

> Features 1r : X — RP, e.g. image
filters

image segmentation model

=] 5
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Factor Graphs

Example: Parameterization (cont)

Sebastian Nowozin and Christoph H. Lampert
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Factor Graphs

Factor Graphs

0000000000

Example: Parameterization (cont)

. Y
0 w1
w1 0

» Total number of parameters: D+ D + 1

» General form, linear in w,

» Parameters are shared, but energies differ because of different ¥g(x)

Er(yrixe, w) = (w(yr), ¥ (xF))
o & = = = Da
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Test-time Inference

Making Predictions

» Making predictions: given x € X, predict y € )
» How to measure quality of prediction? (or function f : X — )

Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference

Loss function

» Define a loss function
A:YxY—-R',

so that A(y, y*) measures the loss incurred by predicting y when y*
is true.

» The loss function is application dependent

on to Graphical Models
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Test-time Inference

Test-time Inference

» Loss function A(y, f(x)): correct label y, predict f(x)

A:YxY—=R

Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference
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Test-time Inference

» Loss function A(y, f(x)): correct label y, predict f(x)

A:YxY—=R

> True joint distribution d(X, Y’) and true conditional d(y|x)
» Model distribution p(y|x)

» Expected loss: quality of prediction
RfA(X) ]Eyfvd(y\x) A(ya f(X))
> dlylx) Aly, f(x))-

yey

Q

=] = = A
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Test-time Inference

Test-time Inference
00@000000

» Loss function A(y, f(x)): correct label y, predict f(x)

A:YxY—=R
» Model distribution p(y|x)

> True joint distribution d(X, Y’) and true conditional d(y|x)
» Expected loss: quality of prediction

RE (x)

Eywd(y\x) A(ya f(X))
= Y4 Al F()
yeyY

]Eywp(y|x;w) A(ya f(X))
» Assuming that p(y|x; w) =~ d(y|x)
o = = =z nar
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Test-time Inference

Example 1: 0/1 loss

Loss 0 iff perfectly predicted, 1 otherwise:

. . 0 ify=y*
Doply,y") =1y #y ):{ 1 otl{erw}i/se
Plugging it in,
y* = argminE,p )y [Ao/1(y7yl)]
y'ey

= argmax p(y’|x)
y'ey

= argmin E(y’, x).
y'ey

» Minimizing the expected 0/1-loss — MAP prediction (energy
minimization)

o =] - =
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Test-time Inference

Example 1: 0/1 loss

Loss 0 iff perfectly predicted, 1 otherwise:

. . 0 ify=y*
Doply,y") =1y #y ):{ 1 otl{erw}i/se
Plugging it in,
y* = argminE,p )y [Ao/1(y7yl)]
y'ey

= argmax p(y'|x)
y'ey
= argmin E(y’, x).

y'ey

» Minimizing the expected 0/1-loss — MAP prediction (energy
minimization)
[m] = = = =
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Example 2: Hamming loss

Count the number of mislabeled variables:

A ( Y,y v Z/(YI 7éy,
“ v pery
Plugging it in,
y* = argminE, i x [Au(y,y')]
y'ey

= | argmax p(y/|x)
Y€V icv

» Minimizing the expected Hamming loss — maximum posterior
marginal (MPM, Max-Marg) prediction

Sebastian Nowozin and Christoph H. Lampert
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Example 2: Hamming loss

Count the number of mislabeled variables:

A ( Y,y v Z/(YI 7éy,
“ v pery
Plugging it in,
y* = argminE, i x [Au(y,y')]
y'ey

= | argmax p(y/|x)
Y€V icv

» Minimizing the expected Hamming loss — maximum posterior
marginal (MPM, Max-Marg) prediction

Sebastian Nowozin and Christoph H. Lampert
Part 2: Introduction to Graphical Models




Test-time Inference

Test-time Inference
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Example 3: Squared error

Assume a vector space on ) (pixel intensities
optical flow vectors, etc.)

Sum of squared errors

Aoy, y”

= Sy -y IR
eV
Plugging it in
y* = argminE, 0 [Aq(y,y)]

> pyi1x)y!

!/
Y/ €Vi icv
» Minimizing the expected squared error — minimum mean squared
error (MMSE) prediction L S
Sebastian Nowozin and Christoph H. Lampert
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Test-time Inference
0O0000e000

Example 3: Squared error

Assume a vector space on ) (pixel intensities
optical flow vectors, etc.)

Sum of squared errors

Aoy, y”

= Sy -y IR
eV
Plugging it in
y* = argminE, 0 [Aq(y,y)]

> /Xy

!/
Y/ €Vi icv
» Minimizing the expected squared error — minimum mean squared
error (MMSE) prediction L S
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Test-time Inference
000000800

Inference Task: Maximum A Posteriori (MAP) Inference

Definition (Maximum A Posteriori (MAP) Inference)
the observation x, find

Given a factor graph, parameterization, and weight vector w, and given

y* = argmax p(Y = y|x, w) = argmin E(y; x, w).
yey yey

o & = = = va
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Test-time Inference

Inference Task: Probabilistic Inference

Definition (Probabilistic Inference)

Given a factor graph, parameterization, and weight vector w, and given
the observation x, find

log Z(x,w) = log ) exp(—E(y;x,w)),
yey
pe(ye) = p(YE=yrlx,w), VF & F,Vyr e Vr.

» This typically includes variable marginals

wi(yi) = p(yilx, w)

[m] = = =
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Test-time Inference

Example: Man-made structure detection

iy -y

v

Left: input image x,
Middle: ground truth labeling on 16-by-16 pixel blocks,
Right: factor graph model

v

v

v

Features: gradient and color histograms

v

Estimate model parameters from = 60 training images

[m] = =
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Test-time Inference

Example: Man-made structure detection

> Left: input image x,
» Middle (probabilistic inference): visualization of the variable
marginals p(y; = “manmade’|x, w),

» Right (MAP inference): joint MAP labeling
y* = argmax, ¢y p(y|x, w).

[m] = =
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Training

Training the Model

What can be learned?
» Model structure: factors

» Model variables: observed variables fixed, but we can add
unobserved variables

» Factor energies: parameters

Sebastian Nowozin and Christoph H. Lampert
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Training

Training the Model

What can be learned?
» Model structure: factors

» Model variables: observed variables fixed, but we can add
unobserved variables

» Factor energies: parameters

Sebastian Nowozin and Christoph H. Lampert
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Training
Training: Overview

Training
0@00

» Assume a fully observed, independent and identically distributed
(iid) sample set

(" y") =1,.08,
» Goal: predict well,

(Xnvyn) ~ d(Xv Y)
by minimizing the expected loss

> Alternative goal: first model d(y|x) well by p(y|x, w), then predict

o & = = = va
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Training

Probabilistic Learning

Problem (Probabilistic Parameter Learning)

Let d(y|x) be the (unknown) conditional distribution of labels for a
problem to be solved. For a parameterized conditional distribution
p(y|x, w) with parameters w € RP, probabilistic parameter learning is

the task of finding a point estimate of the parameter w* that makes
p(y|x, w*) closest to d(y|x).

u]
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Probabilistic Learning

Problem (Probabilistic Parameter Learning)

Let d(y|x) be the (unknown) conditional distribution of labels for a
problem to be solved. For a parameterized conditional distribution
p(y|x, w) with parameters w € RP, probabilistic parameter learning is
the task of finding a point estimate of the parameter w* that makes
p(y|x, w*) closest to d(y|x).

» We will discuss probabilistic parameter learning in detail.

Sebastian Nowozin and Christoph H. Lampert
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Training

Loss-Minimizing Parameter Learning

Problem (Loss-Minimizing Parameter Learning)

Let d(x,y) be the unknown distribution of data in labels, and let
A:Y xY — R be a loss function. Loss minimizing parameter learning is

the task of finding a parameter value w* such that the expected
prediction risk

E(x,y)~d(x) [A(Y, T5(x))]

is as small as possible, where f,(x) = argmax, cy, p(y|x, w*).

=] = Da
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Training

[e]ele] ]

Loss-Minimizing Parameter Learning

Problem (Loss-Minimizing Parameter Learning)

Let d(x,y) be the unknown distribution of data in labels, and let

A:Y xY — R be a loss function. Loss minimizing parameter learning is
the task of finding a parameter value w* such that the expected
prediction risk

E(x,y)~d(x) [A(Y, T5(x))]

is as small as possible, where f,(x) = argmax, cy, p(y|x, w*).

» Requires loss function at training time
» Directly learns a prediction function f,(x)

Sebastian Nowozin and Christoph H. Lampert
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Vision Software: Graphical Models

Inference-only

» OpenGM, University of Heidelberg
C+++, discrete factor graphs, irregular, higher-order, probabilistic
inference and energy minimization, MIT license

» libDAI, Joris Mooij
C+++, discrete factor graphs, irregular, higher-order, mainly
probabilistic inference, BSD license

» ALE, Lubor Ladicky

C++, discrete factor graphs, regular/irregular, higher-order, energy
minimization, proprietary license

Sebastian Nowozin and Christoph H. Lampert
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Vision Software: Graphical Models (cont)

Inference and Estimation

» JGMT, Justin Domke
C++/Matlab, discrete factor graphs, regular/irregular, pairwise only,
probabilistic inference, loss-based learning, license?

> grante, Microsoft Research UK
C++ with Matlab wrappers, discrete factor graphs,
regular/irregular, higher-order, prob. inference and energy
minimization, likelihood- and loss-based estimation, MSR-LA license

» Factorie, UMass
Scala (Java), imperative discrete factor graphs,
continuous/discrete/any-order, likelihood-based, Apache license

> Infer.Net, Microsoft Research UK
C+#, discrete/continuous, any-order (probabilistic programming), full
Bayesian inference, MSR-LA license

» svm-struct-matlab, Andrea Vedaldi
Matlab wrapper for SVMstruct (Thorsten Joachims)

Sebastian Nowozin and Christoph H. Lampert
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